
Real-Time Recommendations in a Multi-Domain
Environment

Emanuel Lacic
KTI

Graz University of Technology
Graz, Austria

elacic@know-center.at

ABSTRACT
Recommender systems are acknowledged as an essential instru-
ment to support users in finding relevant information. However,
adapting to different domain specific data models is a challenge,
which many recommender frameworks neglect. Moreover, the ad-
vent of the big data era has posed the need for high scalability and
real-time processing of frequent data updates, and thus, has brought
new challenges for the recommender systems’ research community.
In this work, we show how different item, social and location data
features can be utilized and supported to provide real-time recom-
mendations. We further show how to process data updates online
and capture user’s real-time interest without recalculating recom-
mendations. The presented recommendation framework provides
a scalable and customizable architecture suited for providing real-
time recommendations to multiple domains. We further investigate
the impact of an increasing request load and show how the runtime
can be decreased by scaling the framework.

Keywords
scalability; real-time recommendations; Apache Solr; multi-domain;

1. MOTIVATION
In the past decade, there has been a vast amount of research in

the field of recommender systems. Most of that work focuses on
developing novel approaches [22] and improving accuracy [16].
Thus, many well known methods are available, such as Content-
Based Filtering [15], Collaborative Filtering [21] or Matrix Fac-
torization [13], all having their unique strengths and weaknesses.
These approaches are traditionally adapted and applied with the fo-
cus on a single domain model (e.g., marketplace, hotel, conference,
etc.). However, to support a diverse set of domains is becoming an
important issue for modern recommender systems [12].

In most domains, the prediction task is usually viewed as a two-
dimensional problem which one needs to solve (e.g., utilizing user-
item interactions). But nowadays it is not enough to support mul-
tiple domains on the basis of only one common data feature. With
the arrival of the big data era, recommender systems are expected

to analyze a lot of data, to support various data types and to han-
dle streams of new data (i.e., volume, variety and velocity defin-
ing the Big Data problem). In such large-scale settings, traditional
recommender systems usually analyze the data offline and update
the generated model in regular time intervals. However, in many
domains, choices made by users depend on factors which are sus-
ceptible to change anytime. Lets take a shopping mall for example,
where a user triggers frequent indoor location updates via a smart-
phone application while moving through the mall. Employing an
offline model update strategy that lasts hours or days may poten-
tially miss the current location context of the user and fail to pro-
vide the right recommendations to match user’s real-time demand.
As a consequence, being able to capture user’s real-time interests
is gaining momentum and is currently of high demand [5, 16, 4].

2. BACKGROUND
Most existing work, which focuses on real-time recommenda-

tions (e.g., Netflix [1], Microsoft [17], among others, e.g., [3, 23]),
use offline batch processing frameworks like Apache Hadoop, Ma-
hout or Spark. Other approaches use a relational database system
to provide near real-time recommendations by querying the recom-
mendations from a generated data model [19]. However, to capture
user’s real-time interest, streaming data needs to be processed on-
line, thus needing to tackle the conflicting accuracy, real-time and
big data requirements. For example, recent research from Huang
et al. [5] and Chandramouli et al. [4] goes into that direction by
utilizing a scalable Item-based Collaborative Filtering approach to
provide real-time recommendations.

But, by focusing on the common user-item interactions, addi-
tional contextual information is usually neglected. As such, the
research community has also looked into exploiting social or lo-
cation data (e.g., [2, 13]). In doing so, personalized recommenda-
tions using Matrix Factorization dominate the literature. Jamali et
al. [6] predicted ratings using a Matrix Factorization model that
incorporates social relations. Ma et al. [13] improved both Mean
Absolute Error and Root-Mean-Square Error by incorporating so-
cial information, using social regularization in two Matrix Factor-
ization models. In general, Matrix Factorization based approaches
need to be retrained, when the data changes. This tends to be time-
consuming, especially in case of frequent data updates where it fails
to capture user’s real-time demand. Furthermore, empirical studies
showed that a large number of factors are needed so that Matrix
Factorization based approaches can deal with sparse data [18].

