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Abstract. In this paper we proposed a modified Lagrangian functional for
obstacle problem, investigated its properties. Then we construct Uzawa method
for finding a saddle point, proved the convergence theorems. Some numerical
examples are provided.
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1 Introduction

We consider a modified duality method for solving the obstacle problem. The obsta-
cle problem is a typical example of the elliptic variational inequality. Many important
problems ranging from contact problems in continuum mechanics to option pricing in
computational finance can be formulated as the obstacle problem. See for instance the
book [1] where many of these applications are described, as well as the classical liter-
ature on this problem. Finally, apart from their practical relevance, obstacle problems
are fascinating mathematical objects of their own value. The basic properties of the
solution, including existence and uniqueness, were established by Lions and Stampac-
chia [2]. Many approaches for the numerical solution of obstacle problems have been
suggested and pursued [3–5]. The main existing numerical methods for the solution of
obstacle problems in particular, are mathematical programming approach, and schemes
based on penalty formulations and Lagrangian multiplier formulations [6–8].

The modified Lagrangian functional for the first time were developed and investi-
gated for solving the problem of finite-dimensional optimization. Their emergence was
related to the fact that classical Lagrangian functionals that are linear functions of
the dual variables are not suitable for solving the singular optimization problems. The
construction of modified Lagrangian function (functional) actually comprises regular-
ization of dual variables. In last time the Lagrangian multiplier method is successfully
applied to the solution of infinite-dimensional variational inequalities in mechanics [9–
11]. In this paper the duality scheme based on the modified Lagrangian functional is
examined for the obstacle problem.

The paper is structures as follows. In Sect. 2, we introduce the obstacle problem. In
Sect. 3, we present the sensitivity functional for the obstacle problem and we investigate
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its properties. In Sect. 4, we propose the modified Lagrangian functional and construct
the Uzawa method for finding a saddle point, prove the convergence theorems. Finally,
in Sect. 5 we present the numerical examples. Sect. 6 contains some concluding remarks.

2 The Obstacle Problem

Let us consider a simple model for a problem with obstacle. There are horizontal
circular wire and a membrane hanging on this wire (see fig. 1(a)). We assume that
this membrane is horizontal and above a plate. This plate is a obstacle for plate’s
deflection. When we load the membrane with a force f in the vertical direction, it
undergoes deflection (fig. 1(b) — the case without the plate). If there is the place we
get a contact area between the membrane and the obstacle which is the plate. This
contact area is called the coincidence set (fig 1(c)).

Fig. 1. Membrane over a plate

The obstacle problem can be described as follows: find the equilibrium position
u(x), x ∈ Ω ⊂ R2 of an elastic membrane constrained to lie above a given obstacle
ψ(x) under an external force f(x). Then u(x) is the formal solution of the boundary
problem

−∆u(x) = f(x) a.e. in N = {x ∈ Ω : u(x) > ψ(x)},

u(x) = ψ(x) in Λ = {x ∈ Ω : u(x) = ψ(x)},

u(x) = 0, x ∈ Γ.

Here Ω ⊂ R2 be a bounded and open domain with smooth boundary Γ ; where f is an
element L2(Ω); ψ is an element of H1

0 (Ω) with ψ ≤ 0 on Γ .
Therefore the obstacle problem can be posed as a variation problem. Set

J(v) =
1

2

∫
Ω

|∇v|2 dΩ −
∫
Ω

f v dΩ (1)

and
K = {w : w ∈ H1

0 (Ω), w ≥ ψ a.e. in Ω}.

The set K is not empty.
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We consider the following variational inequality:{
Find v ∈ K such that
J(v)−min .

(2)

The problem (2) is called the obstacle problem, and the set K is called the set of
constraints [1].

The functional J(v) is strongly coercive in H1
0 (Ω), it means J(v) → +∞ for

∥v∥H1(Ω) → ∞. Hence the problem (2) has a unique solution u. It is known if ∆ψ(x) ∈
L2(Ω), then u is an element H2(Ω) (see [1, 12]).

