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Abstract. Piecewise linear convex and concave support functions com-
bined with Pijavskii’s method are proposed to be used for solving global
optimization problems. Rules for constructing support functions are in-
troduced.
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1 Introduction

We study the effectiveness of global optimization technique with nonlinear support
functions. It is assumed that objective and constrained functions are explicit functions,
and we take this term to mean the following. Given a set of elementary functions, an ex-
plicit function can be constructed from the elementary ones by means of the operations
of adding, subtraction, multiplication, and division of two functions, multiplication by
a constant, as well as the operations of composition and taking maximum or minimum
of two functions. It is obvious that the problem of finding the global minimum of an
explicit function may be quite complicated because, generally, an explicit function is
not convex.

Possibilities of explicit functions optimization have already been studied. In [1] ex-
plicit functions are called factorable. Following step by step the process of construction
of an explicit function, we can also track the global minimum or at least the range of
a current function. The question is what is the best way to do this.

One of the most commonly used approach to global optimization is based on the
properties of the Lipschitz constant of the function to be minimized. The Lipschitz
constant is a uniform measure of function’s rate of change over all the feasible set. This
is both its advantage and drawback. The Lipschitz constant for any function over any
segment can be found as the maximum of the absolute value of its derivative. After
that, it is easy to define step by step an estimate of the true Lipschitz constant for any

⋆ This work is supported by the RFBR grand number 15-07-08986

Copyright c⃝ by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Kononov et al. (eds.): DOOR 2016, Vladivostok, Russia, published at http://ceur-ws.org



Explicit Global Optimization 219

particular explicit function [2].
Methods of Lipschitz optimization ([3]–[9]) are reasonably easily and quickly coded.

This is their indubitable advantage. The drawback is that every operation worsens the
estimate of the true Lipschitz constant, immediately affecting the efficiency. In addi-
tion, the Lipschitz constant equally estimates the rate of change of the objective all
over the segment, so, this constant is defined by segments of the fastest variation,
which generally may contain no points of global minimum. To the contrary, the func-
tion may change more smoothly near points of global minimum. One of the ways out is
to estimate Lipschitz constant according to the search region [10]. Also, some methods
estimate Lipschitz constant on the basis of previously calculated values of the objec-
tive [11]. In this case, overestimation of Lipschitz constant and loss of the true global
optimum may be a problem.

Global search is much more efficient if the objective is known to be differentiable and
its derivative is known to satisfy the Lipschitz condition ([12]–[17]). Effective algorithms
for global minimization of one-dimensional functions over a segment are presented in
[18], [19], [14]. Obviously, for this class of functions the operations of taking maximum
and minimum of two functions have to be excluded, because they do not retain the
differentiability of the objective.

Another successfully developing field of global optimization is so called d.c. pro-
gramming [20]–[22]. A d.c. function is a function representable as a difference of two
convex continuous functions. A d.c. program is a problem of minimization of a d.c.
function subject to equality and inequality constraints defined also by d.c. functions.
Not considering in detail a wide variety of methods for solving d.c. problems, we only
notice that finding a good representation (if it exists) of a given function in the form
of a difference of two convex function may appear to be a quite complicated problem.

For global minimization of a univariate explicit function, we present a method of
piecewise linear support functions [23], [24] which is a generalization of well-known
Piyavskii’s method [25]. It should be also noted the the proposed method belongs to
the class of characteristical algorithms [26] and can be easily parallelized.

The optimization technique suggested in the paper differs from interval analysis
approach used in global optimization [27] and is closely related to automatic differenti-
ation [28], however not so much developed. In general, the approach of the paper can be
considered as an initial extension of automatic differentiation to global optimization.