3. APPROACH AND METHODS
In this work, we are interested in finding out to what extent dif-

ferent data features (i.e., item, social or location) can be utilized
or even be combined for real-time recommendation. To perform



16 32 64 128
Threadpool size

0

200

400

600

800

1000

Ti
m

e
[m

s]

MP
CFR
CFCL
CFLN
Hyb

(a) 1 processing node

16 32 64 128
Threadpool size

0

200

400

600

800

1000

Ti
m

e
[m

s]

MP
CFR
CFCL
CFLN
Hyb

(b) 2 processing nodes

16 32 64 128
Threadpool size

0

200

400

600

800

1000

Ti
m

e
[m

s]

MP
CFR
CFCL
CFLN
Hyb

(c) 4 processing nodes

Figure 1: Scalability experiment with five recommendation approaches (having the hybrid run the four approaches in parallel), mak-
ing 325,005 independent recommendation requests to process. The exponentially increasing request loads (simulated by threadpools
that continuously fire requests) are handled in three scenarios: (a) localy with only 1 processing node being deployed, (b) scaling the
framework with 2 distributed nodes, and (c) having 4 distributed nodes to process the incoming recommendation requests.

this task, we rely on data crawled from the virtual world of Sec-
ondLife 1 and perform an extensive evaluation in terms of nDCG
and User Coverage [7] of the different content- and network-based
data features. The main reason for choosing SecondLife data over
other sources are manifold, but mainly due to the fact that currently
there are no other datasets available that comprise extensive item,
social and location data of users at the same time. Building up on
these results, the aim is to provide a general framework which can
(1) process streaming data online while providing real-time recom-
mendations, (2) support a multi-domain environment and the cor-
responding data features, and (3) provide a scalable architecture to
cope with increasing request loads.

Recently, search engines have gained attention in the context of
recommender systems [14]. While the results are promising, they
do not provide explanations and evaluations of how such an ap-
proach would perform in a big data, nor in a real-time multi-domain
environment. As such, the aim of this work is to proof the bene-
fits of using search engines to support different data features while
providing real-time recommendations. One issue, however, is that
in this way scalability problems are only tackled on the data side of
the domain. In order to truly be able to support multiple domains,
a recommender framework is needed which can additionally (1) be
customized with domain specific models and approaches, and (2)
cope with an increasing request load a domain could experience.
Using the already mentioned SecondLife dataset, but also a much
larger Foursquare dataset [20], we simulate an increasing recom-
mendation request load which such a framework needs to handle.

4. OUTCOMES
In [7] we showed to what extent different data features (derived

from item, social and location data) can be utilized for recom-
mending items, low-level and top-level categories. In our results,
we showed that approaches which utilize social data features can
outperform the ones based on item or location features in case of
recommending items. In case of recommending categories, these
differences get substantially smaller and even change in favor to
item and location data. Moreover, our results suggests that com-
bining the data sources should result into more robust recommen-
dations, especially in cases of recommendation tasks on different
levels of specialization (i.e., categories). In a similar fashion, we
also showed in [10] that location data can especially be helpful in
tackling cold-start users which have no interaction data whatsoever.

In [8], we proofed the benefits of using the search engine Apache
Solr 2 to provide real-time recommendations. We showed that a re-

1http://secondlife.com/
2http://lucene.apache.org/solr/

commender system is able to process data updates in real-time and
immediately consider these updates (i.e., user’s real-time interest)
in the recommendation process without the need for recalculations.
In [9] we also presented the first open-source recommender frame-
work based on the Apache Solr search engine. But as previously
mentioned, we considered the scalability issues only on the data
side of a domain, and not within the framework (e.g., handling an
increased request rate). For that purpose, we recently presented
ScaR [11]. ScaR adopts the microservices architecture and was
built with the focus on providing a scalable and customizable ar-
chitecture suited for providing real-time recommendations to mul-
tiple domains. Different domains can run (and scale) the frame-
work in isolated environments. The domain specific data features
and recommendation approaches can be dynamically customized
using a dedicated microservice which synchronizes the change to
all domain-relevant nodes.

To demonstrate ScaR’s scalability performance, Figure 1 reports
a runtime experiment on the Foursquare dataset with an increas-
ing number of request loads. As described in [11], we requested
five different recommendation approaches for 65,001 users, making
it 325,005 independent recommendations requests to process. We
performed this experiment by simulating an increasing request rate
(load) to the system, having 16, 32, 64 and 128 threads simultane-
ously requesting recommendations. These experiments were then
repeated three times: first having 1 local processing node and then,
scaling it to 2 and 4 distributed nodes. As seen, the local deploy-
ment has an exponential increase in the runtime as the load grows.
Such behaviour is somewhat expected as the number of incoming
recommendation requests cause a load spike and the processing
threads consequently cause to much context switching. But, as we
deploy additional nodes, we can see a significant decrease in the
growth of the mean processing runtime when compared to the lo-
cal deployment, which is crucial in cases when a maximal runtime
needs to be guarantied.

