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Abstract. In this paper, we introduce an approach for analyzing com-
plex biological data obtained from metabolomic analytical platforms.
Such platforms generate massive and complex data that need appro-
priate methods for discovering meaningful biological information. The
datasets to analyze consist in a limited set of individuals and a large
set of attributes (variables). In this study, we are interested in mining
metabolomic data to identify predictive biomarkers of metabolic diseases,
such as type 2 diabetes. Our experiments show that a combination of nu-
merical methods, e.g. SVM, Random Forests (RF), and ANOVA, with a
symbolic method such as FCA, can be successfully used for discovering
the best combination of predictive features. Our results show that RF
and ANOVA seem to be the best suited methods for feature selection
and discovery. We then use FCA for visualizing the markers in a sugges-
tive and interpretable concept lattice. The outputs of our experiments
consist in a short list of the 10 best potential predictive biomarkers.
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1 Introduction

In the analysis of biological data, one of the challenges of metabolomics1 is
to identify, among thousands of features, predictive biomarkers2 of disease de-
velopment [13]. However, such a mining task is difficult as data generated by
metabolomic platforms are massive, complex and noisy. In the current study,

1 Metabolomics is the characterization of a biological system by the simultaneous
measurement of metabolites (small molecules) present in the system and accessi-
ble for analysis. Data obtained are provided from different techniques and different
analytical instruments.

2 A biomarker, or biological marker, generally refers to a measurable indicator of some
biological status or condition.



we aim at identifying from a large metabolomic dataset, predictive metabolic
biomarkers of future T2D (type 2 diabetes) development, a few years before oc-
currence, in an homogeneous population considered healthy at the time of the
analysis. The datasets include a rather limited number of individuals and a quite
large set of variables. Specific data processing is required, e.g., feature selection.
Accordingly, we propose a knowledge discovery process based on data mining
methods for biomarker discovery from metabolomic data. The approach focuses
on evaluating a combination of numeric-symbolic techniques for feature selection
and evaluates their capacity to select relevant features for further use in predic-
tive models. Actually, we need to apply feature selection for reducing dimension
and avoid over-fitting3. The resulting reduced dataset is then used as a context
for applying FCA [5] for visualization and interpretation. More precisely, we de-
velop a hybrid data mining process which combines FCA with several numerical
classifiers including Random Forest (RF) [3], Support Vector Machine (SVM)
[16], and the Analysis of Variance (ANOVA) [4]. The dataset relies on a large
number of numerical variables, e.g. molecules or fragments of molecules, a lim-
ited numbers of individuals, and one binary target variable, i.e. developing or
not the disease a few years after the analysis. RF, SVM and ANOVA are used to
discover discriminant biological patterns which are then organized and visualized
thanks to FCA. Because it is known that the most discriminant4 features may
not be necessarily the best predictive5 ones, it is essential to be able to compare
different feature selection methods and to evaluate their capacity to select rele-
vant features for further use in predictive models. The initial problem statement
based on a data table of individuals × features is transformed into a binary
table features × classification process. Data preparation for feature selection
is carried out using filter methods based on the correlation coefficient and mu-
tual information to eliminate redundant/dependent features, to reduce the size
of the data table and to prepare the application of RF, SVM and ANOVA.

A comparative study of the best k features from the combination of these
different classification process (CP) –10 combinations of CP are considered– is
performed. Then a binary data table is built consisting of N features × 10 CP .
This binary table is considered as a formal context and as a starting point for
the application of FCA and the construction of concept lattices. The features
shared by all CP combinations can be interpreted as potential biomarkers of
disease development. However, it is essential for biological experts to evaluate
and compute the performances of the proposed biomarkers in models predicting
the disease development a few years before occurrence. The performance of pre-
diction models can be assessed using different methods. One classical method
used by biologists for binary outcomes is the receiver operating characteristic

3 The problem of over-fitting occurs when a statistical model describes random error
or noise instead of the underlying relationship.