2 The problem and Piecewise linear support functions

We consider the global optimization problem

f(x) → min, x ∈ [α, β], (1.1)

where α, β ∈ R,α ≤ β and function f(x) satisfies the following definition.
Definition 1.1. A function f(x) is said to have a convex support function-majorant

and concave support function-minorant if there exist functions φ+(x, y) and φ−(x, y)
such that
1. φ+(x, y) is convex and continuous with respect to x at any fixed y ∈ [α, β];
2. φ−(x, y) is concave and continuous with respect to x at any fixed y ∈ [α, β];
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3. φ−(x, y) ≤ f(x) ≤ φ+(x, y) for any x, y ∈ [α, β];
4. φ−(y, y) = f(y) = φ+(y, y) for any y ∈ [α, β].
The functions φ+(x, y) and φ−(x, y) are called support function-majorant and support
function-minorant, correspondingly .

Any function satisfying Definition 1.1 is lower semicontinuous [24]. It is easy to see
that any locally Lipschitz function satisfies this definition. In this paper we propose to
construct φ+(x, y) and φ−(x, y) as piecewise linear functions.

Definition 2.1. A convex piecewise linear support function-majorant of a function
f(x) and a concave piecewise linear support function-minorant of function f(x) over
a segment [α, β] at a support point y will denote such functions φ+(x, y) and φ−(x, y)
that satisfy Definition 1.1 and have the form

φ+(x, y) = max
{
k+1 (y)x+ b+1 (y), k+2 (y)x+ b+2 (y)

}
, (2.1)

φ−(x, y) = min
{
k−1 (y)x+ b−1 (y), k−2 (y)x+ b−2 (y)

}
(2.2)

where k+1 (y), b
+
1 (y), k

+
2 (y), b

+
2 (y), k

−
1 (y), b

−
1 (y), k

−
2 (y), and b

−
2 (y) are certain numbers.

Constructing the piecewise linear support functions for linear and convex functions
is obvious, so we consider here one of the most trouble in global optimization function
f(x) = sin(x) and analyze the following four special cases.

I. Point y ∈ [−π
2 , 0]. The function sin(x) is convex over the segment [−π

2 , y], hence

sin(x) ≥ sin(y)+cos(y)(x−y), x ∈ [−π
2 , y] and, consequently, k

−
1 = cos(y), b−1 = sin(y)−

k−1 y. Over the segment [0, 32π], the graph of the function sin(x) lies above the tangent
line through the origin. The value v1 = 4.493409458 is found from the transcendental
equation sin(v)−cos(v)v = 0. Next, from the linear equation sin(v1)+cos(v1)(z−v1) =
−1 with respect to z the solution z1 = 4.603338848 is obtained. Then, over the segment
[y, 32π], the graph of the function sin(x) lies above the straight line through the points

(y, sin(y)) and (z1,−1): sin(x) ≥ k−2 x+b
−
2 , x ∈ [y, 32π], k

−
2 = sin(y)+1

y−z1
, b−2 = sin(y)−k−2 y.

II. Point y ∈ [0, π2 ]. Over the segment [−π
2 , y], the graph of the function sin(x) lies

above the straight line through the points (−1, 1) and (y, sin(y)): sin(x) ≥ k−1 x+b
−
1 , x ∈

[−π
2 , y], k

−
1 = sin(y)+1

y+1 , b−1 = sin(y) − k−1 y. Over the segment [π2 ,
3
2π], the graph of

the function sin(x) pases above the tangent line through the point (π2 , 1). The value
v2 = 3.901918697 is a solution of the transcendent equation sin(v) + cos(v)(π2 − v) = 1
belonging to the segment [π2 ,

3
2π]. Find the value z2 = 4.330896607 as a solution of

the linear equation sin(v2) + cos(v2)(z − v2) = −1 with respect to z. It is easy to see
that, over the segment [y, 32π], the graph of the function sin(x) is located above the

straight line through the points (y, sin(y)) and (−1, 1): sin(x) ≥ k−2 x+ b−2 , x ∈ [y, 32π],

k−2 = sin(y)+1
y−z2

, b−2 = sin(y)− k−2 y.

