Proceedings of the 10th International Conference of Programming UkrPROG’2016 (Kyiv, Ukraine)
UDC 004.932

APPLICATION OF DEEP LEARNING AND COMPUTER
VISION FRAMEWORKS FOR SOLVING VIDEO CONTEXT
PREDICTION PROBLEM

D. Voloshyn

Authors describe an application for solving video context detection problem. Application architecture use state-of-the-art deap learning
TensorFlow framework together with the computer vision library OpenCV in isolated agent environment. The experimental results are
shown to demonstrate the effectiveness of developed product.

Key words: deep learning, tensorflow, computer vision, video context prediction.

VY poGoTi ommcaHO NPOrpaMHUM NPOLYKT I BHPIMICHHS 3a4adi IPOTHO3YBAaHHS 3MICTY BiJ€ONOTOKY. APpXITEKTypa pO3pOOKH
BHUKOPHCTOBYE iHQPACTPyKTypy HporpaMHux pimenb TensorFlow st rimOMHHOTO HaBYaHHS pa3oM 3 0i0II0TEKOI0 KOMII'IOTEPHOTO 30pY
OpenCV B i30/IbOBaHOMY areHTHOMY cepefoBHUII. HaBeneHI eKCIEpHMEHTANbHI pPe3ylbTaTH, SIKi JEMOHCTPYIOTH e(EeKTHBHICTH
PO3pOOIIEHOT0 IIPOrPaMHOTO 3a0€3ITeUEHHS.

KirouoBi cioBa: rmuOuHHE CTPYKTypHE HaB4aHHS, tensorflow, KoM I0TepHUiA 3ip, MPOrHO3yBaHHS 3MICTY BiJICONIOTOKY.

B pabore omucano nporpaMMHBIN IPOIYKT UL PEMICHUS 3aladl IPOTHO3HPOBAHUS COAEPKAHUSI BUACOIOTOKA. APXUTEKTYpa IPUIOKEHUS
HCTIONB3YeT HH(PACTPYKTypy HporpaMMHBIX perieHuil TensorFlow mist riryOuHHOTO 00y4eHHsI BMecTe ¢ OMOIMOTEKOH KOMITBIOTEPHOIO
spernss OpenCV B H30JIMPOBAHHOM areHTHOM OKDY)XKCHHH. [IpHBEJEHBI SKCICPUMCHTAIBHBIC PE3y/IbTaThl KOTOPHIE JEMOHCTPHPYIOT
9 HEeKTUBHOCTH IPOrpaMMHEIX Pa3paboTOK.

Kirouessle cioBa: rimyonaHOE 00ydeHue, tensorflow, KOMIIBIOTEpPHOE 3pEeHNUE, TPOTHO3UPOBAHNE COJIEPIKAHNS BHIEONIOTOKA.

Introduction

Computer vision is a rapidly growing field of science aimed to analyse and understand images and video streams
at a high level. Its objective is to determine the structure and type of the object in the front of a camera and use that
understanding to control a computer system, or to provide people with information about the object. Generally, video
context prediction problem is used to determine or predict the presence of object or entity, for example a person or car,
in the video stream given some prior knowledge about video's nature. Application areas for computer-vision technology
include military intelligence, video surveillance, movie production, Web search, medicine, augmented reality gaming,
processing videos from unmanned aerial vehicles, and many more.

As a great theoretical research is done in this area, especially with a lot of works in deep learning, it still has a
limited amount of practical application because of computational power and amount of training data required. This
implies a strong restriction on the class of problems that could be approached. Therefore, there is a room for
experiments with different technology stacks that will turn theory into practice. A true result can be achieved only by
using results and tools from different fields.

In this paper we narrow the compare vision domain to predicting context of video input on frames where human
faces are present. This restriction is imposed as predicting the context of the all frames on the video is very
computationally expensive, and from the empirical experiments usually frames with humans give a fair estimate of the
context of the whole video. The main goal of our application is to use the state of the art deep learning algorithms to
predict the context of the video and classify video content based on that.

At the core of our application we use — TensorFlow framework. TensorFlow [1], developed by Google Brain
team, is an interface for expressing machine learning algorithms and an implementation to execute them. The
TensorFlow API is used to describe a dataflow-like model, and the implementation then maps those models onto the
underlying machine hardware. Realised in 2016, Tensorflow express various types of parallelism by replicating the
dataflow model across multiple machines and running them in parallel.