In [13] the duality method with classical Lagrangian functional

L(v, l) = J(v) +

∫
Ω

l (ψ − v) dΩ, v ∈ H1
0 (Ω), l ∈ L2(Ω)

is consider, and it shows that a point (v∗, l∗) = (u,−∆u− f) is a unique saddle point
of the Lagrangian functional L(v, l),

L(u, l) ≤ L(u,−∆u− f) ≤ L(v,−∆u− f), ∀ v ∈ H1
0 (Ω), l ∈ (L2(Ω))

+

where
(L2(Ω))

+
= {w ∈ L2(Ω) : w ≥ 0 a.e. in Ω}.

It is known that duality methods based on classical Lagrangian functionals don’t
guarantee the convergence of the available methods for finding saddle points in varia-
tional inequalities in mechanics. The convergence of duality methods can be established
according to direct variable only. In addition the step according to dual variable must
be sufficiently small.

3 The Sensitivity Functional

For arbitrary m ∈ L2(Ω) we introduce the set

Km = {v ∈ H1
0 (Ω) : ψ − v ≤ m a.e. on Ω}

and for all functions m ∈ L2(Ω) define the sensitivity functional

χ(m) =

{
inf

v∈Km

J(v), if Km ̸= ∅,

+∞, otherwise.

It is easy to see that if a function m ∈ L2(Ω) is lower bounded on Ω, the corre-
sponding set Km is not empty and inf

v∈Km

J(v) > −∞ [14]. The set Km can be empty

if m ∈ L2(Ω) \ H1(Ω) and not lower bounded on Ω. Then χ(m) is a proper convex
functional on L2(Ω), but it’s effective domain domχ = {m ∈ L2(Ω) : χ(m) < +∞}
does not coincide with L2(Ω). Notice that domχ is a convex but not closed set. In this
case, domχ = L2(Ω).
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Since the functional J(v) is coercive then the problem{
Find v ∈ Km such that
J(v)−min .

has a unique solution um for any m ∈ domχ. Hence χ(m) = J(um) and χ(0) =
inf
v≥ψ

J(v) = J(u).

We have the next result.

Theorem 1. The sensitivity functional χ(m) is weakly lower semicontinuous on L2(Ω).

Since χ(m) is convex functional, it is suffices to show that χ(m) is lower semicon-
tinuous on L2(Ω) (in norm space L2(Ω)).

We take an arbitrary sequence {mi} ⊂ L2(Ω) such that m̄ = lim
i→∞

mi. We can show

that the conditions
1) lim

i→∞
χ(mi) = +∞ if m̄ /∈ domχ;

2) lim
i→∞

χ(mi) ≥ χ(m̄) if m̄ ∈ domχ

are satisfied. Desirable property of lower semicontinuous for χ(m) follows from these
conditions. The proof is complete.

For an arbitrary l ∈ L2(Ω), we consider the functional

Fl(m) = χ(m) +

∫
Ω

l m dΩ +
r

2

∫
Ω

m2 dΩ,

where r > 0 is a constant. The functional Fl(m) is very important for constructing the
duality methods based on modified Lagrangian functionals [11].

For a fixed l ∈ L2(Ω), we examined the functional Fl(m) for m ∈ L2(Ω). From
theorem 1 follows that Fl(m) is a weakly semicontinuous functional on L2(Ω).

Theorem 2. The functional Fl(m) is coercive in L2(Ω).

Since χ(m) is a lower semicontinuous functional, then the epigraph of sensitivity
functional

epiχ ≡ {(v, a) ∈ L2(Ω)×R : χ(v) ≤ a}

is a convex closed set in L2(Ω)× R. According Mazur separation theorem [15, p. 164]
there are α ∈ L2(Ω) and γ ∈ R, such that∫

Ω

αmdΩ + χ(m) + γ ≥ 0 ∀m ∈ domχ.