III. Point y ∈ [π2 , π]. Over the segment [−π
2 ,

π
2 ] , the graph of the function sin(x)

lies above the tangent line through the point (π2 , 1). The value v3 = −0.7603260437 is
a solution of the transcendent equation sin(v) + cos(v)(π2 − v) = 1 belonging to the
segment [−π

2 ,
π
2 ]. The value z3 = −1.189303953 is obtained as a solution of the linear

equation sin(v3) + cos(v3)(z − v3) = −1 with respect to z. It is easy to see that, over
the segment [π2 , y], the graph of the function sin(x) is located above the straight line

through (z3,−1) and (y, sin(y)): sin(x) ≥ k−1 x + b−1 , x ∈ [−π
2 , y], k

−
1 = sin(y)+1

y−z3
, b−1 =
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sin(y)− k−1 y. Next, over the segment [y, 32π], the graph of the function sin(x) lies over

the straight line through the points (y, sin(y)) and (π+1,−1): sin(x) ≥ k−2 x+ b−2 , x ∈
[y, 32π], k

−
2 = sin(y)+1

y−π−1 , b
−
2 = sin(y)− k−2 y.

IV. A support point y ∈ [π, 32π]. Over the segment [−π
2 , π], the graph of the function

lies above the tangent line through the point (π, 0). The value v4 = −1.351816804 is
a solution of the transcendental equation sin(v) + cos(v)(π − v) = 0 belonging to
the segment [−π

2 , 0]. Again, the value z4 = −1.461746193 is obtained as a solution
of the linear equation sin(v4) + cos(v4)(z − v4) = −1. with respect to z. Over the
segment [−π

2 , y], the graph of the function sin(x) is located above the straight line

through the points (z4,−1) and (y, sin(y)): sin(x) ≥ k−1 x + b−1 , x ∈ [−π
2 , y], k

−
1 =

sin(y)+1
y−z4

, b−1 = sin(y) − k−1 y. Over the segment [y, 32π], the function sin(x) is convex

therefore k−2 = cos(y), b−2 = sin(y)− k−2 y.
To summarize, the rule for constructing a concave piecewise linear minorant of the

function sin(x) over the segment [−π
2 ,

3
2π] is the following.

Input: the function f(x) = sin(x) and a point y.
Step 1.

If −π
2 ≤ y ≤ 0, then k−1 = cos(y), k−2 = sin(y)+1

y−z1
.

If 0 ≤ y ≤ π
2 , then k

−
1 = sin(y)+1

y+1 , k−2 = sin(y)+1
y−z2

.

If π
2 ≤ y ≤ π, then k−1 = sin(y)+1

y−z3 , k−2 = sin(y)+1
y−π−1 .

If π ≤ y ≤ 3π
2 , then k−1 = sin(y)+1

y−z4 , k−2 = cos(y).

Step 2. b−1 = sin(y)− k−1 y, b
−
2 = sin(y)− k−2 y.

Step 3. Stop.
In general, rules for constructing support functions are based on similar geometrical

ideas and can be found, for example, in [29].

3 General rules for constructing piecewise linear support
functions

Let function f(x) and its support function-majorant φ+
f (x, y) and support function-

minorant φ−
f (x, y) be given:

φ+
f (x, y) = max

{
k+f1(y)x+ b+f1(y), k+f2(y)x+ b+f2(y)

}
, (3.1)

φ−
f (x, y) = min

{
k−f1(y)x+ b−f1(y), k−f2(y)x+ b−f2(y)

}
. (3.2)

Denote

l+f1(x, y) = k+f1(y)x+ b+f1(y), l
+
f2(x, y) = k+f2(y)x+ b+f2(y),

l−f1(x, y) = k−f1(y)x+ b−f1(y), l
−
f2(x, y) = k−f2(y)x+ b−f2(y).

