
Towards Inconsistency Management in Reactive
Multi-Context Systems

Gerhard Brewka1 and Stefan Ellmauthaler1 and Ricardo Gonçalves2
and Matthias Knorr2 and João Leite2 and Jörg Pührer1

Abstract. In this paper, we begin by introducing reactive multi-
context systems (rMCSs), a framework for reactive reasoning in
the presence of heterogeneous knowledge sources. In particular,
we show how to integrate data streams into multi-context systems
(MCSs) and how to model the dynamics of the systems, based on
two types of bridge rules. We then discuss various methods for han-
dling inconsistencies, a problem that occurs with reasoning based on
multiple knowledge sources that need to be integrated, with a special
focus on non-existence of equilibria.

1 Introduction

The wide and increasing availability of machine-processable data
and knowledge – fueled by initiatives such as the Semantic Web,
Linked Open Data, and the Internet of Things, among others – has
prepared the ground and called for a new class of dynamic, rich,
knowledge-intensive applications. Such new applications require au-
tomated reasoning based on the integration of several heterogeneous
knowledge bases – possibly overlapping, independently developed,
and written in distinct languages with different semantic assumptions
– together with data/event streams produced by sensors and detec-
tors, to support automation and problem-solving, to enforce traceable
and correct decisions, and to facilitate the internalization of relevant
dynamic data and knowledge.

Consider, for example, a scenario where Dave, an elderly person
suffering from dementia, lives alone in an apartment equipped with
various sensors, e.g., smoke detectors, cameras, and body sensors
measuring relevant body functions (e.g., pulse, blood pressure, etc.).
An assisted living application in such a scenario could leverage the
information continuously received from the sensors, together with
Dave’s medical records stored in a relational database, a biomedical
health ontology with information about diseases, their symptoms and
treatments, represented in some description logic, some action policy
rules represented as a non-monotonic logic program, to name only a
few, and use it to detect relevant events, suggest appropriate action,
and even raise alarms, while keeping a history of relevant events and
Dave’s medical records up to date, thus allowing him to live on his
own despite his condition. For example, after detecting that Dave left
the room while preparing a meal, the system could warn him about
the situation in case he does not return soon. It could also even turn
the stove off in case it detects that Dave fell asleep, not wanting to
wake him up because his current treatment/health status values rest

1 Institute of Computer Science, Leipzig University, Germany, email:
{brewka|ellmauthaler|puehrer}@informatik.uni-leipzig.de.

2 NOVA LINCS & Departamento de Informática, Universidade NOVA de
Lisboa, Portugal, email: {rjrg|mkn|jleite}@fct.unl.pt.

over immediate nutrition. Naturally, if Dave is not gone long enough,
and no sensor shows any potential problems (smoke, gas, fire, etc.),
then the system should seamlessly take no action. Another illustrative
example would be a situation where the system observes that Dave’s
smart watch is indicating a high heart rate (tachycardia), in which
case it would request Dave to measure his blood pressure (hyperten-
sion) – calling for assistance if Dave ignores the request – and, based
on the measurements, determine whether to raise an alarm, calling
an ambulance for example, or whether the readings are caused by
some infection already under treatment or a decongestant that Dave
recently took, in which case nothing would need to be done.

The requirements posed by novel applications such as the one just de-
scribed, together with the availability of a vast number of knowledge
bases – written using many different formalisms – and streams of
data/events produced by sensors/detectors, has led modern research
in knowledge representation and reasoning to face two fundamental
problems: dealing with the integration of heterogeneous data and
knowledge, and dealing with the dynamics of such novel knowledge
based systems.

Integration The first problem stems from the availability of
knowledge bases written in many different languages and formats
developed over the last decades, from the rather basic ones, such as
relational databases or the more recent triple-stores, to the more ex-
pressive ones, such as ontology languages (e.g., description logics),
temporal and modal logics, non-monotonic logics, or logic programs
under answer set semantics, to name just a few. Each of these for-
malisms was developed for different purposes and with different de-
sign goals in mind. Whereas some of these formalisms could be com-
bined to a new, more expressive formalism, with features from its
constituents – such as dl-programs [13] and Hybrid MKNF [31, 27]
which, to different extent, combine description logics and logic pro-
grams under answer set semantics –, in general this is simply not
feasible, either due to the mismatch between certain assumptions un-
derlying their semantics, or because of the high price to pay, often
in terms of complexity, sometimes even in terms of decidability. It is
nowadays widely accepted that there simply is no such thing as a sin-
gle universal, general purpose knowledge representation language.

What seems to be needed is a principled way of integrating knowl-
edge expressed in different formalisms.

Multi-context systems (MCSs) provide a general framework for
this kind of integration. The basic idea underlying MCSs is to leave
the diverse formalisms and knowledge bases untouched, and to use
so-called bridge rules to model the flow of information among differ-
ent parts of the system. An MCS consists of reasoning units – called

contexts for historical reasons [22] – where each unit is equipped
with a collection of bridge rules. In a nutshell, the bridge rules al-
low contexts to “listen” to other contexts, that is to take into account
beliefs held in other contexts.

Bridge rules are similar to logic programming rules (including de-
fault negation), with an important difference: they provide means to
access other contexts in their bodies. Bridge rules not only allow for
a fully declarative specification of the information flow, but they also
allow information to be modified instead of being just passed along
as is. Using bridge rules we may translate a piece of information into
the language/format of another context, pass on an abstraction of the
original information, leaving out unnecessary details, select or hide
information, add conclusions to a context based on the absence of
information in another one, and even use simple encodings of pref-
erences among parent contexts.

Historically, MCSs went through several development steps until
they reached their present form. Advancing work in [21, 30] aiming
to integrate different inference systems, monotonic heterogeneous
multi-context systems were defined in [22], with reasoning within
as well as across monotonic contexts. The first, still somewhat lim-
ited attempts to include non-monotonic reasoning were done in [33]
and [10], where default negation in the rules is used to allow for rea-
soning based on the absence of information from a context.

The non-monotonic MCSs of [7] substantially generalize previous
approaches, by accommodating heterogeneous and both monotonic
and non-monotonic contexts, hence capable of integrating, among
many others, “typical” monotonic logics like description logics or
temporal logics, and non-monotonic formalisms like Reiter’s default
logic, logic programs under answer set semantics, circumscription,
defeasible logic, or theories in autoepistemic logic. The semantics of
nonmonotonic MCSs is defined in terms of equilibria: a belief set for
each context that is acceptable for its knowledge base augmented by
the heads of its applicable bridge rules.

More recently, the so-called managed MCSs (mMCSs) [8] ad-
dressed a limitation of MCSs in the way they integrate knowledge
between contexts. Instead of simply adding the head of an applicable
bridge rule to the context’s knowledge base, which could cause some
inconsistency, mMCSs allow for operations other than addition, such
as, for instance, revision and deletion, hence dealing with the prob-
lem of consistency management within contexts.

