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Abstract. In this paper, we consider a large class of hierarchical conges-
tion population games. One can show that the equilibrium in a game of
such type can be described as a minimum point in a properly constructed
multi-level convex optimization problem. We propose a fast primal-dual
composite gradient method and apply it to the problem, which is dual to
the problem describing the equilibrium in the considered class of games.
We prove that this method allows to find an approximate solution of the
initial problem without increasing the complexity.
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1 Problem Statement

In this subsection, we briefly describe a variational principle for equilibrium de-
scription in hierarchical congestion population games. In particular, we consider
a multistage model of traffic flows. Further details can be found in [1].

We consider the traffic network described by the directed graph Γ 1 =
⟨
V 1, E1

⟩
.

Some of its vertices O1 ⊆ V 1 are sources (origins), and some are sinks (destina-
tions) D1 ⊆ V 1. We denote a set of source-sink pairs by OD1 ⊆ O1 ⊗D1. Let
us assume that for each pair w1 ∈ OD1 there is a flow of network users of the
amount of d1w1 := d1w1 ·M , where M ≫ 1, per unit time who moves from the
origin of w1 to its destination. We call the pair w1, d1w1 as correspondence.

Let edges Γ 1 be partitioned into two types E1 = Ẽ1
⨿
Ē1. The edges of

type Ẽ1 are characterized by non-decreasing functions of expenses τ1e1(f
1
e1) :=

τ1e1(f
1
e1/M). Expenses τ1e1(f

1
e1) are incurred by those users who use in their path
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an edge e1 ∈ Ẽ1, the flow of users on this edge being equal to f1e1 . The pairs
of vertices setting the edges of type Ē1 are in turn a source-sink pairs OD2

(with correspondences d2w2 = f1e1 , w
2 = e1 ∈ Ē1) in a traffic network of the

second level Γ 2 =
⟨
V 2, E2

⟩
whose edges are partitioned in turn into two types

E2 = Ẽ2
⨿
Ē2. The edges having type Ẽ2 are characterized by non-decreasing

functions of expenses τ2e2(f
2
e2) := τ2e2(f

2
e2/M). Expenses τ2e2(f

2
e2) are incurred by

those users who use in their path an edge e2 ∈ Ẽ2, the flow of users on this edge
being equal to f2e2 .

The pairs of vertices setting the edges having type Ē2 are in turn source-sink
pairs OD3 (with correspondences d3w3 = f2e2 , w

3 = e2 ∈ Ē2) in a traffic network
of a higher level Γ 3 =

⟨
V 3, E3

⟩
, etc. We assume that in total there are m levels:

Ẽm = Em. Usually, in applications, the number m is small and varies from 2 to
10.

Let P 1
w1 be the set of all paths in Γ 1 which correspond to a correspondence

w1. Each user in the graph Γ 1 chooses a path p1w1 ∈ P 1
w1 (a consecutive set of

the edges passed by the user) corresponding to his correspondence w1 ∈ OD1.
Having defined a path p1w1 , it is possible to restore unambiguously the edges
having type Ē1 which belong to this path. On each of these edges w2 ∈ Ē1,
user can choose a path p2w2 ∈ P 2

w2 (P 2
w2 is a set of all paths corresponding in

the graph Γ 2 to the correspondence w2), etc. Let us assume that each user have
made the choice.

We denote by x1p1 the size of the flow of users on a path p1 ∈ P 1 =⨿
w1∈OD1

P 1
w1 , x2p2 the size of the flow of users on a path p2 ∈ P 2 =

⨿
w2∈OD2

P 2
w2 ,

etc. Let us notice that

xkpk

wk
≥ 0, pkwk ∈ P k

wk ,
∑

pk

wk∈Pk

wk

xkpk

wk
= dkwk , wk ∈ ODk, k = 1, ...,m

and that

wk+1
(
= ek

)
∈ ODk+1

(
= Ēk

)
, dk+1

wk+1 = fkek , k = 1, ...,m− 1.

For all k = 1, ...,m, we introduce for the graph Γ k and the set of paths P k

a matrix

Θk =
∥∥δekpk

∥∥
ek∈Ek,pk∈Pk , δekpk =

{
1, ek ∈ pk

0, ek /∈ pk
.

Then, for all k = 1, ...,m, the vector fk of flows on the edges of thegraph Γ k is
defined in a unique way by the vector of flows on the paths xk =

{
xkpk

}
pk∈Pk :

fk = Θkxk.