For processing video and using it as a training data we use OpenCV [2] — an open source library for video and
image analysis, originally introduced in 2000 by Intel. Since then, a number of programmers have contributed to the
most recent library developments. The latest version — OpenCV 3 was realised in the end of 2016 the library has >2500
optimised algorithms.

As mentioned above we filter frames on which we predict context by the presence a human face there. Face
Detection is done using Haar feature-based cascade classifiers [3]. It has proven to be one of the quickest face detection
algorithms. This is a machine learning based approach where a cascade function is trained from a lot of positive and
negative images. It is then used to detect objects in other images. OpenCV library uses Haar classifiers with Adaboost
algorithm for best feature detection.

To achieve architectural scalability and isolation we use prebuilt Docker [4] image. Developed software could
be run on general purpose machines, or as hardware in specialised video processing units.

Application architecture
Basic workflow of our application architecture consists of TensorFlow framework which operates on the
graph of operations. Nodes/vertices in the graph represent operations (i. ., machine learning functions, mathematical

164

Proceedings of the 10th International Conference of Programming UkrPROG’2016 (Kyiv, Ukraine)

operations), and the edges represent the multidimensional data arrays also known as tensors communicated between
the nodes. Special edges, called control dependencies, can also exist in the graph and denote that the source node
must finish executing before the destination node starts executing. Should be noticed that Tensorflow operates in a
way when developer first design algorithm flow and computation architecture and after that framework itself runs the
code and optimises the flow. Nodes are assigned to computational devices and execute asynchronously and in
parallel once all the tensors on their incoming edges becomes available. Our application uses Python implementation
of Tensorflow. Despite of the fact it is slower then speed-optimised C option, but we are able to use fundamental
Python package for scientific computing Numpy and Scikit-learn — library for machine learning and data mining.
Therefore, the whole project is a standalone Python application, that run in Docker container with all required
packages and libraries. To ensure images/video output we connect to the running application using VNC technology.
Initial video processing and extract, transform, load operations are done using native methods of the OpenCV
library. At data processing step we also use few filters to diminish resolutions of input videos to prevent processing
resolution higher then required.

Input Video
Stream

|

Haar cascade face
detection[OpenCV]

Processing unit
ImageNet[Tensarflow]

Video Ontology

Input Video
Training Data

Processing unit
ImageNet Tensorflow]

/

Classifier

Input Context —» Word2Vec augmentation

Picture 1. Application architecture

At a first step, we analyse the training set of the videos and label each frame with a set of labels, ordered by their
probability. For labelling we use canonical ImageNet [5] deep neural network. Doing that, frame by frame, we obtain a
sequence of labels with form “sentences” in natural language. We simply concatenate lists of the labels between frames.
In the end, we get a corpus of labels in natural ordering, based on the ImageNet confidence about the video scene. We
screen the input video stream with simple Haar filter to detect faces. On each frame where the faces are detected we run
ImageNet network again and detect a set of objects’ labels predicted to be present on the frame together with their
probabilities.

165

Proceedings of the 10th International Conference of Programming UkrPROG’2016 (Kyiv, Ukraine)