Then

φ+
f (x, y) = max{l+f1(x, y), l+f2(x, y)}, φ−

f (x, y) = min{l−f1(x, y), l−f2(x, y)}.
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Assume that for another function h(x) its support functions φ+
h (x, y) and φ−

h (x, y)
are also known. The goal of this section is to present rules for constructing support
functions-minorant and functions-majorant for the functions

F1(x) = cf(x), F2(x) = f(x) + h(x), F3(x) = f(x)− h(x), F4(x) = f2(x),

F5(x) = f(x) · h(x), F6(x) =
1

f(x)
, F7(x) = max{f(x), h(x)},

F8(x) = min{f(x), h(x)}, F9(x) = f(h(x))

where c is a constant.
3.1. The function F1(x) = cf(x). It is obvious that

φ+
F1
(x, y) =

{
max{c · l+1 (x, y), c · l+2 (x, y)}, c ≥ 0
max{c · l−1 (x, y), c · l−2 (x, y)}, c < 0,

φ−
F1
(x, y) =

{
min{c · l−1 (x, y), c · l−2 (x, y)}, c ≥ 0
min{c · l+1 (x, y), c · l+2 (x, y)}, c < 0.

3.2. The function F2(x) = f(x) + h(x). In this case

φ+
F2
(x, y) = max{l+f1(x, y) + l+h1(x, y), l+f2(x, y) + l+h2(x, y)},

φ−
F2
(x, y) = min{l−f1(x, y) + l−h1(x, y), l−f2(x, y) + l−h2(x, y)}.

3.3. The function F3(x) = f(x)− h(x). Obviously follows from 3.1 and 3.2.
3.4. The function F4(x) = f2(x). From (f(x) − f(y))2 ≥ 0 we have f2(x) ≥
2f(x)f(y) − f2(y). For obtaining φ−

F4
(x, y) the rule from 3.1 is used with c = 2f(y).

Find constants f and f such that f ≤ f(x) ≤ f ∀x ∈ X. Calculate ẑ = f(y). Suppose

that f < ẑ < f . Then

z2 ≤ (f + ẑ)z − fẑ, z ∈ [f, ẑ], z2 ≤ (f + ẑ)z − fẑ, z ∈ [ẑ, f ].

Consequently, z2 ≤ max
{
(f + ẑ)z − fẑ, (f + ẑ)z − fẑ

}
, z ∈ [f, f ]. After the substi-

tution z = f(x), ẑ = f(y), we obtain

f2(x) ≤ max{(f + f(y))f(x)− ff(y), (f + f(y))f(x)− ff(y)}.

Then use support convex majorants for the functions (f + f(y))f(x) − ff(y) and

(f + f(y))f(x)− ff(y).

3.5. The function F5(x) = f(x) ·h(x). Since f(x) ·h(x) = (f(x)+h(x))2

2 − f2(x)
2 − h2(x)

2 ,
support functions for F5(x) can be constructed by subsequent application of the rules
from 3.1-3.4.
3.6. The function F6(x) =

1
f(x) . It is assumed that f(x) > 0 ∀x ∈ [α, β]. The func-

tion F6(x) is a composition of the functions φ(z) = 1
z and f(x). Let 0 < f < f(x) <

f ∀x ∈ [α, β] and denote ẑ = f(y). The function φ(z) is convex over the segment

[f, f ]. Therefore F (x) = φ(f(x)) ≥ 1
f(y) −

f(x)
f2(y) . A concave minorant of the function
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− f(x)
f2(y) is constructed by the rule presented in 3.1 with c = − 1

f2(y) . A convex majorant

is constructed in the same way as in 3.4, with the auxiliary function z2 substituted by
the function 1

z .
It is easy to see now that construction of support majorants and minorants of a

concave function f(x) consists in construction of support majorants and minorants of
the convex function −f(x), multiplying them by −1 and applying the rule from 3.1. In
this way support majorants and minorants for the elementary functions f6(x) =

