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Abstract. We consider a new interpretation of the modified simplex imbed-
dings method. The main construction of this method is a simplex which contains
a solution of convex non-differentiable problem. A cutting plane drawn through
the simplex center is used to delete a part of the simplex without the solution.
The most interesting feature of this method is the convergence estimation which
depends only on the quantity of simplex vertices that are cut off by the cutting
hyperplane. The more vertices are cut off by the cutting hyperplane, the higher
rate of method convergence. We consider the special technique of constructing
the simplex containing the set of points defining the truncated simplex. Such
approach let us attribute the problem of constructing the minimal volume sim-
plex to structural optimization problems that have quite efficient interior-point
schemes for finding the optimal solution. The results of numerical experiment
are also given in this paper.

Keywords: modified simplex imbeddings method, structural optimization, self-
concordant barrier.

1 Introduction

We consider the problem of convex optimization in the next form

f0(x)→ min,
fi(x) ≤ 0, x ∈ IRn,

(1)

where fi(x), i = 1, ...,m – convex not necessarily differentiable functions.
To solve this problem we can use quite extensive set of methods. One can notice

that subgradient method was applied to solving convex non-differentiable problems his-
torically first. The information about these methods can be found in [1], [2]. The main
idea of subgradient methods is based on the using of arbitrary subgradient instead of
gradient in the scheme of gradient method. However, in this case we cannot guarantee
the relaxation sequence of approximations, but what we can obtain is monotonic de-
crease of the distance to the minimum point. One more feature of subgradient method
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is related to the rule of step length choosing. It has to be chosen as the tending to
zero sequence. The main advantage of subgradient methods is the extremely simplicity
of its using, if we know the simple way of subgradient determination. However, such
methods are useless in practical applying due to the low rate of convergence and ab-
sence of reliable stop criteria. Nevertheless, it is suitable for rude approximation to the
problem solution.

We can add reasonable stop criteria using group of piecewise linear approximation
methods [3]. These methods collect the information about function value, subgradient
value and approximation points from each iteration. This data allow us to construct
piecewise linear approximation from below the objective function. In this case we come
across quite low rate of convergence except some particular problems, moreover we
need to solve linear programming problem at each iteration with growing input data.
This method doesn’t have quite robust characteristic due to the big gap between the
behavior of function values and the sequence of approximation points .

Group of the bundle methods [4] is based on the piecewise linear approximation
methods and includes a stabilization quadratic term to make method more robust.
Additional term provides closeness of the current approximation value to the previous
approximation. We can notice that it is possible to get superlinear rate of convergence
for some classes of non-differential functions.

Important class of subgradient methods is represented by the space dilation meth-
ods in two variants: dilation in subgradient direction and dilation in two consistent
subdifferentials residual direction [5], [6]. The main idea of space dilation method in
subgradient direction is based on the attempt to decrease the sinus of the angle be-
tween the antisubgradient and minimum point direction. Sinus of the described angle
for ravine functions tends to one. It prevents from getting geometric rate of conver-
gence for subgradient method. Space dilation of the arguments in subgradient direction
allows to get the geometric rate of convergence for certain cases.

Notice that particular case of space dilation method in subgradient direction is well
known as the ellipsoid method and got wide popularity due to the Khachiyan work.
Having used this method he constructed first polynomial algorithm for solving linear
inequality systems [7]. Similar algorithm was developed in [8].

Space dilation methods in two consistent subdifferentials residual direction, named
also r-algorithms, allow to convert obtuse angle between subgradients into sharp angle
in extension dimension. It provides a decrease direction of function. Notice that we can
get the quadratic rate of convergence using the r-algorithms for convex differentiable
optimization problems.

It is applied analogues of conjugate gradient methods among different schemes of
subgradient methods of solving convex non-differentiable problems. There are two main
approaches of these methods [9]. First of them includes algorithms that collect subgra-
dient package obtained from the previous iterations of method. This package is used for
constructing the descent direction of objective function as the solution of the convex
optimization problem. Different conditions define our further actions. We can restart
algorithm, in other words, we change the starting point, or we can continue collecting
subgradients, or finally take a step to the next point with certain step length defined
through the one dimensional optimization problem. The main difficulty that appears in
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this approach is the size of subgradient package. It increases indefinitely if we increase
the accuracy of the solution. The second approach of using the conjugate subgradient
methods is related to the applying the analogue of the Polak-Ribiere formula. It is used
for finding the descent direction of objective function. Such variant of conjugate sub-
gradient methods demonstrates quite good results for smooth optimization problems.
The association of two described approaches is considered in[10], and it is made the
restriction of the volume of computational costs.

It is important to notice one more group of methods that are based on the center
of feasible set [11]. In cutting plane methods we define the center of feasible set and
construct the cutting hyperplane to except the part of feasible set that doesn’t contain
the points improving the objective function. We continue working with another part of
the feasible set, find its center and construct one more cutting hyperplane. We continue
this procedure up to getting the optimal point with required accuracy.