Hence the estimate

Fl(m) ≥ −
∫
Ω

αmdΩ +

∫
Ω

l m dΩ +
r

2

∫
Ω

m2 dΩ + γ ∀m ∈ L2(Ω)
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is satisfied and Fl(m) → +∞ if ∥m∥L2(Ω) → ∞.
The proof is complete.

Therefore for any l ∈ L2(Ω) there exists a unique element

m(l) = arg min
m∈L2(Ω)

Fl(m).

It is obvious that m(l) ∈ domχ.

Let us introduce the function

Φ(l) = χ(m(l)), ∀l ∈ L2(Ω).

Theorem 3. The function Φ(l) is continuous in L2(Ω).

Since Fl(m) is a strongly convex functional, then the inequality

χ(m(l)) +

∫
Ω

l m(l) dΩ +
r

2

∫
Ω

(m(l))2 dΩ +
r

2
∥m(l)−m∥2L2(Ω) ≤

≤ χ(m) +

∫
Ω

l m dΩ +
r

2

∫
Ω

m2 dΩ

is fulfilled for a given element l ∈ L2(Ω) and every m ∈ L2(Ω).

Choose two elements l′, l′′ on L2(Ω). Let m′ = m(l′) and m′′ = m(l′′). Last inequal-
ity implies the relations

χ(m′) +

∫
Ω

l′m′ dΩ +
r

2

∫
Ω

(m′)2 dΩ +
r

2
∥m′ −m′′∥2L2(Ω) ≤

≤ χ(m′′) +

∫
Ω

l′m′′ dΩ +
r

2

∫
Ω

(m′′)2 dΩ,

(3)

χ(m′′) +

∫
Ω

l′′m′′ dΩ +
r

2

∫
Ω

(m′′)2 dΩ +
r

2
∥m′′ −m′∥2L2(Ω) ≤

≤ χ(m′) +

∫
Ω

l′′m′ dΩ +
r

2

∫
Ω

(m′)2 dΩ.

(4)

Combining (3) and (4), we find that

r∥m′ −m′′∥2L2(Ω) ≤
∫
Ω

(l′ − l′′)(m′′ −m′) dΩ, (5)

From (5), we derive

∥m′ −m′′∥L2(Ω) ≤
1

r
∥l′ − l′′∥L2(Ω). (6)
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Relations (3) and (4) also imply the two-sided inequality∫
Ω

l′′(m′′ −m′) dΩ +
r

2

∫
Ω

((m′′)2 − (m′)2) dΩ ≤ χ(m′)− χ(m′′) ≤

≤
∫
Ω

l′(m′′ −m′) dΩ +
r

2

∫
Ω

((m′′)2 − (m′)2) dΩ.

Let l′′ approaches l′ in L2(Ω). The above two-sided inequality and relation (6) lead to
the equality lim

l′′→l′
Φ(l′′) = Φ(l′). Hence the theorem is proved.

4 Modified Duality Method

We define the modified Lagrangian functional on the set H1
0 (Ω)× L2(Ω) as

M(v, l) = J(v) +
1

2r

∫
Ω

((
(l + r(ψ − v))+

)2 − l2
)
dΩ,

where w+ = max{w, 0}, r > 0 — constant.
A point (v∗, l∗) is called a saddle point of functional M(v, l) if two-sided inequality

M(u∗, l) ≤M(u∗, l∗) ≤M(v, l∗)

is fulfilled for any v ∈ H1
0 (Ω), l ∈ L2(Ω). The sets of saddle points of modified and

classical Lagrangian functionals are equal[16].
Let us introduce the dual functional

M(l) = inf
v∈H1

0 (Ω)
M(v, l) =

= inf
v∈H1

0 (Ω)

J(v) + 1

2r

∫
Ω

((
(l + r(ψ − v))+

)2 − l2
)
dΩ

 .
(7)