We introduce the following notation

x =
{
xk
}m
k=1

, f =
{
fk
}m
k=1

, Θ = diag
{
Θk
}m
k=1

.

Let us now describe the probabilistic model for the choice of the path by
a network user. We assume that each user l of a traffic network who uses a
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correspondence wk ∈ ODk at a level k (and simultaniously the edge ek−1(=
wk) ∈ Ēk−1 at the level k − 1) chooses to use a path pk ∈ P k

wk if

pk = arg max
qk∈Pk

wk

{−gkqk(t) + ξk,l
qk

},

where ξk,l
qk

are iid random variables with double exponential distribution (also

known as Gumbel’s distribution) with cumulative distribution function

P (ξk,l
qk

< ζ) = exp{−e−ζ/γk−E},

where E ≈ 0.5772 is Euler–Mascheroni constant. In this case

M [ξk,l
qk

] = 0, D[ξk,l
qk

] = (γk)2π2/6.

Also, it turns out that, when the number of agents on each correspondence
wk ∈ ODk, k = 1, ...,m tends to infinity, i. e. M → ∞, the limiting distribution
of users among paths is the Gibbs’s distribution (also known as logit distribution)

xkpk = dkwk

exp(−gkpk(t)/γ
k)∑

p̃k∈Pk

wk

exp(−gk
p̃k(t)/γk)

, pk ∈ P k
wk , w

k ∈ ODk, k = 1, ...,m. (1)

It is worth noting here that (see Theorem 1 below)

γkψk
wk(t/γ

k) =M{ξk
pk

}
pk∈Pk

wk

[
max

pk∈Pk

wk

{−gkpk(t) + ξkpk}
]
.

For the sake of convenience we introduce the graph

Γ =
m⨿

k=1

Γ k =

⟨
V,E =

m⨿
k=1

Ẽk

⟩
and denote te = τe(fe), e ∈ E.

Assume that, for a given vector of expenses t on edges E, which is identical
to all users, each user chooses the shortest path at each level based on noisy
information and averaging of the information from the higher levels. Then, in
the limit number of users tending to infinity, such behavior of users leads to
the description of distribution of users on paths/edges given in (1) and the
equilibrium configuration in the system is characterized by the vector t for which
the vector x, obtained from (1), leads to the vector f = Θx satisfying t =
{τe(fe)}e∈E .

Theorem 1 (Variational principle). The described above fixed point equilib-
rium t can be found as a solution of the following problem (here and below we
denote by dom σ∗ the effective domain of the function conjugated to a function
σ)

min
f,x

{Ψ(x, f) : f = Θx, x ∈ X} = − min
t∈domσ∗

{
γ1ψ1(t/γ1) +

∑
e∈E

σ∗
e(te)

}
, (2)
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where

Ψ(x, f) := Ψ1(x) =
∑

e1∈Ẽ1

σ1
e1(f

1
e1) + Ψ2(x) + γ1

∑
w1∈OD1

∑
p1∈P 1

w1

x1p1 ln(x1p1/d1w1),

Ψ2(x) =
∑

e2∈Ẽ2

σ2
e2(f

2
e2) + Ψ3(x) + γ2

∑
w2∈Ē1

∑
p2∈P 2

w2

x2p2 ln(x2p2/d2w2), d2w2 = f1w2 ,

. . .

Ψk(x) =
∑

ek∈Ẽk

σk
ek(f

k
ek) + Ψk+1(x) + γk

∑
wk∈Ēk−1

∑
pk∈Pk

wk

xkpk ln(x
k
pk/d

k
wk),

dk+1
wk+1 = fkwk+1 ,

. . .

Ψm(x) =
∑

em∈Em

σm
em (fmem) + γm

∑
wm∈Ēm−1

∑
pm∈Pm

wm

xmpm ln(xmpm/dmwm),

dmwm = fm−1
wm ,

σ∗
e(te) = max

fe

{
fete −

fe∫
0

τe(z)dz

}
,

dσ∗
e(te)

dte
=

d

dte
max
fe

{
fete −

fe∫
0

τe(z)dz

}
= fe : te = τe(fe), e ∈ E,

gmpm(t) =
∑

em∈Ẽm

δempmtem =
∑

em∈Em

δempmtem ,

gkpk(t) =
∑

ek∈Ẽk

δekpktek −
∑

ek∈Ēk

δekpkγk+1ψk+1
ek

(t/γk+1), k = 1, ...,m− 1,

ψk
wk(t) = ln

( ∑
pk∈Pk

wk

exp(−gkpk(t))

)
, k = 1, ...,m,

ψ1(t) =
∑

w1∈OD1

d1w1ψ1
w1(t).