5. PLAN AND TIMELINE
With respect to the future research workplan, the aim is to fur-

ther look into feasible strategies to balance the trade-off between
accuracy and runtime in a multi-domain environment. For a thesis
conclusion, the idea is to find out how recent the utilized history
data and the candidate recommendations need to be (i.e., by con-
sidering the exact time or a sliding window approach) in order to
even better recommend user’s real-time interest. This would not
only lead to better accuracy but also to a better performance, as
less data will need to be processed.



6. REFERENCES
[1] X. Amatriain. Big & personal: Data and models behind

netflix recommendations. In Proc. of BigMine ’13.
[2] K. Bischoff. We love rock ’n’ roll: Analyzing and predicting

friendship links in last.fm. In Proceedings of the 4th Annual
ACM Web Science Conference, WebSci ’12, pages 47–56.
ACM, 2012.

[3] S. Chan, T. Stone, K. P. Szeto, and K. H. Chan. Predictionio:
a distributed machine learning server for practical software
development. In Proc. of CIKM ’13.

[4] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F.
Mokbel. Streamrec: A real-time recommender system. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’11, pages
1243–1246, 2011.

[5] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec:
Real-time stream recommendation in practice. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
227–238, 2015.

[6] M. Jamali and M. Ester. A matrix factorization technique
with trust propagation for recommendation in social
networks. In Proceedings of the Fourth ACM Conference on
Recommender Systems, pages 135–142. ACM, 2010.

[7] E. Lacic, D. Kowald, L. Eberhard, C. Trattner, D. Parra, and
L. Marinho. Utilizing online social network and
location-based data to recommend products and categories in
online marketplaces. In Mining, Modeling, and
Recommending ’Things’ in Social Media, pages 96–115.
Springer, 2015.

[8] E. Lacic, D. Kowald, D. Parra, M. Kahr, and C. Trattner.
Towards a scalable social recommender engine for online
marketplaces: The case of apache solr. In Proceedings of the
Companion Publication of the 23rd International Conference
on World Wide Web Companion, WWW Companion ’14,
pages 817–822. International World Wide Web Conferences
Steering Committee, 2014.

[9] E. Lacic, D. Kowald, and C. Trattner. Socrecm: A scalable
social recommender engine for online marketplaces. In
Proceedings of the 25th ACM Conference on Hypertext and
Social Media, HT ’14, pages 308–310, 2014.

[10] E. Lacic, D. Kowald, M. Traub, G. Luzhnica, J. Simon, and
E. Lex. Tackling cold-start users in recommender systems
with indoor positioning systems.

[11] E. Lacic, M. Traub, D. Kowald, and E. Lex. Scar: Towards a
real-time recommender framework following the
microservices architecture.

[12] Q. Liu and D. R. Karger. Kibitz: End-to-end
recommendation system builder. In Proceedings of the 9th
ACM Conference on Recommender Systems. ACM, 2015.

[13] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. In
Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM ’11, pages 287–296.
ACM, 2011.

[14] D. Parra, P. Brusilovsky, and C. Trattner. User controllability
in an hybrid talk recommender system. In Proceedings of the
ACM 2014 International Conference on Intelligent User
Interfaces, IUI ’14, pages 305–308. ACM, 2014.

[15] M. J. Pazzani and D. Billsus. Content-based recommendation
systems. In The adaptive web, pages 325–341. Springer,
2007.

[16] C. Rana and S. K. Jain. A study of the dynamic features of
recommender systems. Artificial Intelligence Review,
43(1):141–153, 2015.

[17] R. Ronen, N. Koenigstein, E. Ziklik, M. Sitruk, R. Yaari, and
N. Haiby-Weiss. Sage: Recommender engine as a cloud
service. In Proceedings of the 7th ACM Conference on
Recommender Systems, RecSys ’13, pages 475–476, 2013.

[18] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In
Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 880–887. ACM, 2008.

[19] M. Sarwat, J. Avery, and M. F. Mokbel. Recdb in action:
Recommendation made easy in relational databases. Proc.
VLDB Endow., 6(12):1242–1245, Aug. 2013.

[20] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel.
Lars*: An efficient and scalable location-aware
recommender system. IEEE Trans. on Knowl. and Data
Eng., 26(6):1384–1399, June 2014.

[21] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. The
adaptive web. chapter Collaborative Filtering Recommender
Systems, pages 291–324. Springer-Verlag, 2007.

[22] G. Shani and A. Gunawardana. Evaluating recommendation
systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 257–297.
Springer US, 2011.

[23] S. G. Walunj and K. Sadafale. An online recommendation
system for e-commerce based on apache mahout framework.
In Proceedings of the 2013 annual conference on Computers
and people research, pages 153–158. ACM, 2013.