4 A feature is said to be discriminant if it separates individuals in distinct classes (as,
healthy vs not healthy).

5 A feature is said to be predictive if it enables predicting the evolution of individuals
towards the disease a few years later.



(ROC) curve [11], where the TPR (True positive rate) is plotted in function of
the FDR (False discovery rate) for different cut-off points. A short list of the
best predictive features is selected as the core set of biomarkers. Based on this
selection, FCA is used to identify the top list of feature selection methods that
provide the best ranking of these core set of biomarkers. This additional visu-
alisation is essential for experts to discover the few best predictive biomarkers
from the massive metabolomic dataset.

The remainder of this paper is organized as follows. Section 2 provides a de-
scription of related works. Section 3 presents the proposed approach and explains
the methodological analysis of biomarker identification. Section 4 describes the
experiments performed on a real-world metabolomic data set and discusses the
results, while section 5 concludes the paper.

2 State of the art

In [14], the authors discuss the main research topics related to FCA and fo-
cus on works using FCA for knowledge discovery and ontology engineering in
various application domains, such as text mining and web mining. They also dis-
cuss recent papers on applying FCA in bio-informatics, chemistry and medicine.
Bartel et al. [1] are one of the first papers which apply FCA in chemistry. They
use FCA to analyze the structure-activity relationships to predict the toxicity
of chemical compounds. Gebert et al. [6] use an FCA-based model to identify
combinatorial biomarkers of breast cancer from gene expression values. Since,
the structure of gene expression data (GED) differs from metabolomic data, we
can approve according to literature that FCA is never applied on metabolomic
data. Indeed, the GED data tables include genes which are more or less ex-
pressed. Each gene is represented by a vector of values that explain the relative
expression of the gene. This is totally different from metabolomic data where
input data tables contain samples in rows and thousands of metabolites (small
molecules) or feature in columns expressed as signal intensities. The goal is to
identify metabolites that predict the evolution towards a clinical outcome. The
processing of such metabolomic data is usually performed within different su-
pervised learning techniques, such as PLS-DA (partial least squares discriminant
analysis), PC-DFA (Principal component discriminant function analysis), LDA
(Linear discriminant analysis), RF and SVM. Standard univariate statistical
methodologies (as ANOVA or Student’s t-test6) are also frequently used to an-
alyze the metabolomic data [10]. In [8], authors show that there is no universal
choice of method which is superior in all cases, even if they show that PLS-
DA methods outperform the other approaches in terms of feature selection and
classification. In a more detailed study [7], authors compare different variable
selection approaches (LDA, PLS-DA with Variable Importance in Projection

6 t-test or Student’s t-test is a statistical hypothesis test which can be used to deter-
mine if two sets of data are significantly different from each other. If the p-value is
below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or
0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.



(VIP), SVM-Recursive Feature Elimination (RFE), RF with Accuracy and Gini
scores) in order to identify which of these methods are ideally suited to analyze a
common set of metabolomic data, capable of classifying the Gram-positive bac-
teria Bacillus. They conclude that RF with its feature ranking techniques (mean
decrease gini/accuracy) and SVM combined with SVM-RFE [9] as a variable
selection method display the best results in comparison to other approaches.
All these studies show that the choice of the appropriate algorithms is highly
dependent on the dataset characteristics and the objective of the data mining
process. In the field of biomarker discovery, SVM and RF algorithms prove to be
robust for extracting relevant chemical and biological knowledge from complex
data, in particular in metabolomics [7]. RF is a highly accurate classifier, based
on a robust model to outlier detection (a sample point that is distant from other
samples). Its main advantage [2] includes essentially its power to deal with over-
fitting and missing data, as well as its capacity to handle large datasets without
variable elimination in terms of feature selection. Nevertheless, it generates un-
stable and volatile results, contrary to SVM which delivers a unique solution.
These alternative approaches may be useful for data dimensionality reduction
and feature selection purposes, and may be suitable to combine with FCA.