2 General Numerical Method

In this subsection, we describe one of our contributions made by this paper,
namely a general accelerated primal-dual gradient method for composite mini-
mization problems.

We consider the following convex composite optimization problem [3]:

min
x∈Q

[ϕ(x) := f(x) + Ψ(x)]. (3)
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Here Q ⊆ E is a closed convex set, the function f is differentiable and convex
on Q, and function Ψ is closed and convex on Q (not necessarily differentiable).

In what follows we assume that f is Lf -smooth on Q:

∥∇f(x)−∇f(y)∥∗ ≤ Lf ∥x− y∥ , ∀x, y ∈ Q. (4)

We stress that the constant Lf > 0 arises only in theoretical analysis and not in
the actual implementation of the proposed method. Moreover, we assume that
the set Q is unbounded and that Lf can be unbounded on the set Q.

The space E is endowed with a norm ∥·∥ (which can be arbitrary). The
corresponding dual norm is ∥g∥∗ := maxx∈E{⟨g, x⟩ : ∥x∥ ≤ 1}, g ∈ E∗. For
mirror descent, we need to introduce the Bregman divergence. Let ω : Q → R
be a distance generating function, i.e. a 1-strongly convex function on Q in the
∥·∥-norm:

ω(y) ≥ ω(x) + ⟨ω′(w), y − x⟩+ 1

2
∥y − x∥2 , ∀x, y ∈ Q. (5)

Then, the corresponding Bregman divergence is defined as

Vx(y) := ω(y)− ω(x)− ⟨ω′(x), y − x⟩, x, y ∈ Q. (6)

Finally, we generalize the Grad and Mirr operators from [2] to composite
functions:

GradL(x) := argmin
y∈Q

{
⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 + Ψ(y)

}
, x ∈ Q,

Mirrαz (g) := argmin
y∈Q

{
⟨g, y − z⟩+ 1

α
Vz(y) + Ψ(y)

}
, g ∈ E∗, z ∈ Q.

(7)

2.1 Algorithm description

Below is the proposed scheme of the new method. The main differences between
this algorithm and the algorithm of [2] are as follows: 1) now the Grad and Mirr
operators contain the Ψ(y) term inside; 2) now the algorithm does not require
the actual Lipschitz constant Lf , instead it requires an arbitrary number L0

1

and automatically adapts the Lipschitz constant in iterations; 3) now we need
to use a different formula for αk+1 to guarantee convergence (see next section).

Note that Algorihtm 1 if well-defined in the sense that it is always guaranteed
that τk ∈ [0, 1] and, hence, xk+1 ∈ Q as a convex combination of points from Q.
Indeed, from the formula for αk+1 we have

αk+1Lk+1 ≥

(√
1

4L2
k+1

+
1

2Lk+1

)
Lk+1 = 1, (8)

therefore τk = 1
αk+1Lk+1

≤ 1.

1 The number L0 can be always set to 1 with virtually no harm to the convergence
rate of the method.
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Algorithm 1 Accelerated gradient method.

Require: x0 ∈ Q: initial point; T : number of iterations; L0: initial estimate of Lf .
y0 ← x0, z0 ← x0, α0 ← 0
for k = 0, . . . , T − 1 do

Lk+1 ← max{L0, Lk/2}
while True do

αk+1 ←
√

α2
k

Lk
Lk+1

+ 1
4L2

k+1
+ 1

2Lk+1
, and τk ← 1

αk+1Lk+1
.

xk+1 ← τkzk + (1− τk)yk
yk+1 ← GradLk+1(xk+1)

if f(yk+1) ≤ f(xk+1)+ ⟨∇f(xk+1), yk+1−xk+1⟩+ Lk+1

2
∥yk+1 − xk+1∥2 then

break
Lk+1 ← 2Lk+1

end while
zk+1 ← Mirr

αk+1
zk (∇f(xk+1))

end for
return yT

2.2 Convergence rate

First we prove the analogues of Lemma 4.2 and Lemma 4.3 from [2].