Dynamics The second problem stems from the shift from static
knowledge-based systems that assume a one-shot computation, usu-
ally triggered by a user query, to open and dynamic scenarios where
there is a need to react and evolve in the presence of incoming infor-
mation.

Indeed, traditional knowledge-based systems – including the dif-
ferent variants of MCSs mentioned above – focus entirely on static
situations, which is the right thing for applications such as for in-
stance expert systems, configuration or planning problems, where the
available background knowledge changes rather slowly, if at all, and
where all that is needed is the solution of a new instance of a known
problem. However, the new kinds of applications we consider are
becoming more and more important, and these require continuous
online reasoning, including observing and reacting to events.

There are some examples of systems developed with the purpose
of reacting to streams of incoming information, such as Reactive
ASP [19, 18], C-SPARQL [5], Ontology Streams [29] and ETALIS
[2], to name only a few. However, they are very limited in the kind
of knowledge that can be represented, and the kind of reasoning al-
lowed, hence unsuitable to address the requirements of the applica-

tions we envision, such as those that need to integrate heterogeneous
knowledge bases. Additionally, reacting to the streams of incoming
information is only part of the dynamic requirements of our appli-
cations. In many cases, the incoming information is processed only
once, perhaps requiring complex reasoning using various knowledge
bases to infer the right way to react, and does not have to be dealt
with again – e.g., concluding that nothing needs to be done after de-
termining that the tachycardia is caused by the decongestant recently
taken by Dave. In other cases, it is important that these observations
not only influence the current reaction of the system – do nothing
in the previous example – but, at the same time, be able to change
the knowledge bases in a more permanent way, i.e., allowing for the
internalization of knowledge. For example, relevant observations re-
garding Dave’s health status should be added to his medical records,
such as for example that he had an episode of tachycardia caused by
a decongestant, and, in the future, maybe even revise such episode if
it is found that Dave had forgotten to take the decongestant after all.
Other more sophisticated changes in the knowledge bases include,
for example, an update to the biomedical health ontology whenever
new treatments are found, the revision of the policy rules whenever
some exceptions are found, etc. EVOLP [1] extends logic program-
ming under answer set semantics with the possibility to specify its
evolution, through successive updates, in reaction to external obser-
vations. It is nevertheless limited to a single knowledge representa-
tion formalism and to a single operation (update).

In this paper, we aim to address these challenges. We develop a
system that allows us to integrate heterogeneous knowledge bases
with streams of incoming information and to use them for continu-
ous online reasoning, reacting, and evolving the knowledge bases by
internalizing relevant knowledge. To this end, we introduce reactive
Multi-Context Systems (rMCSs). These systems build upon mMCSs
and thus provide their functionality for integrating heterogeneous
knowledge sources, admitting also relevant operations on knowledge
bases. In addition, rMCSs can handle continuous streams of input
data. Equilibria remain the fundamental underlying semantic notion,
but the focus now lies on the dynamic evolution of the systems. In a
nutshell, given an initial configuration of knowledge bases, that is, an
initial knowledge base for each context, a specific input stream will
lead to a corresponding stream of equilibria, generated by respective
updates of the knowledge bases. Contrary to standard MCSs which
possess only one type of bridge rules modeling the information flow
which needs to be taken into account when equilibria are computed
(or the operations that need to be applied in case of mMCSs), rMCSs
have an additional, different type of bridge rules, distinguished by the
occurrence of the operator next in the head. These rules are used to
specify how the configuration of knowledge bases evolves whenever
an equilibrium was computed.

The reactive Multi-Context Systems (rMCSs) presented here com-
bine and unify the two adaptations of multi-context systems for dy-
namic environments in [9] and [24], independently developed by dif-
ferent subsets of the authors. The approach presented here general-
izes these earlier approaches and substantially improves on the pre-
sentation of the underlying concepts.

The occurrence of inconsistencies within frameworks that aim at
integrating knowledge from different sources cannot be neglected,
even more so in dynamic settings where knowledge changes over
time. Even with the power of management operations that allow the
specification of e.g. belief revision operations, many reasons remain
why rMCSs may fail to have an equilibria stream, traceable to in-
dividual contexts, their interaction through the bridge rules, or their
interaction with the input streams, which can render the entire system

useless. In this paper, we will address the problem of inexistent equi-
libria streams, also known as global inconsistency, following differ-
ent strategies, such as repairing the rMCS, or even relaxing the notion
of equilibria stream so that it can go through inconsistent states.

The paper is organized as follows. In Section 2, we introduce re-
active MCSs, our framework for reactive reasoning in the presence
of heterogeneous knowledge sources. In particular, we show how to
integrate data streams into mMCSs and how to model the dynam-
ics of our systems, based on two types of bridge rules. Reasoning
based on multiple knowledge sources that need to be integrated faces
the problem of potential inconsistencies. Section 3 discusses various
methods for handling inconsistencies, with a special focus on non-
existence of equilibria. We conclude and point out future directions
of work in Section 4.

2 Reactive Multi-Context Systems
Reactive multi-context systems (rMCSs) make use of basic ideas
from managed multi-context systems (mMCSs) [8] which extend
multi-context systems (MCSs) as defined by Brewka and Eiter [7]
by management capabilities. In particular, similar to mMCSs, we
will make use of a management function and bridge rules that al-
low for conflict resolution between contexts as well as a fine-grained
declarative specification of the information flow between contexts.
To not unnecessarily burden the reader with repetetive material on
these common components, we abstain from recalling the details of
mMCSs first. It will be clear from the presentation when new con-
cepts/ideas specific to rMCSs will be presented.

2.1 Specifying the Components of an rMCS
Similar as for previous notions of MCSs, we build on an abstract no-
tion of a logic, which is a triple L = 〈KB ,BS ,acc〉, where KB
is the set of admissible knowledge bases of L, which are sets whose
elements are called knowledge base formulas; BS is the set of pos-
sible belief sets, where elements in belief sets are called beliefs; and
acc : KB → 2BS is a function describing the semantics of L by
assigning to each knowledge base a set of acceptable belief sets.3

Example 1 We illustrate how different formalisms can be repre-
sented by the notion of a logic. The logics presented below will serve
as blueprints for the logics we use in examples throughout the pa-
per. First, consider the case of classical propositional logic. Given
a propositional signature Σ, we denote by F the set of all well-
formed propositional formulas over Σ. To represent entailment in
classical propositional logic over signature Σ, we consider the logic
Lp = 〈KBp,BSp,accp〉, such that the admissible knowledge bases
are given by the set KBp = 2F . Since propositional logic aims at
modeling ideal rational reasoning, we identify the set of possible be-
lief sets BSp with the set of deductively closed sets of formulas over
Σ. Finally, accp maps every kb ∈ KBp to {E}, where E is the set
of formulas entailed by kb.