3 Design approach for Metabolomic data analysis

In this study, we design a hybrid data mining strategy based on the combination
of numerical classifiers including RF, SVM, the univariate analysis ANOVA with
the symbolic method FCA, to discover the best combination of biological fea-
tures. In this work, we aim to find, from a large dataset, predictive metabolomic
biomarkers of future T2D development.

We evaluate the proposed approach from a performance point of view. For
this, we use Dell machine with ubuntu 14.04 LTS, a 3.60 GHZ ×8 CPU and 15,6
GBi RAM. We perform all data analyses using the RStudio software (Version
0.98.1103, R 3.1.1) environment. Rstudio is available for free and offers a selection
of packages suitable for different types of data.

3.1 Dataset description and pre-processing

Dataset description: we use a biological data set obtained from a case-control
study within the GAZEL French population-based cohort (20 000 subjects).
The data set includes the measurements (signal intensities) of 111 male subjects
(54-64 years old) free of T2D at baseline. It consists in continuous numerical
(semi quantitative) data which represent measurements performed on for each
individual. Cases (55 subjects) who developed T2D at the follow-up belong to
class ’1’ (diabetes) and are compared to Controls (56 subjects) which belong to
class ’-1’ (healthy controls). A total of about three thousand features is generated
after carrying out mass spectrometry (MS) analysis. But after noise filtration,
each subject is described by 1195 features. In the rest of this paper, we consider
this new filtered dataset of 1195 features, the original dataset.



The obtained dataset is then the result of an analysis performed on homo-
geneous individuals considered healthy at that time. However, the binary target
variable describing the data classes is introduced based on the health status of
the same individuals five years after the first analysis. Some of these individu-
als developed the disease at the follow-up. For this reason, we can not consider
the discriminant features as the predictive ones, since features enabling a good
separation between data classes (healthy vs not healthy) are not necessarily the
same that predict the disease development a few years later.

Data pre-processing: the metabolomic database contains thousands of fea-
tures with a wide intensity value range. A data preprocessing step is mandatory
for adjusting the importance weights allocated to the features. Thus, before
applying any FS method, except ANOVA, data are transformed using a Unit-
Variance scaling method. It divides each feature value by its standard deviation;
so that all features have the same chance to contribute to the model as they
have an equal unit variance. The transformed dataset of 1195 features is used as
input for all FS methods, except for ANOVA.

3.2 Feature selection for data dimensionality reduction

Only a few features (a small part of the original dataset) allow a good separation
between data classes. Therefore, it is necessary to reduce data dimension to select
a small number of relevant features for further use in predictive models. Reducing
the dimensionality of the data is a challenging step, requiring a careful choice of
appropriate feature selection techniques [15]. Filter and embedded methods are
used for this purpose. We discarded wrapper approaches since they are greedy
in computational cost.

The metabolomic data contain highly correlated features, which may impact
the calculation of feature importance and ranking features [8]. To overcome
this problem, we use two filter methods, the coefficient of correlation (Cor) and
mutual information (MI). The first filter (Cor) is used to discard very highly
correlated features, and the second filter (MI) is used to remove very dependent
features. As embedded methods [12], we retain two FS techniques that are widely
used on biological data, which are RF and SVM.

Figure 1 describes the feature selection workflow we propose to obtain a
reduced set of relevant features. This workflow considers at the beginning the
filter methods ’Cor’ and ’MI’ to eliminate redundant/dependent features. In or-
der to limit the loss of information, very highly correlated features are discarded
(one feature per group of correlated ones is kept) to keep a reasonable number
of features to work with. All the features whose MI average values are smaller
than the threshold are selected, since it is known that high mutual information
is indicating a large reduction of uncertainty [17]. We then set correlation and
mutual information thresholds to 0.95 and 0.02, respectively. Consequently, two
reduced subsets are generated: the first subset contains 963 features after ’Cor’
filter, and the second one contains 590 features after ’MI’ filter. When we fix



Fig. 1. Feature selection and dimensionality reduction process.

a lower threshold of correlation, we remove a lot of features since the original
dataset is very correlated. When we set the MI threshold to a lower value, we
keep only a small number of features and consequently we may loose a lot of
information.