We can write the another presentation the functional M(l) with using the sensitivity
functional:

M(l) = inf
m∈L2(Ω)

χ(m) +

∫
Ω

l mdΩ +
r

2

∫
Ω

m2 dΩ

 = inf
m∈L2(Ω)

Fm(l). (8)

If (v∗, l∗) is a saddle point of M(v, l), then v∗ is a solution of problem (2) and l∗ is a
solution of dual problem {

Find l ∈ L2(Ω) such that

M(l)−max .
(9)

From theorems 2, 3 and inequality (6) it follows that convex functional (−M(l)) is
a continuous functional in L2(Ω).

We have the next theorem [16].
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Theorem 4. The dual functional M(l) is Gáteaux differentiable in L2(Ω) and its
derivative ∇M(l) satisfies the Lipschitz condition with the constant 1/r; that is, for
all l′, l′′ ∈ L2(Ω), it holds that

∥∇M(l′)−∇M(l′′)∥L2(Ω) ≤
1

r
∥l′ − l′′∥L2(Ω).

It is easy to show [16] that ∇M(l) = m(l) = max{−l/r, ψ − v}.
Since the gradient of the functional M(l) satisfies the Lipschitz condition, the dual

problem (9) can be solved by using the gradient method for maximizing a functional
(see [17])

lk+1 = lk + r∇M(lk), k = 0, 1, 2, . . . (l0 ∈ L2(Ω) is given).

The gradient method can be written as

lk+1 = lk + rmax{−lk/r, ψ − v} = (lk + r(ψ − v))+. (10)

Theorem 5. The sequence {lk} constructed by the gradient method (10) satisfies the
limit equality lim

k→∞
∥m(lk)∥L2(Ω) = 0.

The proof of this theorem can be found in [16], it is analogous to that of the theorem
[17, p. 31].

The gradient method (10) can be used for construct an algorithm for solving prob-
lem (2) :

(i) uk+1 = arg min
v∈H1

0 (Ω)
M(v, lk);

(ii) lk+1 = lk + r∇M(lk) = (lk + r(ψ − uk+1))+,
(11)

i=0,1,2,. . . ; l0 ∈ L2(Ω) is given.

We can show that the sequence {uk, lk} is bounded sequence in H1(Ω)× L2(Ω).

Theorem 6. The algorithm (11) converges with respect to the functional; that is,

lim
k→∞

J(uk) = min
v∈K

J(v) = J(u).

As before, u is a solution of the problem (2).

Indeed, the sequence {lk} is bounded sequence in L2(Ω), and the functional χ(m)
is weakly lower semicontinuous on L2(Ω), which yields

lim
k→∞

χ(m(lk)) +

∫
Ω

lkm(lk) dΩ +
r

2

∫
Ω

(m(lk))2 dΩ

 =

= lim
k→∞

χ(m(lk)) ≥ χ(0) = J(u∗).
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On the other hand, we have from the definition M(l)

M(lk) = χ(m(lk)) +

∫
Ω

lkm(lk) dΩ +
r

2

∫
Ω

(m(lk))2 dΩ =

= inf
m∈L2(Ω)

χ(m) +

∫
Ω

lkmdΩ +
r

2

∫
Ω

m2 dΩ

 ≤ χ(0), k = 0, 1, 2, . . . .

Therefore,

lim
k→∞

χ(m(lk)) +

∫
Ω

lkm(lk) dΩ +
r

2

∫
Ω

(m(lk))2 dΩ

 ≤ χ(0).

Consequently, there exists the limit

lim
k→∞

χ(m(lk)) +

∫
Ω

lkm(lk) dΩ +
r

2

∫
Ω

(m(lk))2 dΩ

 = χ(0) = J(u∗).

Now, theorem 5 implies that

lim
k→∞

J(uk) = lim
k→∞

χ(m(lk)) = χ(0) = J(u).