In [2] it is shown that the most effective method to construct cutting hyperplane
is the gravity center method. However, finding the gravity center in a convex set is
NP-hard problem that makes this method inapplicable in practical using. Notice some
important substitutions for gravity center that are quite easy to find: center of inscribed
ellipsoid, volumetric center and analytical center. In [11] it is shown that methods which
are based on these types of centers have the polynomial difficulty.

In this paper we suggest the modification of simplex imbeddings method which is
related to the cutting plane methods [12]. This method has a nonstandard estimation of
rate convergence that depends on only the amount of cut off simplex vertices. One of the
main principle of the method is constructing the minimal volume simplex containing
a given truncated simplex. It is important to notice that in [12] the authors don’t
discuss the uniqueness of constructed minimal volume simplex. That is why we suggest
method modification that uses the special technique of constructing the minimal volume
simplex containing the set of points that define the truncated simplex. As we can obtain
minimal volume simplices with different edges using different approaches of simplex
constructing, we will compare three methods based on different simplex constructing
techniques.

2 The Main Idea of Simplex Imbeddings Method

Recall that we need to solve the problem (1) using simplex imbeddings method. Suppose
that we have the start simplex S0 on the step k = 0, and this simplex contains the
feasible set of the problem (1). We find the center xc,0 of the simplex S0 and construct
the cutting hyperplane L = {x : gT

(
x− xc,0

)
= 0} through the center, where g ∈ IRn

is the subgradient of objective function. Then we move to the next step k = k + 1
and immerse the part of the simplex that contains the solution to the problem into the
new simplex S1 which has the minimal volume. Repeating this procedure we construct
simplices that have less volume than previous ones and localize the problem solution
consistently. We stop the method when the simplex volume becomes quite small.

We will need some important definitions that are given below.
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Definition 1. The simplex S ⊂ IRn is the set in the next form

S =

{
x ∈ Rn : x = x0 +

n∑
i=1

σi
(
xi − x0

)
, σi ≥ 0,

n∑
i=1

σi ≤ 1

}
,

where x0 is the simplex vertex, (x1 − x0, ..., xn − x0) are the simplex edges that form
basis in the IRn.

Definition 2. The point xc is called the center of the simplex S and it is defined by
the next expression

xc =
1

n+ 1

(
x1 + ...+ xn

)
.

Definition 3. The volume of the simplex S is defined by the next formula

V (S) =
1

n!

∣∣det (X̄)∣∣ ,
where X̄ is the n×n dimension matrix. The columns of this matrix are represented by
the vectors x1, x2, ..., xn.

Definition 4. We will call each hyperplane in the form

L =
{
x : gT (x− xc) = 0

}
as the cutting hyperplane passing through the center xc of the simplex S.

We also need to define the base simplex imbeddings method as the method which
is described in [12] and doesn’t use additional minimax problems to construct resulting
cutting hyperplanes described in [13].

3 Constructing the Minimal Volume Simplex. Rate of
Convergence Estimation

We need to describe some key characteristics of the simplex imbeddings method. The
immersion procedure of truncated simplex into the new minimal volume simplex is
the important principle of the method providing the convergence to optimum prob-
lem solution. Information about constructing the minimum volume simplex containing
truncated simplex is given in [12]. This approach is used as the element of the base
simplex imbeddings method.

Now we concentrate our attention on the method convergence estimation. This
estimation is formulated in [12] as the theorem.

Theorem 1. Let the set S ⊂ IRn be the n-dimensional simplex, xc is the center of
the simplex, SG =

{
x ∈ S, gT (x− xc) ≤ 0

}
is truncated simplex. Simplex SG can be

immersed into the simplex S∗ and the following relation between the volumes V (S) and
V (S∗) of the simplices S and S∗ is fulfilled:

q∗k =
V (S∗)

V (S)
≤

{ 1
2 kl = 1;(

kl

kl+1

)kl
(

kl

kl−1

)kl−1

, 2 ≤ kl ≤ n,
(2)

where kl is the amount of saved vertices.
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The rate of convergence estimation (2) depends only on the amount of cut off
simplex vertices. If it is cut off n vertices of the simplex we obtain the analogue of
dichotomy method [3].

In [13] the author describes the modification of simplex imbeddings method that
uses the feature of rate convergence estimation. The main idea of this modification is the
introduction of several cutting hyperplanes and consideration its linear combination to
construct only one resulting hyperplane [14]. Such technique was applied to the special
class of convex optimization problems that was related to the polyhedral programming
problems [15]. It was used the parametric description of functions subdifferentials to
find the resulting hyperplane by means of solving the special minimax problems. Such
hyperplanes cut off as many verticies of simplex as possible that let increase the rate
of method convergence.