Quite similar in spirit are description logics (DLs) as (commonly
decidable) fragments of first-order logic [4]. Given a DL language
L, we consider the logic Ld = 〈KBd,BSd,accd〉 where KBd is
the set of all well-formed DL knowledge bases over L, also called

3 To ease readability, throughout the paper, we will often use the following
convention when writing symbols: single entities are lower-case, while sets
of entities and structures with different components are upper-case; in ad-
dition, sequences of those are indicated in sans serif, while notions with
a temporal dimension are written in calligraphic letters (only upper-case,
such as S or I); finally, operators and functions are bold.

ontologies, BSd is the set of deductively closed subsets of L, and
accd maps every kb ∈ KBd to {E}, where E is the set of formulas
in L entailed by kb.

As an example for a non-deterministic formalism, consider logic
programs under the answer set semantics [20]. Given a set of
ground, i.e., variable-free, atoms A, we consider the logic La =
〈KBa,BSa,acca〉, such that KBa is the set of all logic programs
over A. The set of possible belief sets is given by the set BSa = 2A

of possible answer sets and the function acca maps every logic pro-
gram to the set of its answer sets.

Given a set E of entries, a simple logic for storing elements from
E can be realized by the logic Ls = 〈KBs,BS s,accs〉, such that
KBs = BS s = 2E , and accs maps every set E′ ⊆ E to {E′}.
Such Ls can, e.g., be used to represent a simple database logic. We
will call a logic of this type a storage logic.

In addition to a logic that captures language and semantics of a
formalism to be integrated in an rMCS, a context also describes how
a knowledge base belonging to the logic can be manipulated. To this
end, we make use of a management function similar as in managed
multi-context systems [8].

Definition 1 (Context) A context is a triple C = 〈L,OP ,mng〉
where

• L = 〈KB ,BS ,acc〉 is a logic,
• OP is a set of operations,
• mng : 2OP ×KB → KB is a management function.

For an indexed context Ci we will write Li = 〈KB i,BS i,acci〉,
OP i, and mngi to denote its components. Note that we leave the ex-
act nature of the operations in OP unspecified. They can be seen as
mere labels that determine how the management function should ma-
nipulate the knowledge base: we use subsets OP ′ of OP as the first
argument of the management function that maps a knowledge base
to an updated version depending on the presence or absence of oper-
ations in OP ′. Thus, it is the management function that implements
the semantics of the operations. We use a deterministic management
function rather than a non-deterministic one as used in mMCS [8].
Note that it is straightforward to adapt our definitions to use non-
deterministic management functions as well. However, as they are
not essential to our approach, we here refrain from doing so to keep
notation simpler.

Example 2 Consider the assisted living scenario from the Introduc-
tion and remember that we target a system that recognizes potential
threats caused by overheating of the stove in Dave’s kitchen. We use
the context Cst to monitor the stove. Its logic Lst is a storage logic
taking E = {pw, tm(cold), tm(hot)} as the set of entries, repre-
senting the stove’s power status (on if pw is present, and off other-
wise) and a qualitative value for its temperature (cold/hot). At all
times, the current temperature and power state of the stove should be
stored in a knowledge base over Lst. Thus, the context provides the
operations

OPst = {setPower(off), setPower(on),

setTemp(cold), setTemp(hot)}

to update the information in the knowledge base.
Before defining the management function we need to clarify what

we want this function to achieve. We assume the existence of a single
temperature sensor constantly providing a measurement which trig-
gers exactly one of the setTemp operations. For this reason, there is

no need for the management function to care about persistence of the
temperature value, or about conflicting information. The power in-
formation, on the other hand, is based on someone toggling a switch,
so we definitely need persistence of the fluent pw.

The semantics of the operations is thus given, for OP ′ ⊆ OPst,
by the management function mngst(OP ′, kb) =

{pw | setPower(on) ∈ OP ′∨
(pw ∈ kb ∧ setPower(off) 6∈ OP ′)}∪

{tm(t) |setTemp(t) ∈ OP ′}.

As discussed above, the function simply inserts the current qualita-
tive temperature value. For the power, it ensures that the stove is
considered on whenever it is switched on, and also when it is not
being switched off and already considered on in the given knowl-
edge base kb. The second alternative implements persistence. Note
that whenever both conflicting setPower operations are in OP ′,
setPower(on) “wins”, that is, pw will be in the knowledge base.
This is justified by the application: the damage of, say, unnecessarily
turning off the electricity is a lot smaller than that of overlooking a
potential overheating of the stove.

Assume we have a knowledge base kb = {tm(cold)}. Then, an
update with the set OP = {setPower(on), setTemp(hot)} of op-
erations would result in the knowledge base mngst(OP , kb) =
{pw, tm(hot)}.

Contexts exchange information by manipulating their associated
knowledge bases using the management function. The central de-
vice for that is given by bridge rules that are rules similar in spirit
to those in logic programming and that determine which operations
from OP i to apply to kbi in a context Ci. In this work, we are inter-
ested in systems composed of contexts whose behavior may not only
depend on other contexts, but also on input from the outside. Like
communication between contexts, also external information is incor-
porated by means of bridge rules. To keep the approach as abstract
as possible, all we require is that inputs are elements of some for-
mal input language IL. Moreover, we allow for situations where in-
put comes from different sources with potentially different input lan-
guages and thus consider tuples 〈IL1, . . . , ILk〉 of input languages.

Definition 2 (Bridge Rule) Let C = 〈C1, . . . ,Cn〉 be a tuple of
contexts and IL = 〈IL1, . . . , ILk〉 a tuple of input languages. A
bridge rule for Ci over C and IL, i ∈ {1, . . . , n}, is of the form

op←a1, . . . , aj ,not aj+1, . . . ,not am (1)

such that op = op or op = next(op) for op ∈ OP i, j ∈
{0, . . . ,m}, and every atom a`, ` ∈ {1, . . . ,m}, is one of the fol-
lowing:

• a context atom c:b with c∈{1, . . . , n} and b ∈ B for some B ∈
BS c, or

• an input atom s::b with s ∈ {1, . . . , k} and b ∈ ILs.

For a bridge rule r of the form (1) hd(r) denotes op, the head of r,
while bd(r) = {a1, . . . , aj ,not aj+1, . . . ,not am} is the body of
r. A literal is either an atom or the default negation of an atom, and
we also differentiate between context literals and input literals.

Roughly, a set of bridge rules for Ci describes which operations
to apply to its knowledge base kbi depending on whether currently
available beliefs and external inputs match the literals in the body. We
define and discuss their precise semantics later in Section 2.2. Bridge
rules can be seen as the glue that binds the contexts in an rMCS to-
gether. Thus, we are now ready to define reactive multi-context sys-
tems.

Definition 3 (Reactive Multi-Context System) A reactive Multi-
Context System (rMCS) is a tuple M = 〈C, IL,BR〉, where

• C = 〈C1, . . . ,Cn〉 is a tuple of contexts;
• IL = 〈IL1, . . . , ILk〉 is a tuple of input languages;
• BR = 〈BR1, . . . ,BRn〉 is a tuple such that each BRi, i ∈
{1, . . . , n}, is a set of bridge rules for Ci over C and IL.