The proof is complete.
By using the convexity of (−M(l)) and the theorem 5 we get the following estimate

M(lk)−M(l∗) ≤ ∥m(lk)∥L2(Ω)∥lk − l∗∥L2(Ω).

Hence, lim
k→+∞

M(lk) = M(l∗). It means that algorithm (11) converges with respect to

dual functional. This fact can not be shown for the classical Lagrangian functional.
The convergence of this algorithm with respect to the argument uk was examined in
[16].

5 A Numerical Example

In this section we present some numerical experiments in solving an obstacle problem
by using the algorithm (11).

For the numerical realization (11) we use the finite element method. Suppose that
the boundary Γ is polygonal. For a triangulation T of Ω, let h = h(T ) be the max of
the lengths of the edges. Then T satisfies the shape regularity and the maximum angle
condition if
(a) there is a positive constant ρ such that for any τ ∈ T , there is a disk B of radius r
with B ⊂ τ and ρh ≤ r < h,
(b) maximum angle ≤ π/2.
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We call a family of triangulations regular if each triangulation in it satisfies (a) and
(b) with ρ uniform for the family. Given a triangulation Th, let V̄h = Vh(Th) denote
the collection of all H1(Ω) functions which are affine on each triangle in Th; V̄h is the
space of continuous piecewise linear functions over Th. Take Vh = V̄h ∩ H1

0 (Ω). For
v ∈ C0(Ω̄), let vh ∈ V̄h be the interpolant of v; v = vh at each vertex in Th. Define
Kh = {vh ∈ Vh: vh ≥ ψh}.

The discrete approximation of u is given by uh ∈ Kh, where uh is a solution the
next problem {

Find vh ∈ Kh such that
J(vh)−min .

Let k be an integer number denoting the iteration parameter. The algorithm pre-
sented in Sect. 4, to solve the obstacle problem, can be expressed as follows.
Step 0 (Initialization). Given an element l0h in Vh.
Step 1. Find a solution uk+1

h ∈ Vh of the problem
M(vh, l

k) = J(vh) +
1

2r

∫
Ω

(
(lk + r(ψ − vh))

+
)2
dΩ → min,

vh ∈ Vh.

Step 2. Compute
lk+1
h = (lkh + r([ψ]h − uk+1

h ))+.

Step 3. Repeat steps 1 and 2 until a stopping criterion is satisfied.
Let Ω be a square, Ω = {(x1, x2): 0 < x1 < 1, 0 < x2 < 1}. We define an obstacle

in a ring, and the parameters problem (2) so that its solution has the form shown in
Fig. 1. As a result, we obtain the numerical solution of obstacle problem shown in Figs.
2.

In Fig. 3 a dashed line (blue) is a graph solution of the problem without obstacle,
a thin solid line (green) is a graph of the function that defines an obstacle, and a thick
line (red) a graph solution of the obstacle problem.

The numerical experiments demonstrate the possibility to use Uzawa algorithm
for modified Lagrange functional. In paper [18] it was found that for problems with
constraints on the boundary the best convergence rate is achieved for large values r
(r = 106, 108). In this work we we have shown that the optimum value of the parameter
r is in the range 20− 200.

6 Conclusion

In this paper, we have considered a modified Lagrangian functional for the obsta-
cle problem. The modified Lagrangian functionals considered in the present paper
are analogs of the corresponding modified functions constructed to solve the finite-
dimensional optimization problems. The duality methods based on the modified La-
grangian functionals offer a convenient and efficient tool to solve the infinite-dimensional
variational inequalities of mechanics.

The author makes no attempt to compare the effectiveness of the proposed method
with other methods of numerical optimization with constraints. The objective of this
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Fig. 2. A solution of the problem without obstacles

Fig. 3. A solution of the obstacle problem

paper was demonstrate the application of the duality scheme based on the modified
Lagrangian functional for the problem with constraints in the domain.
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Fig. 4. A solution of the obstacle problem, x2 = 0
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