Both reduced subsets are used as input for the application of RF and SVM
classifiers. Nonetheless, as correlation values between variables are still high,
we furthermore adapt the RFE7 approach with RF and SVM. To cover various
possible classification results, we apply the embedded methods RF, RF-RFE and
SVM-RFE on both filtered subsets. We also apply the ANOVA method on the
original data set (not transformed) since it is commonly applied on metabolomic
data. Three different classification models are respectively obtained. The first
model is built from the application of RF on data filtered with Cor. The second
classification model is fitted according to RF-RFE also on the subset of data
filtered with ’Cor’. The third model is built from the application of SVM-RFE on
the subset of data filtered with ’MI’. Based on these three classification models,
we use several accuracy metrics to measure the importance of each feature in
the overall result. These measures include MdGini8, MdAcc9, Accuracy, and

7 Recursive Feature Elimination (RFE) is a backward elimination method, originally
proposed by Guyon et al. [9] for binary classification. This is one of the classical
embedded methods for feature selection with SVM.

8 Mean decrease in Gini index (MdGini) provides a measure of the internal structure
of the data.

9 Mean decrease in accuracy (MdAcc) measures the importance/performance of each
feature to the classification. The general idea of these metrics is to permute the
values of each variable and measure the decrease in the accuracy of the model.



Kappa10. The scores given by these metrics enable ranking the features by means
of the classification models already built.

When no filter is used, three feature selection techniques (SVM-RFE, RF
and ANOVA) are applied directly to the original dataset using the feature
weight values ’W’ (i.e. the weight magnitude of features), p-value11, MdGini
and MdAcc scores to sort the features and identify those with the highest dis-
criminative power. Various forms of results (feature ranking, feature weighting,
etc.) and multiple (sub)sets of ranked features are obtained as output. In to-
tal, 10 (sub)sets are generated, corresponding to the different CP and ranking
scores (Figure 1). For each CP, we give a corresponding name that well describe
the whole classification process. The first CP is called ’Cor-RF-MdAcc’, which
means that we apply firstly the correlation coefficient ’Cor’, then we apply RF
on the obtained set and rank features according to MdAcc. We follow the same
logic to name the other CP: (2) ’Cor-RF-MdGini’, (3) ’Cor-RF-RFE-Acc’, (4)
’Cor-RF-RFE-Kap’, (5) ’MI-SVM-RFE-Acc’, (6) ’MI-SVM-RFE-Kap’, (7) ’RF-
MdAcc’, (8) ’RF-MdGini’, (9) ’SVM-RFE-W’ and (10) ’ANOVA-pValue’. To
preserve only important features, we retain the 200 first ranked ones from each
of the 10 (sub)sets, except the set ’ANOVA-pValue’ from which we select only
107 features that have a reasonable p-value (lower than 0.1). Ten reduced sets
of ranked features are consequently obtained, named Di, where i ∈ {1, . . . , 10}.
Then, to analyze the relative importance of individual features and to enable a
comprehensive interpretation of the results, these reduced sets of ranked features
are combined for comparison.

3.3 Visualization with FCA

This section focuses on comparing all the reduced sets (Di, where i ∈ {1, . . . , 10})
of highly ranked features (Figure 1). The combination of these subsets resulting
from different CP, enables covering several possible results and yields to a stable
unique reduced output. For the comparison propose, a binary table of features
× CP is built (e.g., Table 1), where the objects (rows) are the features and
the variables (columns) are the 10 CP. We put ’1’ if the feature exists in the
reduced set of a corresponding CP; otherwise, we put ’0’. Each feature has then
a support12 calculated from the obtained binary table, where the most frequent
features are those existing in all the reduced sets (support =10). Nevertheless,
since we are looking for frequent features according to the different CP, a subset
of features common to at least 6 techniques is selected (i.e., features belonging
to Di, where i ∈ {1, . . . , 10} and identified by at least 6 CP), and a new subset
of 48 frequent features is obtained. The choice of this value (6) is not random,