Broba hlllllp:.‘. A = rifle

Probabiity: 0.080 = ansault rifle, assaull gun
Probnbllity: 0.0 = gannon

Pra Hity: 0. 2 - television, television system
Probabllity: 0.029089 - stage

Picture 2. Result of face detection and context classification filters

TEMELNA A Ak

Picture 3. Video frames example - https://www.youtube.com/watch?v=Sr32W9IqPuo

Table 1. Video context prediction

Frames 0 - 20 Frames 20 - 30 Frames 40 - 50
‘tank’, ' army tank', ' armored combat | ‘jeep’, ' landrover', 'tow truck’, ' tow | ‘amphibian’, ' amphibious vehicle',
vehicle', ' armoured combat vehicle', | car',' wrecker', 'garbage truck’, ' 'fire engine', ' fire truck’, 'oxcart’,
'cannon’, 'torch', 'amphibian’, ' dustcart', 'half track’, 'ambulance', ", | 'jeep', ' landrover', 'horse cart', '
amphibious vehicle', 'projectile’, ' 'tank’, ' army tank', ' armored combat | horse-cart', ", 'tank’, ' army tank’, '
missile', ", 'half track’, 'projectile’, ' vehicle', ' armoured combat vehicle', | armored combat vehicle', ' armoured
missile', Tumbermill’, ' sawmill', 'amphibian', ' amphibious vehicle', combat vehicle', 'half track’, 'military
'chain saw', ' chainsaw', 'amphibian', ' | 'bulletproof vest', 'military uniform', | uniform', 'golfcart', ' golf cart',
amphibious vehicle', 'missile', 'crane', | 'ambulance’, 'warplane', ' military 'cannon’, 'steam locomotive',
'missile’ plane', 'wing', 'kite', 'pelican’, ‘cannon', 'harvester', ' reaper’,
‘airliner', 'parachute’, ' chute', ‘warplane', ' military plane',
'projectile’, ' missile' 'projectile’, ' missile', 'missile’, 'wing',

‘aircraft carrier', ' carrier', ' flattop', '
attack aircraft carrier', 'bow’, 'walking
stick', ' walkingstick', ' stick insect',
'long-horned beetle', ' longicorn', '
longicorn beetle', 'matchstick’,
'drumstick’, 'wall clock’, 'nail',
'folding chair'

166

Proceedings of the 10th International Conference of Programming UkrPROG’2016 (Kyiv, Ukraine)

For each label we form a kernel of other labels close to through Word2Vec framework [6], using stochastic
samples and pruning. After that, we get an augmented set of objects detected and predicted to be on the scene by
expansion with k-nearest neighbours for each word. Lets L denote a set of labels for each frame and F will denote
frames. Recurrent formula will be the following:

Ei =L | JIF Y B}
To measure a distance between two neighbouring labels we use a cosine distance:

where vectors A and B represent the vectors of labels in the Word2Vec space. If the similarity distance is greater then
the threshold — we add a label to our set.

To predict the most probable objects not detected on the frame or that will appear on the next frames, we use
TensorFlow graph model for the Word2Vec. The Word2Vec tool has two models: Skip-gram and continuous bag of
words (CBOW). Given a window size of number of words around a word, the skip-gram model predicts the

neighbouring words given the current word. In contrast, the CBOW model predicts the current word, given the
neighbouring words in the window.

Mean
qradient.. Gradient gracient
T embeddin Varavie
random_u [Wariable | gradient Variable GradientDescent
_— Square Varishie
range N
stant O g " div
delta O gradie
T Gradient
Repk runcte | Variable_1 | roroms Varisdle
j S —— gradient Variable
vanane gradients Grachent
Mean
Restape
Reshape T Graient_ Tmore
shape O gradient, Variable_2 | nce_loss
- gradient.
MatMul
radient... 2
2 random_uniform Variabie
ones
Const O gradient
truncated_normal Varigble
pack
walues_1 O
Squeere
Slice Mathul_1
begin O -
size O
Shiape embedding_lookup_1
Carst O
div
sampled_losses gradient.. Viariable
Sqrt
Variabie..
Variable.. nce_lo S5 gradient
Placeholder_1 ernbedding_lookup Sum
Varlable gradient reductio... O
Placeholder Square
gradient... Wariable

Picture 4. Word2Vec TensorFlow graph example

Performance considerations

Video processing can be very expensive in terms of CPU power. In our case, computer-vision tasks often
contain subtasks that can be run faster on special-purpose hardware architectures than on the CPU, while other

167

Proceedings of the 10th International Conference of Programming UkrPROG’2016 (Kyiv, Ukraine)

subtasks are computed on the CPU. The GPU (graphics processing unit), for example, is an accelerator that is
available not only on desktop computers, but also on mobile devices such as smart phones and tablets. Fortunately,
TensorFlow has an built-in ability to use GPU units along with CPU which solves a problem of utilising machine
resources in the most efficient way. In real world applications it is also much more efficient to distribute execution
not only on GPU of a single machine but rather on a cluster of machines. To do that we use container virtualisation
through Docker technology.