Lemma 1. For any u ∈ Q and τk = 1
αk+1Lk+1

we have

αk+1⟨∇f(xk+1), zk−u⟩ ≤ α2
k+1Lk+1(ϕ(xk+1)−ϕ(yk+1))+(Vzk(u)−Vzk+1

(u))

+ αk+1Ψ(u)− (α2
k+1Lk+1)Ψ(xk+1) + (α2

k+1Lk+1 − αk+1)Ψ(yk). (9)

Proof. From the first order optimality condition for zk+1 = Mirrαk+1
zk

(∇f(xk+1))
we get⟨

∇f(xk+1) +
1

αk
V ′
zk
(zk+1) + Ψ ′(zk+1), zk+1 − u

⟩
≤ 0, ∀u ∈ Q. (10)

Therefore

αk+1⟨∇f(xk+1), zk − u⟩
= αk+1⟨∇f(xk+1), zk − zk+1⟩+ αk+1⟨∇f(xk+1), zk+1 − u⟩
≤ αk+1⟨∇f(xk+1), zk − zk+1⟩+ ⟨V ′

zk
(zk+1), u− zk+1⟩

+ αk+1⟨Ψ ′(zk+1), u− zk+1⟩
≤ (αk+1⟨∇f(xk+1), zk − zk+1⟩ − αk+1Ψ(zk+1))

+ ⟨V ′
zk
(zk+1), u− zk+1⟩+ αk+1Ψ(u),

(11)

where the second inequality follows from the convexity of Ψ .
Using the triangle equality of the Bregman divergence,

⟨V ′
x(y), u− y⟩ = Vx(u)− Vy(u)− Vx(y),
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we get

⟨V ′
zk
(zk+1), u− zk+1⟩ = Vzk(u)− Vzk+1

(u)− Vzk(zk+1)

≤ Vzk(u)− Vzk+1
(u)− 1

2
∥zk+1 − zk∥2 ,

(12)

where we have used Vzk(zk+1) ≥ 1
2 ∥zk+1 − zk∥2 in the last inequality.

So we have

αk+1⟨∇f(xk+1), zk − u⟩

≤
(
αk+1⟨∇f(xk+1), zk − zk+1⟩ −

1

2
∥zk+1 − zk∥2 − αk+1Ψ(zk+1)

)
+ (Vzk(u)− Vzk+1

(u)) + αk+1Ψ(u)

(13)

Define v := τkzk+1 +(1− τk)yk ∈ Q. Then we have xk+1 − v = τk(zk − zk+1)
and τkΨ(zk+1)+ (1− τk)Ψ(yk) ≥ Ψ(v) due to convexity of Ψ . Using this and the
formula for τk, we get(
αk+1⟨∇f(xk+1), zk − zk+1⟩ −

1

2
∥zk+1 − zk∥2 − Ψ(zk+1)

)
≤ −

(
αk+1

τk
⟨∇f(xk+1), v − xk+1⟩+

1

2τ2k
∥v − xk+1∥2 +

αk+1

τk
Ψ(v)

)
+
αk+1(1− τk)

τk
Ψ(yk)

≤ −(α2
k+1Lk+1)

(
⟨∇f(xk+1), v − xk+1⟩+

Lk+1

2
∥v − xk+1∥2 + Ψ(v)

)
+ (α2

k+1Lk+1 − αk+1)Ψ(yk)

≤ −(α2
k+1Lk+1)

(
⟨∇f(xk+1), yk+1 − xk+1⟩+

Lk+1

2
∥yk+1 − xk+1∥2 + Ψ(yk+1)

)
+ (α2

k+1Lk+1 − αk+1)Ψ(yk)
(14)

Here the last inequality follows from the definition of yk+1.
Note that by the termination condition for choosing Lk+1 we have

ϕ(yk+1) = f(yk+1) + Ψ(yk+1)

≤ f(xk+1) + ⟨∇f(xk+1), yk+1 − xk+1⟩

+
Lk+1

2
∥yk+1 − xk+1∥2 + Ψ(yk+1)

= ϕ(xk+1) + ⟨∇f(xk+1), yk+1 − xk+1⟩

+
Lk+1

2
∥yk+1 − xk+1∥2 + Ψ(yk+1)− Ψ(xk+1).

(15)

After rearranging:

−
(
⟨∇f(xk+1), yk+1 − xk+1⟩+

Lk+1

2
∥yk+1 − xk+1∥2 + Ψ(yk+1)

)
≤ ϕ(xk+1)− ϕ(yk+1)− Ψ(xk+1).

(16)
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Hence, (
αk+1⟨∇f(xk+1), zk − zk+1⟩ −

1

2
∥zk+1 − zk∥2 − Ψ(zk+1)

)
≤ (α2

k+1Lk+1)(ϕ(xk+1)− ϕ(yk+1))− (α2
k+1Lk+1)Ψ(xk+1)

+ (α2
k+1Lk+1 − αk+1)Ψ(yk).