10 Cohens Kappa (Kappa) is a statistical measure which compares an Observed Accu-
racy with an Expected Accuracy (random chance)

11 A p-value helps determining the statistical significance of the results when a hypoth-
esis test is performed.

12 The support is the number of times we have ’1’ in each row, according to the binary
table.



but it enables obtaining results from complementary FS methods. It ensures the
selection of some relevant features that could have been removed by filters, while
keeping a reasonable dataset size (48 features). A new binary table of the form
48 features × 10 CP is obtained and presented in Table 1. It describes features
in rows by the CP in columns and transforms then the initial problem statement
from a data table of 111 individuals × 1195 features to 48 features × 10 CP .
The labels of the features start with the word ’m/z’ which corresponds to the
mass per charge value.

From this (48 × 10) binary table, we apply FCA with the help of ConExp
tool [18]). Two seventy six concepts are obtained from the derived concept lattice
(Figure 2). The combination of FCA with the results of the numerical methods
and the transformation of the problem statement bring new light to the gen-
erated data. Four features ’m/z 383’, ’m/z 227’, ’m/z 114’ and ’m/z 165’ of
the subconcept are identified as the most frequent (maximum rectangle full of
1 in Table 1). Most of the 44 remaining features highlight strong relationships
between each others, such as ’m/z 284’, ’m/z 204’, ’m/z 132’, ’m/z 187’, ’m/z
219’, ’m/z 203’, ’m/z 109’, ’m/z 97’ and ’m/z 145’. Among the 48 frequent
features, 39 are significant w.r.t. ANOVA (have a pvalue<0.05). The generated
lattice highlights then the potential of the proposed feature selection approach
for analyzing metabolomic data. It enables discriminating direct and indirect
associations: highly linked metabolites belonging to the same concept. The links
between the concepts in the lattice represent the degree of interdependencies be-
tween concept and metabolites belonging to the same concept. These 48 frequent
features are then proposed as candidate for prediction.

4 Evaluation and discussion

4.1 Predictive performance evaluation and interpretation

Considering the 48 most frequent features previously identified, we would like
to evaluate their predictive capacities. Accordingly, we start the performance
evaluation using the ROC curves (Figure 3) of the 48 features with associated
confidence intervals. These analyses are performed using the ROCCET tool
(http://www.roccet.ca), with calculation of the area under the curve (AUC)
and confidence intervals (CI), calculation of the true positive rate (TPR), where
TPR = TP/(TP + FN), and the false discovery rate (FDR), where FDR =
TN/(TN +FP ). The p-values of these relevant features are also computed using
t-test.

ROC curve is a non-parametric analysis, which is considered to be one of
the most objective and statistically valid method for biomarker performance
evaluation [11]. They are commonly used to evaluate the prediction performance
of a set of features, or their accuracy to discriminate diseased cases from normal
cases. Since the number of features to propose as biomarkers requires to be quite
limited (because of clinical constraints), we rely on the ROC curves of the top 2,
3, 5, 10, 20 and 48 of important features ranked based on their AUC values. These
small sets of features are used to build the RF classification models based on the