Example 3 We continue by using context Cst from Example 2 as
the single context of the rMCSMex3 = 〈〈Cst〉, 〈ILex3〉, 〈BRex3〉〉.4
The input language ILex3 = {switch} is used to report whether the
switch for changing the power state of the stove has been turned. The
bridge rules in BRex3 are given by

next(setPower(on))← ex3::switch,not st:pw.

next(setPower(off))← ex3::switch, st:pw.

and react to switching the stove on or off: depending on the current
power state of the stove that is stored in a knowledge base associated
to Cst, whenever the switch is activated, the bridge rules derive an
update of the knowledge base where the power state is reversed.

2.2 Reacting to External Inputs - Semantics of
rMCSs

To define the semantics of rMCSs, we first focus on the static case
of a single time instant, and only subsequently introduce the corre-
sponding dynamic notions for reacting to inputs changing over time.

We start with the evaluation of bridge rules, for which we need to
know current beliefs and current external information. The former is
captured by the notion of a belief state denoted by a tuple of belief
sets – one for each context – similar as in previous work on multi-
context systems.

Definition 4 (Belief State) Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an
rMCS. Then, a belief state for M is a tuple B = 〈B1, . . . , Bn〉 such
that Bi ∈ BS i, for each i ∈ {1, . . . , n}. We use BelM to denote the
set of all beliefs states for M .

In addition, to also capture the current external information, we
introduce the notion of an input.

Definition 5 (Input) Let M = 〈C, 〈IL1, . . . , ILk〉,BR〉 be an
rMCS. Then an input for M is a tuple I = 〈I1, . . . , Ik〉 such that
Ii ⊆ ILi, i ∈ {1, . . . , k}. The set of all inputs for M is denoted by
InM .

We are now ready to define when literals (in bridge rule bodies)
are satisfied.

Definition 6 (Satisfaction of Literals) Let M = 〈C, IL,BR〉 be an
rMCS such that C = 〈C1, . . . ,Cn〉 and IL = 〈IL1, . . . , ILk〉.
Given an input I = 〈I1, . . . , Ik〉 for M and a belief state B =
〈B1, . . . , Bn〉 for M , we define the satisfaction of literals given I
and B as:

• 〈I,B〉 |= a` if a` is of the form c:b and b ∈ Bc;
• 〈I,B〉 |= a` if a` is of the form s::b and b ∈ Is;
• 〈I,B〉 |= not a` if 〈I,B〉 6|= a`.

Let r be a bridge rule for Ci over C and IL. Then

4 Throughout the paper we sometimes use labels (such as st in Cst) instead
of numerical indices in our examples.

• 〈I,B〉 |= bd(r) if 〈I,B〉 |= l for every l ∈ bd(r).

If 〈I,B〉 |= bd(r), we say that r is applicable under I and B. The op-
erations encoded in the heads of applicable bridge rules in an rMCS
determine which knowledge base updates should take place. We col-
lect them in two disjoint sets.

Definition 7 (Applicable Bridge Rules) Let M = 〈C, IL,BR〉 be
an rMCS such that C = 〈C1, . . . ,Cn〉 and BR = 〈BR1, . . . , BRn〉.
Given an input I forM and a belief state B forM , we define, for each
i ∈ {1, . . . , n}, the sets

• appnow
i (I,B) = {hd(r) | r ∈ BRi, 〈I,B〉 |= bd(r),hd(r) ∈

OP i};
• appnext

i (I,B) = {op | r ∈ BRi, 〈I,B〉 |= bd(r), hd(r) =
next(op)}.

Intuitively, the operations in appnow
i (I,B) are used for computing

temporary changes that influence the semantics of an rMCS for a
single point in time. The operations in appnext

i (I,B) on the other
hand are used for changing knowledge bases over time. They are not
used for computing the current semantics but are applied in the next
point in time depending on the current semantics. This continuous
change of knowledge bases over time is the reason why, unlike in
previous work on MCSs, we do not consider knowledge bases as
part of the contexts to which they are associated but store them in a
separate configuration structure defined next.

Definition 8 (Configuration of Knowledge Bases) Let
M = 〈C, IL,BR〉 be an rMCS such that C = 〈C1, . . . ,Cn〉. A con-
figuration of knowledge bases forM is a tuple KB = 〈kb1, . . . , kbn〉
such that kbi ∈ KB i, for each i ∈ {1, . . . , n}. We use ConM to
denote the set of all configurations of knowledge bases for M .

The semantics of an rMCS for a single time instant is given in
terms of its equilibria.

Definition 9 (Equilibrium) Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be
an rMCS, KB = 〈kb1, . . . , kbn〉 a configuration of knowledge bases
for M , and I an input for M . Then, a belief state B = 〈B1, . . . , Bn〉
for M is an equilibrium of M given KB and I if, for each i ∈
{1, . . . , n}, we have that

Bi ∈ acci(kb′), where kb′ = mngi(app
now
i (I,B), kbi).

Example 4 Consider rMCS Mex3 from Example 3 and the config-
uration KB = 〈kbst〉 of knowledge bases for Mex3 with kbst = ∅,
representing that the stove is turned off. Moreover, consider the in-
put I = 〈{switch}〉 for Mex3 and the belief state B = 〈∅〉 for
Mex3. As both bridge rules in BRex3 use the next operator, we
have appnow

st (I,B) = ∅ and consequently, following the defini-
tion of the management function mngst in Example 2, kbst re-
mains unchanged, i.e., mngst(app

now
st (I,B), kbst) = kbst. Thus,

accst(mngst(app
now
st (I,B), kbst)) = {∅}. It follows that B is an

equilibrium of Mex3 given KB and I.

Based on an equilibrium at the current time instant, we can com-
pute an updated configuration of knowledge bases using the update
function as introduced in the following.

Definition 10 (Update Function) Let M = 〈C, IL,BR〉 be an
rMCS such that C = 〈C1, . . . ,Cn〉, KB = 〈kb1, . . . , kbn〉 a
configuration of knowledge bases for M , I an input for M , and
B a belief state for M . Then, the update function for M is de-
fined as updM (KB, I,B) = 〈kb′1, . . . , kb′n〉, such that, for each
i ∈ {1 . . . , n}, kb′i = mngi(app

next
i (I,B), kbi).

With all this in place, we can finally show how an rMCS behaves
in the presence of external information that changes over time. For
this purpose, we assume that an rMCS receives data in a stream of
inputs, i.e., an input for each time instant, and we represent individual
time instants by natural numbers. These can be interpreted as logical
time instants that do not necessarily represent specific physical time
points. In particular, we do not assume that every pair of consecutive
natural numbers represents equidistant physical time spans.

Definition 11 (Input Stream) Let M = 〈C, IL,BR〉 be an rMCS
such that IL = 〈IL1, . . . , ILk〉. An input stream for M (until τ) is a
function I : [1..τ]→ InM where τ ∈ N ∪ {∞}.