(17)

Finally, combining the previous estimates, we get

αk+1⟨∇f(xk+1), zk − u⟩ ≤ (α2
k+1Lk+1)(ϕ(xk+1)− ϕ(yk+1))

+ (Vzk(u)− Vzk+1
(u))− (α2

k+1Lk+1)Ψ(xk+1)

+ (α2
k+1Lk+1 − αk+1)Ψ(yk) + αk+1Ψ(u).

(18)

⊓⊔

Lemma 2. For any u ∈ Q and τk = 1
αk+1Lk+1

we have

(α2
k+1Lk+1)ϕ(yk+1)− (α2

k+1Lk+1 − αk+1)ϕ(yk)

≤ αk+1 (f(xk+1) + ⟨∇f(xk+1), u− xk+1⟩+ Ψ(u)) + (Vzk(u)− Vzk+1
(u)).

(19)

Proof. Using convexity of f and relation τk(xk+1 − zk) = (1 − τk)(yk − xk+1),
we obtain

αk+1(Ψ(xk+1)− Ψ(u)) + αk+1⟨∇f(xk+1), xk+1 − u⟩
= αk+1(Ψ(xk+1)− Ψ(u)) + αk+1⟨∇f(xk+1), xk+1 − zk⟩
+ αk+1⟨∇f(xk+1), zk − u⟩

≤ αk+1(Ψ(xk+1)− Ψ(u)) +
αk+1(1− τk)

τk
⟨∇f(xk+1), yk − xk+1⟩

+ αk+1⟨∇f(xk+1), zk − u⟩
≤ αk+1(Ψ(xk+1)− Ψ(u)) + (α2

k+1Lk+1 − αk+1)(f(yk)− f(xk+1))

+ αk+1⟨∇f(xk+1), zk − u⟩
≤ αk+1ϕ(xk+1)− αk+1Ψ(u) + (α2

k+1Lk+1 − αk+1)f(yk)

− (α2
k+1Lk+1)f(xk+1) + αk+1⟨∇f(xk+1), zk − u⟩.

(20)

Now we apply Lemma 1 to bound the last term, group the terms and get

αk+1(Ψ(xk+1)− Ψ(u)) + αk+1⟨∇f(xk+1), xk+1 − u⟩
≤ αk+1ϕ(xk+1)− (α2

k+1Lk+1)ϕ(yk+1)

+ (α2
k+1Lk+1 − αk+1)ϕ(yk) + (Vzk(u)− Vzk+1

(u)).

(21)

After rearranging, we obtain (19). ⊓⊔

Now we are ready to prove the convergence theorem for Algorithm 1.
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Theorem 2. For the sequence {yk}k≥0 in Algorithm 1 we have

(α2
TLT )ϕ(yT ) ≤ min

x∈Q

{
T∑

k=1

αk (f(xk) + ⟨∇f(xk), u− xk⟩+ Ψ(u)) + Vz0(u)

}
(22)

and, hence, the following rate of convergence:

ϕ(yT )− ϕ(x∗) ≤ 4LfR
2

T 2
. (23)

Proof. Note that the special choice of {αk}k≥0 in Algorithm 1 gives us

α2
k+1Lk+1 − αk+1 = α2

kLk, k ≥ 0. (24)

Therefore, taking the sum over k = 0, . . . , T − 1 in (19) and using that α0 = 0,
VzT (u) ≥ 0 we get, for any u ∈ Q,

(α2
TLT )ϕ(yT ) ≤

T∑
k=1

αk (f(xk) + ⟨∇f(xk), u− xk⟩+ Ψ(u)) + Vz0(u) (25)

and (22) is straightforward. At the same time, using the convexity of f(x), the
definition of ϕ(x), and u = x∗ = argminx∈Q ϕ(x), we obtain

(α2
TLT )ϕ(yT ) ≤ min

x∈Q

{
T∑

k=1

αk (f(xk) + ⟨∇f(xk), u− xk⟩+ Ψ(u)) + Vz0(u)

}

≤

(
T∑

k=1

αk

)
ϕ(x∗) + Vz0(x

∗).