Table 1. Input binary table describing the 48 frequent features with the 10 CP.
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m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 227 1 1 1 1 1 1 1 1 1 1
m/z 114 1 1 1 1 1 1 1 1 1 1
m/z 165 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 441 1 1 1 1 1 1 1 1 1
m/z 109 1 1 1 1 1 1 1 1 1
m/z 203 1 1 1 1 1 1 1 1 1
m/z 219 1 1 1 1 1 1 1 1 1
m/z 198 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 187 1 1 1 1 1 1 1 1 1
m/z 132 1 1 1 1 1 1 1 1 1
m/z 204 1 1 1 1 1 1 1 1 1
m/z 261 1 1 1 1 1 1 1 1 1
m/z 162 1 1 1 1 1 1 1 1
m/z 284 1 1 1 1 1 1 1 1 1
m/z 603 1 1 1 1 1 1 1 1
m/z 148 1 1 1 1 1 1 1 1
m/z 575 1 1 1 1 1 1 1 1
m/z 69 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 405 1 1 1 1 1 1 1
m/z 929 1 1 1 1 1 1 1 1
m/z 58 1 1 1 1 1 1 1 1
m/z 336 1 1 1 1 1 1 1 1
m/z 146 1 1 1 1 1 1 1
m/z 104 1 1 1 1 1 1 1
m/z 120 1 1 1 1 1 1 1 1
m/z 558 1 1 1 1 1 1 1
m/z 231 1 1 1 1 1 1
m/z 132* 1 1 1 1 1 1 1
m/z 93 1 1 1 1 1 1 1
m/z 907 1 1 1 1 1 1 1
m/z 279 1 1 1 1 1 1 1
m/z 104* 1 1 1 1 1 1 1
m/z 90 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1
m/z 288* 1 1 1 1 1 1 1
m/z 287 1 1 1 1 1 1 1
m/z 167 1 1 1 1 1 1 1
m/z 288 1 1 1 1 1 1 1
m/z 252 1 1 1 1 1 1 1
m/z 141 1 1 1 1 1 1 1
m/z 275 1 1 1 1 1 1
m/z 148* 1 1 1 1 1 1
m/z 92 1 1 1 1 1 1 1

cross validation (CV) performance. The ROC curves enable identifying this best
combination of predictive features. Figure 3 shows that the best performance is



Fig. 2. The concept lattice derived from the 48 × 10 binary table (Table 1).

given to the 48 features together (AUC=0.867). But a predictive model with 48
metabolites is not useable in clinical practices. The set of best features with the
smallest p-values and the highest accuracy values is selected to finally obtain a
short list of potential biomarkers. When we select the ten first features (Table
3), we have an AUC equals to 0.79, and a CI=0.71-0.9. When we select the first
four features, we obtain an AUC close to 0.75. These high AUC values show a
good predictive performance.

In sight of these results, it is more advisable to select the 10 first features
which have an AUC greater than 0.74 and a significant small t-test values (Ta-
ble 3) as potential biomarkers. We compare this subset of 10 best predictive
features with the four most frequent features (features with full of ’1’ in Table
1), we find that only one feature is in common, ’m/z 383’. We conclude that the
core set of most frequent features is not the best predictive set, as expected bio-
logically because the metabolomic analyses are performed 5 years before disease
occurrence. Moreover, these best predictive features (or potential biomarkers)
are not belonging to the same concept. Figure 2 highlights this conclusion and
shows that the best predictive biomarkers have different extents and belong to
concepts with different intents. They are depicted by the red squares in the lat-



Fig. 3. The ROC curves of at least 2 and max 48 combined frequent features based on
RF model and AUC ranking.

tice. For example, the features ’m/z 145’, ’m/z 97’, ’m/z 109’ and ’m/z 187’ are
part of the intent of a concept including all the CP, except ’SVM-RFE-W’, in
extent. By contrast, the feature ’m/z 268’ belongs to another concept including 6
CP in extent (’RF-MdGini’, ’RF-MdAcc’, ’MI-SVM-RFE-Acc’, ’MI-SVM-RFE-
Kap’, ’SVM-RFE-W’, ’ANOVA-pValue’ ). Here again, the simple visualization
of the lattice comes to highlight the position of the predictive features among
the discriminant ones and shows the associations with selection methods. This
information is interesting for the expert domain since this visualization allows
choosing the best combination of feature selection methods.

4.2 Selection of the best FS method(s)

As some feature selection methods do not retain the ten best predictive ones
as their highly ranked, it remains essential to identify the methods that provide
the best selection from metabolomic data. Here again, FCA comes to highlight
and to assist information retrieval and visualization of the results. We then
retain only the subset of ten best features (’m/z 145’, ’m/z 441’, ’m/z 383’,
’m/z 97’, ’m/z 325’, ’m/z 69’, ’m/z 268’, ’m/z 263’, ’m/z 187’ and ’m/z 109’ )
identified previously due to the ROC curve, and apply FCA another time on
their corresponding binary Table 2. A new concept lattice is generated (Figure
4) showing a superconcept with 4 feature selection methods, ’ANOVA-pValue’,
’MI-SVM-RFE-Acc’, ’RF-MdAcc’ and ’RF-MdGini’, verified by all features.