We will conveniently omit the term “until τ” whenever the limit of
the stream is irrelevant. Conversely, we will provide an explicit τ ,
when we are only interested in the first τ time instants or when we
want to state that the input stream is infinite (in case τ =∞). Clearly,
an input stream for M until τ also fully determines an input stream
for M until τ ′ for every 1 ≤ τ ′ < τ .

For any stream, we commonly represent the functional notation by
a superscript, e.g., given an input stream I and t ∈ [1..τ], we will
use It to denote I(t), i.e., the input 〈I1, . . . , Ik〉 forM at time t. We
also term stream the restriction of an input stream I to a single input
language ILi, which can be understood as a function Ii : [1..τ] →
2ILi that is fully determined by I.

Note that It encapsulates (input) data for every input language of
M . Hence, we assume that, at every time instant, we have informa-
tion from every external source of the rMCS. This synchronous ap-
proach is required since the evaluation of a bridge rule may depend
on the availability of information from multiple streams. One possi-
bility for modeling external sources that do not continuously provide
information is setting Its to the empty set for representing a lack of
input from the source with language ILs at time t.

The semantics of an rMCS over time is given by its equilibria
streams for a given initial configuration of knowledge bases and an
input stream for the system.

Definition 12 (Equilibria Stream) Let M = 〈C, IL,BR〉 be an
rMCS, KB a configuration of knowledge bases for M , and I an in-
put stream for M until τ where τ ∈ N ∪ {∞}. Then, an equilibria
stream of M given KB and I is a function B : [1..τ]→ BelM such
that

• Bt is an equilibrium of M given KBt and It, where KBt is in-
ductively defined as

– KB1 = KB

– KBt+1 = updM (KBt, It,Bt).

We will also refer to the function KB : [1..τ] → ConM as the con-
figurations stream of M given KB, I, and B.

Note that the limit τ of an equilibria stream is aligned with that of
the given input stream. Following the definition, it is easy to see that
if we have an equilibria stream B of M given KB and I, then the
substream of B of size τ ′, with τ ′ ≤ τ , is an equilibria stream of
M given KB and I′, where I′ is the substream of I of size τ ′. This
implies that, conversely, each extension of the input stream can only
lead to equilibria streams that extend those obtained given the origi-
nal input stream.

Example 5 Reconsider rMCSMex3, KB, and B from Example 4, as
well as an input stream I until 3 with I1 = 〈{switch}〉, I2 = 〈∅〉,

and I3 = 〈{switch}〉. There is an equilibria stream B of Mex3

given KB and I. Note that the input I1 coincides with input I from
Example 4. As B is the only equilibrium of Mex3 given KB and I, we
have that B1 = B.

As we have appnext
st (I,B) = {setPower(on)}, the update func-

tion provides the following configuration of knowledge bases for time
instant 2 (with KB1 = KB):

KB2 = updMex3
(KB1, I1,B1) =

= 〈mngst(app
next
st (I,B), kb)〉 = 〈{pw}〉.

Thus, switching the power state at time 1 leads to an updated
knowledge base indicating that the stove is on at time 2. The table
in Fig. 1 summarizes the equilibria stream and the configurations
stream given KB and I. Note that, due to the choice of logic and
since all bridge rules use the next operator, equilibria necessarily
coincide with the corresponding knowledge base at each time step.

t KBt It Bt appnext
st (It,Bt)

1 〈∅〉 〈{switch}〉 〈∅〉 {setPower(on)}
2 〈{pw}〉 〈∅〉 〈{pw}〉 ∅
3 〈{pw}〉 〈{switch}〉 〈{pw}〉 {setPower(off)}

Figure 1: Streams and applicable operations for Mex3

3 Inconsistency Management
The occurrence of inconsistencies within frameworks that aim at in-
tegrating knowledge from different sources cannot be neglected, even
more so in dynamic settings where knowledge changes over time.
There are many reasons why rMCSs may fail to have an equilibria
stream. These include the absence of an acceptable belief set for one
of its contexts given its current knowledge base at some point in time,
some occurring conflict between the operations in the heads of bridge
rules, or simply because the input stream is such that the configura-
tion of the flow of information within the rMCS, namely its bridge
rules, prevent the existence of such an equilibria stream. In a real
world situation, an rMCS without an equilibria stream is essentially
useless. Not only can it not be used at the first time point equilibria
ceased to exist, but it also cannot recover, even if what caused the
problem was the particular input at that time point, which is bound
to subsequently change into some other input that would no longer
cause any trouble. This is so because an equilibria stream requires
the existence of an equilibrium at every time point.

In this section, we address the problem of inexistent equilibria
streams, also known as global inconsistency. We begin by defining a
notion of coherence associated with individual contexts which allows
us to first establish sufficient conditions for the existence of equilib-
ria streams, and then abstract away from problems due to specific
incoherent contexts and focus on those problems essentially caused
by the way the flow of information in rMCSs is organized through
its bridge rules. We introduce the notion of a repair, which modi-
fies an rMCS by changing its bridge rules at some particular point
in time in order to obtain some equilibria stream, which we dub re-
paired equilibria stream. We establish sufficient conditions for the
existence of repaired equilibria streams and briefly discuss different
possible strategies to define such repairs. However, repaired equilib-
ria streams may not always exist either, e.g., because some particular

context is incoherent. To deal with such situations, we relax the con-
cept of equilibria stream and introduce the notion of partial equilib-
ria stream, which essentially allows the non-existences of equilibria
at some time points. It turns out that partial equilibria streams always
exist thus solving the problem of global inconsistency for rMCSs.

In [12] the authors addressed the problem of global inconsistency
in the context of mMCSs. Just as we do here, they begin by establish-
ing sufficient conditions for the existence of equilibria. Then, they
define the notions of diagnosis and explanation, the former corre-
sponding to rules that need to be altered to restore consistency, and
the latter corresponding to combinations of rules that cause inconsis-
tency. These two notions turn out to be dual of each other, and some-
how correspond to our notion of repair, the main difference being
that, unlike in [12], we opt not to allow the (non-standard) strengthen-
ing of bridge-rule to restore consistency, and, of course, that fact that
our repairs need to take into account the dynamic nature of rMCSs.

We start by introducing two notions of global consistency differing
only on whether we consider a particular input stream or all possible
input streams.

Definition 13 LetM be an rMCS, KB a configuration of knowledge
bases for M , and I an input stream for M . Then, M is consistent
with respect to KB and I if there exists an equilibria stream of M
given KB and I. M is strongly consistent with respect to KB if, for
every input stream I for M , M is consistent with respect to KB and
I.

Obviously, for a fixed configuration of knowledge bases, strong
consistency implies consistency w.r.t. any input stream, but not vice-
versa.