√
x

and f7(x) = ln(x) are constructed.
3.7. The function F7(x) = max{f(x), h(x)}. Without loss of generality, let us as-
sume that max{f(y), h(y)} = f(y). Then F7(x) ≥ f(x) ≥ φ−

f (x, y), what means that

φ−
f (x, y) is a concave minorant of the function F7(x). On the other hand, F7(x) ≤

max{φ+
f (x, y), φ

+
h (x, y)}. Since the functions φ+

f (x, y) and φ+
h (x, y) are convex in x,

the function ψ(x) = max{φ+
f (x, y), φ

+
h (x, y)} is also convex in x. Constructing a sup-

port majorant of the function ψ(x) we simultaneously obtain a support piecewise linear
majorant for the function F7(x).
3.8. The function F8(x) = min{f(x), h(x)}.
Since min{f(x), h(x)} = −max{−f(x),−h(x)}, support functions can be found by
application of the rules from 3.1 and 3.7.
3.9. The function F9(x) = f(h(x)). From (3.1) and (3.2) we have

F7(x) ≤ φ+
f (h(x), h(y)) = max

{
k+f1(h(y))h(x) + b+f1(h(y)), k

+
f2(h(y))h(x) + b+f2(h(y))

}
,

(3.7)

F7(x) ≥ φ−
f (h(x), h(y)) = min

{
k−f1(h(y))h(x) + b−f1(h(y)), k

−
f2(h(y))h(x) + b−f2(h(y))

}
.

(3.8)
The right-hand expressions of inequalities (3.7) and (3.8) are piece-wise linear with
respect to the function h(x). Application of the rules presented in 3.7, 3.8, 3.1, and 3.2
suffices to construct support majorants and minorants.

The above-introduced rules for constructing support piecewise linear functions are
applicable to any explicit function. The process of construction of a support functions
is analogous in some way to the process of differentiation of a function: both can be
automatized. Hence, the quite scrupulous procedure of finding support functions can
be entrusted to a computer. The analytical representations of required functions are
not always necessary, it is sufficient to have only algorithms of finding their values at
any feasible point. That is the reason that a user needs nothing to do but explicitly
set an objective, everything else can be automatized according to the above-described
rules.

4 A Modification of Piyavskii’s Method

The method of solving problem (1.1) proposed in this paper is a modification of the
well-known Piyavskii’s method [25]. Given points x1, ..., xk, determine next point xk+1

as a global solution of the problem

ψk(x) = max
1≤i≤k

{φ−(x, xi)} → min, x ∈ [α, β]. (4.1)
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After that, calculate the record fk+1 = min{f(xi) : i = 1, ..., k + 1}, and if fk+1 −
ψ(xk+1) ≤ ε where ε > 0 is a required precision then the point xl, l = 1, ..., k + 1 such
that f(xl) = fk is the ε-optimal solution. A starting point x1 ∈ [α, β] is arbitrary. If
the functions ψk(x) are uniformly bounded every limit point of sequence xk is a global
solution of problem (1.1) ([25]).

At the k-th iteration of the method the points x1, ..., xk divide the segment [α, β]
into p subsegments [αj , βj ], j = 1, ..., p such that α1 = α, βp = β, βj = αj+1. Next
point xk+1 belongs to one of these subsegments, hence it is sufficient to build support
functions only over the subsegment containing xk+1. Such a strengthening of Piyavskii’s
method has been already used in Lipschitz optimization [10]. Another strengthening
lies in the fact that a support function depends on the support point providing more
accurate piecewise linear approximation of the objective over a segment, in contrast
to [10] where approximation accuracy is determined by the Lipschitz constant (though
over a smaller segment). The rules for constructing support functions presented in the
previous section are aimed to improvement of accuracy of piecewise linear approxima-
tion through shortening the current subsegment.

Computational experiment performed in [29] shows acceleration in convergence from
3 to 10 times in comparison to results presented in [4].
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