(26)

From (24) it follows that
∑T

k=1 αk = α2
TLT , so

ϕ(yT ) ≤ ϕ(x∗) +
1

α2
TLT

Vz0(x
∗). (27)

Now it remains to estimate the rate of growth of coefficients Ak := α2
kLk. For

this we use the technique from [3]. Note that from (24) we have

Ak+1 −Ak =

√
Ak+1

Lk+1
(28)

Rearranging and using (a+ b)2 ≤ 2a2 + 2b2 and Ak ≤ Ak+1, we get

Ak+1 = Lk+1(Ak+1 −Ak)
2 = Lk+1

(√
Ak+1 +

√
Ak

)2 (√
Ak+1 −

√
Ak

)2
≤ 4Lk+1Ak+1

(√
Ak+1 −

√
Ak

)2
(29)
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From this it follows that

√
Ak+1 ≥ 1

2

k∑
i=0

1√
Li

. (30)

Note that according to (4) and the stopping criterion for choosing Lk+1 in Al-
gorithm (1), we always have Li ≤ 2Lf . Hence,√

Ak+1 ≥ k + 1

2
√

2Lf

⇐⇒ Ak+1 ≥ (k + 1)2

8Lf
. (31)

Thus, combining (31) and (27) with Vz0(x
∗) =: R2

2 , we have proved (23). ⊓⊔

Using the same arguments to [3], it is also possible to prove that the average
number of evaluations of the function f per iteration in Algorithm 1 equals 4.

Theorem 3. Let Nk be the total number of evaluations of the function f in
Algorithm 1 after the first k iterations. Then for any k ≥ 0 we have

Nk ≤ 4(k + 1) + 2 log2
Lf

L0
. (32)

3 Application to the Equilibrium Problem

In this section, we apply Algorithm 1 to solve the dual problem in (2)

min
t∈domσ∗

{
γ1ψ1(t/γ1) +

∑
e∈E

σ∗
e(te)

}
.

with t in the role of x, γ1ψ1(t/γ1) in the role of f(x), and
∑
e∈E

σ∗
e(te) in the role

of Ψ(x).
The inequality (22) leads to the fact that Algorithm 1 is primal-dual [6–9],

which means that the sequences {ti} (which is in the role of {xk}) and {t̃i} (which
is in the role of {yk}) generated by this method have the following property:

γ1ψ1(t̃T /γ1) +
∑
e∈E

σ∗
e(t̃

T
e )

− min
t∈domσ∗

{
1

AT

T∑
i=0

[
αi(γ

1ψ1(ti/γ1) + ⟨∇ψ1(ti/γ1), t− ti⟩)
]
+
∑
e∈E

σ∗
e(te)

}
(33)

≤ 4L2R
2
2

T 2
,

where
L2 ≤ (1/ min

k=1,...,m
γk)

∑
w1∈OD1

d1w1 · (lw1)2,
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with lw1 being the total number of edges (among all of the levels) in the longest
path for correspondence w1,

R2
2 = max{R̃2

2, R̂
2
2}, R̃2

2 = (1/2) ∥t̄− t∗∥22 , R̂2
2 = (1/2)

∑
e∈E

(
τe
(
f̄Ne
)
− t∗e

)2
,

f̄N is defined in Theorem 2, the method starts from t0 = t̄, t∗ is a solution of
the problem (2).

Theorem 4. Let the problem (2) be solved by Algorithm 1 generating sequences
{ti}, {t̃i}. Then. after T iterations one has

0 ≤
{
γ1ψ1(t̃T /γ1) +

∑
e∈E

σ∗
e(t̃

T
e )
}
+ Ψ(x̄T , f̄T ) ≤ 4L2R

2
2

T 2
,

where
f i = Θxi = −∇ψ1(ti/γ1), xi =

{
xk,i
pk

}k=1,...,m

pk∈Pk

wk ,w
k∈ODk ,

xk,i
pk = dkwk

exp(−gkpk(t
i)/γk)∑

p̃k∈Pk

wk

exp(−gk
p̃k(ti)/γk)

, pk ∈ P k
wk , wk ∈ ODk, k = 1, ...,m,

f̄T =
1

AT

T∑
i=0

αif
i, x̄T =

1

AT

T∑
i=0

αix
i.

Theorem 2 provides the bound for the number of iterations in order to solve
the problem (2) with given accuracy. Nevertheless, on each iteration it is neces-
sary to calculate∇ψ1(t/γ1) and also ψ1(t/γ1). Similarly to [9–11] it is possible to
show, using the smoothed version of Bellman–Ford method, that for this purpose
it is enough to perform O(|O1||E| max

w1∈OD1
lw1) arithmetic operations.

In general, it is worth noting that the approach of adding some artificial
vertices, edges, sources, sinks is very useful in different applications [12–14].
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