Unfortunately, verifying strong consistency is in general highly
complex since it requires checking all possible equilibria streams.
Nevertheless, we can establish conditions that ensure that an rMCS
M is strongly consistent with respect to a given configuration of
knowledge bases KB, hence guaranteeing the existence of an equi-
libria stream independently of the input. It is based on two notions –
totally coherent contexts and acyclic rMCSs – that together are suffi-
cient to ensure (strong) consistency.

Total coherence imposes that each knowledge base of a context
always has at least one acceptable belief set.

Definition 14 A context Ci is totally coherent if acci(kb) 6= ∅, for
every kb ∈ KB i.

The second notion describes cycles between contexts which may
be a cause of inconsistency. Acyclic rMCSs are those whose bridge
rules have no cycles.

Definition 15 Given an rMCS M = 〈〈C1, . . . ,Cn〉, IL,BR〉, /M
is the binary relation over contexts of M such that (Ci,Cj) ∈ /M
if there is a bridge rule r ∈ BRi and j:b ∈ bd(r) for some b. If
(Ci,Cj) ∈ /M , also denoted by Ci /M Cj , we say that Ci depends
on Cj in M , dropping the reference to M whenever unambiguous.

Definition 16 An rMCS M is acyclic if the transitive closure of /M
is irreflexive.

We can show that these two conditions together are indeed suffi-
cient to ensure strong consistency.

Proposition 1 Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an acyclic
rMCS such that every Ci, 1 ≤ i ≤ n, is totally coherent, and KB a
configuration of knowledge bases for M . Then, M is strongly con-
sistent with respect to KB.

A similar property holds for consistent mMCSs, which indicates
that the extension to rMCSs as such does not decrease the likelihood
of existence of an equilibria stream. Nevertheless, these conditions
are rather restrictive since there are many useful cyclic rMCSs which
only under some particular configurations of knowledge bases and
input streams may have no equilibria streams.

To deal with these, and recover an equilibria stream, one possi-
bility is to repair the rMCSs by locally, and selectively, eliminating
some of its bridge rules. Towards introducing the notion of repair,
given an rMCS M = 〈〈C1, . . . ,Cn〉, IL,BR〉, we denote by brM
the set of all bridge rules of M , i.e., brM =

⋃
1≤i≤n BRi. More-

over, given a set R ⊆ brM , denote by M [R] the rMCS obtained
from M by restricting the bridge rules to those not in R.

Definition 17 (Repair) Let M = 〈C, IL,BR〉 be an rMCS, KB a
configuration of knowledge bases for M , and I an input stream for
M until τ where τ ∈ N ∪ {∞}. Then, a repair for M given KB and
I is a function R : [1..τ]→ 2brM such that there exists a function
B : [1..τ]→ BelM such that

• Bt is an equilibrium of M [Rt] given KBt and It, where KBt is
inductively defined as

– KB1 = KB

– KBt+1 = updM [Rt](KBt, It,Bt).

We refer to B as a repaired equilibria stream of M given KB, I and
R.

Note the generality of this notion, which considers to be a re-
pair essentially any sequence of bridge rules (defined by the repair
function R) that, if removed from the rMCS at their corresponding
time point, will allow for an equilibrium at that time point. This may
include repairs that unnecessarily eliminate some bridge rules, and
even the empty repair i.e. the repair R∅ such that Rt

∅ = ∅ for ev-
ery t, whenever M already has an equilibria stream given KB and I.
This ensures that the set of repaired equilibria streams properly ex-
tends the set of equilibria streams, since equilibria streams coincide
with repaired equilibria streams given the empty repair.

Proposition 2 Every equilibria stream of M given KB and I is a
repaired equilibria stream of M given KB, I and the empty repair
R∅.

It turns out that for rMCSs composed of totally coherent contexts,
repaired equilibria streams always exist.

Proposition 3 Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an rMCS such
that each Ci, i ∈ {1, . . . , n}, is totally coherent, KB a configuration
of knowledge bases for M , and I an input stream for M until τ .
Then, there exists R : [1..τ]→ 2brM and B : [1..τ]→ BelM such
that B is a repaired equilibria stream given KB, I andR.

Whenever repair operations are considered in the literature, e.g.,
in the context of databases [3], there is a special emphasis on seeking
repairs that are somehow minimal, the rational being that we want to
change things as little as possible to regain consistency. In the case
of repairs of rMCS, it is easy to establish an order relation between
them, based on a comparison of the bridge rules to be deleted at each
time point.

Definition 18 Let Ra and Rb be two repairs for some rMCS M
given a configuration of knowledge bases forM , KB and I, an input
stream for M until τ . We say that Ra ≤ Rb if Ri

a ⊆ Ri
b for every

i ≤ τ , and that Ra < Rb if Ra ≤ Rb and Ri
a ⊂ Ri

b for some
i ≤ τ .

This relation can be straightforwardly used to check whether a re-
pair is minimal, and we can restrict ourselves to adopting minimal re-
pairs. However, there may be good reasons to adopt non-minimal re-
pairs, e.g., so that they can be determined as we go, or so that deleted
bridge rules are not reinstated, etc. Even though investigating specific
types of repairs falls outside the scope of this paper, we nevertheless
present and briefly discuss some possibilities.

Definition 19 (Types of Repairs) LetR be a repair for some rMCS
M given KB and I. We say thatR is a:

Minimal Repair if there is no repair Ra for M given KB and I
such thatRa < R.

Global Repair ifRi = Rj for every i, j ≤ τ .
Minimal Global Repair ifR is global and there is no global repair
Ra for M given KB and I such thatRa < R.

Incremental Repair ifRi ⊆ Rj for every i ≤ j ≤ τ .
Minimally Incremental Repair ifR is incremental and there is no

incremental repair Ra and j ≤ τ such that Ri
a ⊂ Ri for every

i ≤ j.

Minimal repairs perhaps correspond to the ideal situation in the
sense that they never unnecessarily remove bridge rules. In some
circumstances, it may be the case that if a bridge rule is somehow
involved in some inconsistency, it should not be used at any time
point, leading to the notion of global repair. Given the set of all re-
pairs, checking which are global is also obviously less complex than
checking which are minimal. A further refinement – minimal global
repairs – would be to only consider repairs that are minimal among
the global ones, which would be much simpler to check than check-
ing whether it is simply minimal. Note that a minimal global repair
is not necessarily a minimal repair. One of the problems with these
types of repairs is that we can only globally check whether they are
of that type, i.e., we can only check once we know the entire in-
put stream I. This was not the case with plain repairs, as defined in
Def. 17, which could be checked as we go, i.e., we can determine
what bridge rules to include in the repair at a particular time point
by having access to the input stream I up to that time point only.
This is important so that rMCSs can be used to effectively react to
their environment. The last two types of repairs defined above allow
for just that. Incremental repairs essentially impose that removed
bridge rules cannot be reused in the future, i.e., that the set of re-
moved bridge rules monotonically grows with time, while minimally
incremental repairs further impose that only minimal sets of bridge
rules can be added at each time point. Other types of repairs could
be defined, e.g., by defining some priority relation between bridge
rules, some distance measure between subsets of bridge rules and
minimize it when considering the repair at consecutive time points,
among many other options, whose investigation we leave for future
work. Repairs could also be extended to allow for the strengthen-
ing of bridge rules, besides their elimination, generalizing ideas from
[12] and [8] where the extreme case of eliminating the entire body of
bridge rules as part of a repair is considered.