In the next section we will describe the idea of one more modification that uses the
special principle of minimal volume simplex constructing.

4 The Main Idea of Simplex Imbeddings Method Modification

In [11] it is described the approach of constructing the minimal volume ellipsoid contain-
ing certain points. To obtain such ellipsoid containing the points ai ∈ IRn, i = 1, ...,m
we need to solve the following optimization problem:

τ → min,
s.t. − ln detH ≤ τ,
‖Hai − v‖ ≤ 1, i = 1, ...,m,

(3)

where H is (n× n)-symmetric positive semi-definite matrix, v ∈ IRn, τ ∈ IR1.

Indeed, we can obtain the minimal volume ellipsoid by means of solving the problem
(3) if we have some set of points like in the figure (1).

Fig. 1. Minimal volume objects
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The problem (3) is related to the structural optimization problems [11]. It means
that described problem has the self-concordant barrier for the feasible set. It let us
apply the interior-point schemes for solving the problem (3). Such conclusion is very
important for us as we can use very efficient and fast schemes for solving such problems.

We modified the approach of constructing the minimal volume ellipsoid and applied
it to the constructing minimal volume simplex containing the set of defined points. If
we have the set of defined points ai, i = 1, ...,m we can obtain minimal volume simplex
containing all of these points by means of solving further optimization problem:

τ → min,
s.t. − ln detH ≤ τ,

Hai − v = ui,
ui ≥ 0,

∑m
i=1 u

i ≤ 1,
i = 1, ...,m,

(4)

where ui ∈ IRn, i = 1, ...,m.
The problem (4) differs from (3) by the fact of matrix H doesn’t suppose to be sym-

metric that leads to the complication of the problem (4). Nevertheless such approach of
constructing the minimal volume simplex is applicable in practical using as we can esti-
mate the number of verticies in truncated simplex. If k is the amount of saved verticies
in the simplex, then we obtain k(n+ 1− k) verticies in truncated simplex. Eventually
the number of verticies in truncated simplex does not exceed d(n + 1)/2e2 ∼ O(n2).
Such amount of points are easily calculated on modern computers.

In the figure (1) it is shown the example of the minimal volume simplex containing
certain set of points. Thus we can transform the base simplex imbeddings method and
use new principle of constructing the minimal volume simplex containing the certain
points. Such technique is quite useful in terms of the applying efficient schemes of inte-
rior points methods that can enhance the rate of method convergence. The algorithm
of simplex imbeddings method is described in [12] in details. In the next section we
will give the results of numerical experiment using this algorithm with substitution
of constructing minimal volume simplex technique to suggested modified principle of
finding new simplex containing certain set of points.

5 Numerical experiment

Preliminary testing was carried out on the unconstrained problem of convex optimiza-
tion

F (x) =

m∑
i=1

(
αi

∣∣aTi x− bi∣∣+ ri
)
→ min, x ∈ Rn (5)

with the optimal point x∗ that was known beforehand. The main idea of the test
problem (5) is given in [13] in details. We solved the problems (5) only for dimension
n = 2 due to the complexity of some constraints realization in the algorithm.

The calculations were carried out by means of program complex GAMS [16] on
the computer with further configuration: AMD FX-8350/4.0 GHz processor, 8 GB of
operative memory. The testing results are represented in the table 1 for three methods.
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Table 1. Results of numerical experiment

m kB TB kM1 TM1 kM2 TM2

100 45 0.28 39 1.22 48 0.33
500 48 0.36 48 1.83 52 0.39
1000 53 0.52 46 1.74 53 0.52
5000 47 3.06 54 4.56 44 2.74
10000 50 11.1 40 9.58 52 13.62
50000 45 376.3 36 292 51 417.8
100000 50 1993 38 1470 57 3040.9

First of them is the base simplex imbeddings method, described in [12]. The second
method is the modified simplex imbeddings method that uses special technique of
constructing the minimal volume simplex arround defined set of points. We will call it
as the first method modification. And finally the third method uses the resulting cutting
hyperplane for constructing minimal volume simplex. This method is described in [13].
We will call it as the second method modification. We took the following designations:
m is the number of summands in the objective function, kB is the number of iterations
in the base simplex imbeddings method, TB is the execution time of base method
(in sec.), kM1

is the number of iterations in the first method modification, TM1
is the

execution time of the first method modification (in sec.), kM2 is the number of iterations
in the second method modification, TM2 is the execution time of the second method
modification (in sec.). We give the average results of problems series, which contain 5
problems for each number of summands. The solution accuracy was equal to ε = 10−3.

We can conclude that different approaches of constructing the minimal volume sim-
plex give different results in the realization of methods algorithms. All three methods
give close results considering the number of iterations, but for a significant number of
summands the first method modification works faster. Moreover this modification is in-
teresting in terms of the possibility of using the self-concordant barrier for optimization
problem that give us quite good chance to improve the rate of method convergence.
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