This is a very interesting result which needs a deeper interpretation before
validation. We then consider these 4 methods and look for their ranking w.r.t. the
10 best predictive features (Table 3). Table 4 shows that RF-based techniques
and Anova provide a good ranking to the 10 features contrarily to ’MI-SVM-
RFE-Acc’. For example, ’m/z 145’ is ranked first according to ’RF-MdAcc’, ’RF-



Table 2. Input binary table describing the 6 best predictive features with the 10 CP.

Features C
o
r-
R
F
-M

d
G
in
i

C
o
r-
R
F
-M

d
A
c
c

C
o
r-
R
F
-R

F
E
-A

c
c

C
o
r-
R
F
-R

F
E
-K

a
p

R
F
-M

d
G
in
i

R
F
-M

d
A
c
c

M
I-
S
V
M

-R
F
E
-A

c
c

M
I-
S
V
M

-R
F
E
-K

a
p

S
V
M

-R
F
E
-W

A
N
O
V
A
-p

V
a
lu
e

m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1

Fig. 4. The concept lattice of the 10 best predictive variables.

MdGini’, second according to ’ANOVA-pvalue’ and hundredth within ’MI-SVM-
RFE-Acc’. The feature ’m/z 441’ is ranked 6th according to ’RF-MdAcc’, 8th
within ’RF-MdGini’, 172th within ’MI-SVM-RFE-Acc’, and 11th according to
’ANOVA-pvalue’. Consequently, the toplist methods for biomarker identification
from metabolomic data are RF-based and ANOVA.

5 Conclusion and future works

In this paper, we presented a new approach for the identification of predictive
biomarkers from complex metabolomic dataset. Due to the nature of metabolomic
data (highly correlated and noisy), the results highlighted the importance of
working on reduced datasets to identify important variables related to the ob-
served discrimination between case and control subjects and candidate for pre-



Name AUC T-tests
m/z 145 0.79 1.4483E-6
m/z 383 0.79 5.0394E-7
m/z 97 0.78 1.5972E-6
m/z 325 0.77 2.2332E-5
m/z 69 0.76 1.2361E-5
m/z 268 0.75 4.564E-6
m/z 441 0.75 9.0409E-5
m/z 263 0.75 5.996E-6
m/z 187 0.74 9.0708E-6
m/z 109 0.74 2.6369E-5

Table 3. Table of performance of the best 10 AUC ranked features.

Feature RF-MdAcc RF-MdGini MI-SVM-RFE-Acc ANOVA-pValue
m/z 145 1 1 100 2
m/z 383 3 3 40 1
m/z 97 2 2 63 3
m/z 325 5 5 38 8
m/z 69 4 4 65 7
m/z 268 9 6 168 4
m/z 441 6 8 172 11
m/z 263 8 7 28 5
m/z 187 14 10 27 6
m/z 109 7 9 37 9

Table 4. Ranking of the 10 features with respect to 4 CP.

diction. Indeed, a combination of numerical (supervised) and symbolic (unsuper-
vised) methods remains the best approach, as it allows combining the strengths
of both techniques.

In this study, we used machine learning methods, RF and SVM, that we
combined with FCA, to select a subset of good candidate biological features
for prediction diseases. Our results showed the interest of this association to
reveal subtle effects (hidden information) in such high dimensional datasets and
how FCA highlighted the relationship between the best predictive features and
the selection methods. RF-based methods as well as ANOVA gave the toplist
of relevant features that best predict the disease development. With this help,
the experts in biology will go deeper in interpretation, attesting the success of
the knowledge discovery process. Additional experiments on other metabolomic
datasets are required to attest the success of the proposed approach.
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