Despite the existence of repaired equilibria streams for large
classes of systems, two problems remain: first, computing a repair
may be excessively complex, and second, there remain situations
where no repaired equilibria stream exists, namely when the rMCS
contains contexts that are not totally coherent. The second issue
could be dealt with by ensuring that for each non-totally coherent
context there would be some bridge rule with a management opera-
tion in its head that would always restore consistency of the context,
and that such rule could always be activated through a repair (for

example, by adding a negated reserved atom to its body, and another
bridge rule with that atom in its head and an empty body, so that
removing this latter rule through a repair would activate the manage-
ment function and restore consistency of the context). But this would
require special care in the way the system is specified, and its analysis
would require a very complex analysis of the entire system including
the specific behavior of management functions. In practice, it would
be quite hard – close to impossible in general – to ensure the exis-
tence of repaired equilibria streams, and we would still be faced with
the first problem, that of the complexity of determining the repairs.

A solution to this problem is to relax the notion of equilibria
stream so that it does not require an equilibrium at every time point.
This way, if no equilibrium exists at some time point, the equilibria
stream would be undefined at that point, but possibly defined again in
subsequent time points. This leads to the following notion of partial
equilibria stream.

Definition 20 (Partial Equilibria Stream) Let M = 〈C, IL,BR〉
be an rMCS, KB a configuration of knowledge bases for M , and
I an input stream for M until τ where τ ∈ N ∪ {∞}. Then, a
partial equilibria stream of M given KB and I is a partial function
B : [1..τ] 9 BelM such that

• Bt is an equilibrium of M given KBt and It, where KBt is in-
ductively defined as

– KB1 = KB

– KBt+1 =

{
updM (KBt, It,Bt), if Bt is not undefined.
KBt, otherwise.

• or Bt is undefined.

As expected, this is a proper generalisation of the notion of equi-
libria stream:

Proposition 4 Every equilibria stream of M given KB and I is a
partial equilibria stream of M given KB and I

And it turns out that partial equilibria streams always exist.

Proposition 5 LetM be an rMCS, KB a configuration of knowledge
bases for M , and I an input stream for M until τ . Then, there exists
B : [1..τ] 9 BelM such that B is a partial equilibria stream given
KB and I.

One final word to note is that partial equilibria streams not only
allow us to deal with situations where equilibria do not exist at some
time instants, but they also open the ground to consider other kinds
of situations where we do not wish to consider equilibria at some
time point, for example because we were not able to compute them
on time, or simply because we do not wish to process the input at ev-
ery time point, e.g., whenever we just wish to sample the input with
a lower frequency than it is generated. If we wish to restrict that par-
tial equilibria streams only relax equilibria streams when necessary,
i.e., when equilibria do not exist at some time point, we can further
impose the following condition on Def. 20:

Bt is undefined ⇒ there is no equilibrium of M given KBt and It.

4 Conclusions
In this paper, we introduced reactive Multi-Context Systems (rMCSs),
a combination and unification of the two adaptations of multi-context

systems for dynamic environments in [9] and [24], which general-
izes and substantially improves on the presentation of the underlying
concepts of these earlier approaches. Building upon mMCSs, rMCSs
inherit their functionality for integrating heterogeneous knowledge
sources, admitting also relevant operations on knowledge bases. In
addition, rMCSs can handle continuous streams of input data. Equi-
libria remain the fundamental underlying semantic notion, but the
focus now lies on the dynamic evolution of the systems.

Since we cannot ignore the possibility that inconsistencies may oc-
cur, which result in the absence of equilibria at certain time points ul-
timately rendering the entire system useless, we addressed this prob-
lem first by showing sufficient conditions on the contexts and the
bridge rules that ensure the existence of an equilibria stream. In the
cases where these conditions are not met, we presented two possible
solutions, one following an approach based on repairs – essentially
the selective removal of bridge rules to regain an equilibria stream
– and a second by relaxing the notion of equilibria stream to ensure
that intermediate inconsistent states can be recovered from.

There is much more to be done with respect to rMCSs, some of
which we are already working on.

Nondeterminism is inherent to rMCSs due to, e.g., the flow of in-
formation between contexts established by bridge rules. This can be
overcome by introducing preferences on equilibria using, e.g., prefer-
ence functions as proposed in [14], or simply by preferring equilibria
that represent minimal change between states, as proposed in [25].
One might also adopt language constructs for expressing preferences
in ASP such as optimization statements [17] or weak constraints [11],
which essentially assign a quality measure to equilibria. One way of
avoiding nondeterminism is by applying an alternative, skeptical se-
mantics – the well-founded semantics – along the lines of what was
proposed in [28].

An alternative to deal with inconsistent states is to follow a para-
consistent approach, as proposed for hybrid knowledge bases in
[16, 26]. Also, just as with EVOLP [1] and explored in [23], we could
allow the bridge rules to change with time, strengthening the evolv-
ing and adaptation capabilities of rMCSs.

Finally, we need to compare our system with related work, in-
cluding two of the most relevant approaches w.r.t. stream reason-
ing, namely LARS (Logic-based framework for Analyzing Rea-
soning over Streams) [6] and STARQL [32]. Additionally, in [15]
the authors defined Asynchronous MCSs (aMCSs) a framework for
loosely coupling knowledge representation formalisms. Contrarily
to rMCSs, the semantics is not defined in terms of equilibria but
instead an asynchronous semantics is defined assuming that every
context delivers output whenever available. Establishing bridges be-
tween both systems would also shed new light into the synchroniza-
tion problems associated with combining dynamic knowledge bases.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their comments, which
helped improve this paper. R. Gonçalves, M. Knorr and J. Leite were
partially supported by FCT under strategic project NOVA LINCS
(PEst/UID/CEC/04516/2013). R. Gonçalves was partially supported
by FCT grant SFRH/BPD/100906/2014 and M. Knorr by FCT grant
SFRH/BPD/86970/2012. Moreover, G. Brewka, S. Ellmauthaler, and
J. Pührer were partially supported by the German Research Founda-
tion (DFG) under grants BR-1817/7-1 and FOR 1513.

References
[1] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luı́s Mo-

niz Pereira, ‘Evolving logic programs’, in Procs. of JELIA, eds., Sergio
Flesca, Sergio Greco, Nicola Leone, and Giovambattista Ianni, volume
2424 of LNCS, pp. 50–61. Springer, (2002).

[2] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Stream reasoning
and complex event processing in ETALIS’, Semantic Web, 3(4), 397–
407, (2012).

[3] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki, ‘Consis-
tent query answers in inconsistent databases’, in Procs. of PODS, eds.,
Victor Vianu and Christos H. Papadimitriou, pp. 68–79. ACM Press,
(1999).