Container can be considered as a lightweight equivalent of a virtual machine. In the core of DockerLinux
Containers there is an LXC, a user-space control package for Linux Containers. LXC uses kernel-level namespaces to
isolate the container from the host machine. The user namespace separates the container's and the host's user database,
thus ensuring that the container's root user does not have root privileges on the host. The process namespace is
responsible for displaying and managing only processes running in the container, not the host. And, the network
namespace provides the container with its own network device and virtual IP address which serves great for achieving
reproducible scientific results.

Our application is packaged into Docker image stored on DockerHub and deployed through Amazon
Elasticbeanstalk (EBS). As an input for EBS we provide Dockerfile [7] and configuration for auto-scaling group. Each
container can be used for executing tasks by packaging the tasks into a container and deploying the container into a
cluster. By running containers on an existing cluster, it is possible to auto-scale resources in response to demand.
Capacity can also be shared with other processes such as application containers, GPU hardware, taking advantage of
fluctuations in demand on the existing cluster or using Amazon EC2 Spot pricing to service the load. Moreover, EBS
provides with GPU instances, which provide access to NVIDIA GPUs with up to 1,536 CUDA cores which leverages
TensorFlow ability to utilise the GPU.

Conclusions

To investigate the applicability of our application for practical video context prediction tasks authors
experimented with a lot of different video streams. Application has shown good results and satisfying accuracy, thus
proving the correctness and efficiency of TensorFlow usage for video processing tasks. With the development of
container technology, many of the benefits of parallelising application can be achieved at a significantly lower cost.
Moreover it enables for repeatable scientific results. Having at our disposal such powerful tools as deep learning
algorithms, especially neural networks with the deepness that could not be imagined decade ago, the application
architecture and optimisation will drive the progress of practical implementation of theoretical results. Further research
aims to develop an automated system capable of detecting more complex objects and using and benchmarking the
video structure ontology more efficiently.

1. Abadi M., Agarwal A., Barham P., et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

2. Culjak I., Abram D., Pribanic T., Dzapo H. and Cifrek M. "A brief introduction to OpenCV," MIPRO, 2012 Proceedings of the 35th International
Convention, Opatija, 2012. — P. 1725-1730.

3. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features, Proceedings of the CVPR // IEEE COMPUTER SOCIETY
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, 2001.

4. Boettiger C. An introduction to Docker for reproducible research, with examples from the R environment / ACM SIGOPS Operating Systems
Review, Special Issue on Repeatability and Sharing of Experimental Artifacts. —2012. —49(1). — P. 71-79.

5. DengJ., Dong W., Socher R., Li L.-J., Li K. and Fei-Fei L. ImageNet: A Large-Scale Hierarchical Image Database // IEEE Computer Vision and
Pattern Recognition (CVPR), 2009.

6. Tomas M., et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781, 2013.

7. Repository with Docker config files: https:/github.com/cubicoval 7/tensorflow-opencv, 2016.

References

1. Abadi M., Agarwal A., Barham P., et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

2. Culjak I., Abram D., Pribanic T., Dzapo H. and Cifrek M. "A brief introduction to OpenCV," MIPRO, 2012 Proceedings of the 35th International
Convention, Opatija, 2012. — P. 1725-1730.

3. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features, Proceedings of the CVPR // IEEE COMPUTER SOCIETY
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, 2001.

4. Boettiger C. An introduction to Docker for reproducible research, with examples from the R environment / ACM SIGOPS Operating Systems
Review, Special Issue on Repeatability and Sharing of Experimental Artifacts. —2012. —49(1). — P. 71-79.

5. DengJ., Dong W., Socher R., Li L.-J., Li K. and Fei-Fei L. ImageNet: A Large-Scale Hierarchical Image Database // IEEE Computer Vision and
Pattern Recognition (CVPR), 2009.

168

Proceedings of the 10th International Conference of Programming UkrPROG’2016 (Kyiv, Ukraine)

6. Tomas M., et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781, 2013.
7. Repository with Docker config files: https://github.com/cubicoval 7/tensorflow-opencv, 2016.

Information about author:

Voloshyn Dmytro,

Junior Research Associate.
Publications: 5.
http://orcid.org/0000-0002-9160-2746

Affiliation:

Institute of Software Systems NAS Ukraine,
03187, Kyiv - 187, Academician Glushkov ave, 40.
Tel.: (095) 490 0641.

E-mail: wdmytriy@gmail.com

169