[4] The Description Logic Handbook: Theory, Implementation, and Ap-
plications, eds., Franz Baader, Diego Calvanese, Deborah L. McGuin-
ness, Daniele Nardi, and Peter F. Patel-Schneider, Cambridge Univer-
sity Press, 2nd edn., 2007.

[5] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus, ‘C-
SPARQL: a continuous query language for RDF data streams’, Int. J.
Semantic Computing, 4(1), 3–25, (2010).

[6] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink,
‘LARS: A logic-based framework for analyzing reasoning over
streams’, in Procs. of AAAI, eds., Blai Bonet and Sven Koenig, pp.
1431–1438. AAAI Press, (2015).

[7] Gerhard Brewka and Thomas Eiter, ‘Equilibria in heterogeneous non-
monotonic multi-context systems’, in Procs. of AAAI, pp. 385–390.
AAAI Press, (2007).

[8] Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl,
‘Managed multi-context systems’, in Procs. of IJCAI, ed., Toby Walsh,
pp. 786–791. IJCAI/AAAI, (2011).

[9] Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer, ‘Multi-context
systems for reactive reasoning in dynamic environments’, in Procs. of
ECAI, pp. 159–164, (2014).

[10] Gerhard Brewka, Floris Roelofsen, and Luciano Serafini, ‘Contextual
default reasoning’, in Procs. of IJCAI, ed., Manuela M. Veloso, pp.
268–273, (2007).

[11] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo, ‘Strong and
weak constraints in disjunctive datalog’, in Procs. of LPNMR, eds.,
Jürgen Dix, Ulrich Furbach, and Anil Nerode, volume 1265 of LNCS,
pp. 2–17. Springer, (1997).

[12] Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl,
‘Finding explanations of inconsistency in multi-context systems’, Artif.
Intell., 216, 233–274, (2014).

[13] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman
Schindlauer, and Hans Tompits, ‘Combining answer set programming
with description logics for the semantic web’, Artif. Intell., 172(12-13),
1495–1539, (2008).

[14] Stefan Ellmauthaler, ‘Generalizing multi-context systems for reactive
stream reasoning applications’, in Procs. of ICCSW, eds., Andrew V.
Jones and Nicholas Ng, volume 35 of OASICS, pp. 19–26. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, (2013).

[15] Stefan Ellmauthaler and Jörg Pührer, ‘Asynchronous multi-context sys-
tems’, in Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on
the Occasion of His 60th Birthday, eds., Thomas Eiter, Hannes Strass,
Miroslaw Truszczynski, and Stefan Woltran, volume 9060 of LNCS, pp.
141–156. Springer, (2015).

[16] Michael Fink, ‘Paraconsistent hybrid theories’, in Procs. of KR, eds.,
Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith. AAAI Press,
(2012).

[17] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, A users guide to gringo, clasp, clingo, and iclingo, Potassco
Team, 2010.

[18] Martin Gebser, Torsten Grote, Roland Kaminski, Philipp Obermeier,
Orkunt Sabuncu, and Torsten Schaub, ‘Stream reasoning with answer
set programming: Preliminary report’, in Procs. of KR, eds., Gerhard
Brewka, Thomas Eiter, and Sheila A. McIlraith, pp. 613–617. AAAI
Press, (2012).

[19] Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub,
‘Reactive answer set programming’, in Procs. of LPNMR, eds., James P.
Delgrande and Wolfgang Faber, volume 6645 of LNCS, pp. 54–66.
Springer, (2011).

[20] Michael Gelfond and Vladimir Lifschitz, ‘Classical negation in logic
programs and disjunctive databases’, New Generation Comput., 9(3/4),
365–386, (1991).

[21] Fausto Giunchiglia, ‘Contextual reasoning’, Epistemologia, XVI, 345–
364, (1993).

[22] Fausto Giunchiglia and Luciano Serafini, ‘Multilanguage hierarchical
logics or: How we can do without modal logics’, Artif. Intell., 65(1),
29–70, (1994).

[23] Ricardo Gonçalves, Matthias Knorr, and João Leite, ‘Evolving bridge
rules in evolving multi-context systems’, in Procs. of CLIMA, eds., Nils
Bulling, Leendert W. N. van der Torre, Serena Villata, Wojtek Jamroga,
and Wamberto Weber Vasconcelos, volume 8624 of LNCS, pp. 52–69.
Springer, (2014).

[24] Ricardo Gonçalves, Matthias Knorr, and João Leite, ‘Evolving multi-
context systems’, in Procs. of ECAI, pp. 375–380, (2014).

[25] Ricardo Gonçalves, Matthias Knorr, and João Leite, ‘Minimal change
in evolving multi-context systems’, in Procs. of EPIA, eds., Fran-
cisco C. Pereira, Penousal Machado, Ernesto Costa, and Amı́lcar Car-
doso, volume 9273 of LNCS, pp. 611–623. Springer, (2015).

[26] Tobias Kaminski, Matthias Knorr, and João Leite, ‘Efficient paracon-
sistent reasoning with ontologies and rules’, in Procs. of IJCAI, eds.,
Qiang Yang and Michael Wooldridge, pp. 3098–3105. AAAI Press,
(2015).

[27] Matthias Knorr, José Júlio Alferes, and Pascal Hitzler, ‘Local closed
world reasoning with description logics under the well-founded seman-
tics’, Artif. Intell., 175(9-10), 1528–1554, (2011).

[28] Matthias Knorr, Ricardo Gonçalves, and João Leite, ‘On efficient evolv-
ing multi-context systems’, in Procs. of PRICAI, eds., Duc Nghia Pham
and Seong-Bae Park, volume 8862 of LNCS, pp. 284–296. Springer,
(2014).

[29] Freddy Lécué and Jeff Z. Pan, ‘Predicting knowledge in an ontology
stream’, in Procs. of IJCAI, ed., Francesca Rossi, pp. 2662–2669. IJ-
CAI/AAAI, (2013).

[30] John McCarthy, ‘Generality in artificial intelligence’, Commun. ACM,
30(12), 1029–1035, (1987).

[31] Boris Motik and Riccardo Rosati, ‘Reconciling description logics and
rules’, Journal of the ACM, 57(5), 93–154, (2010).

[32] Özgür L. Özçep, Ralf Möller, Christian Neuenstadt, Dmitriy Zhelez-
nayakow, Evgeny Kharlamov, Ian Horrocks, Thomas Hubauer, and
Mikhail Roshchin, ‘D5.1 Executive Summary: A semantics for tempo-
ral and stream-based query answering in an OBDA context’, Technical
report, Optique FP7-ICT-2011-8-318338 Project, (2013).

[33] Floris Roelofsen and Luciano Serafini, ‘Minimal and absent informa-
tion in contexts’, in Procs. of IJCAI, eds., Leslie Pack Kaelbling and
Alessandro Saffiotti, pp. 558–563. Professional Book Center, (2005).

