ON A MOMENT PROBLEM FOR SETS OF POINTS IN THE COMPLEX PLANE

V.P. Tsvetov

Samara National Research University, Samara, Russia

Abstract. This paper deals with a uniqueness problem of determination a set of points in the complex plane by the degree-like moments. We discuss applications of these results to determine the similarity of flat polygonal lines in contour analysis method.

Keywords: moment problem, contour analysis, image processing.

Citation: Tsvetov VP. On a moment problem for sets of points in the complex plane. CEUR Workshop Proceedings, 2016; 1638: 411-418. DOI: 10.18287/1613-0073-2016-1638-411-418

1 Introduction

A moment problem is closely associated with many questions of functional analysis [1], integral geometry [2, 3], problems of interpolations, and function classifications [4]. Several problems concerning the uniqueness of solutions of operator equations can be reformulated in terms of determining continuous linear functional $f: X \to C$ by the known values on a system of basic elements $\{z_m\}_{m \in I \subseteq \mathbb{N}_0}$ of a normed linear space X:

 $f(z_m) = s_m. \tag{1}$

In applications X is a space of complex-valued functions that are continuous on compact set K. Such space with the uniform norm is denoted as C(K). By $C(K)^*$ we denote the linear space that topologically conjugates to C(K). So $C(K)^*$ contains all continuous linear functionals $f: C(K) \to C$. Based on the Riesz-Radon theorem we know that $C(K)^*$ is isometric to the space of Radon measures with compact support on K [1, 5]. Hence any linear functional can be uniquely represented in the form

$$f(z) = \int_{K} z(t) d\mu_f(t),$$
⁽²⁾

Information Technology and Nanotechnology (ITNT-2016)

here μ_f is a measure with compact support $K_f \subseteq K$ that is uniquely defined by the functional f.

In this paper we will be interested in the case of (1) or (2), where $K \subset \mathbb{R}^2$, $z_m(t) = z_m(x, y) = z^m = (x+iy)^m$, $i^2 = -1$, and $\mu_f(t)$ is a function of bounded variation with compact support $K_f \subseteq K \subset \mathbb{R}^2$. The integral in (2) is understood as an integral of Lebesgue-Stieltjes.

If $K_f = \{t_j | t_j = (x_j, y_j), j \in 1..k\}$ is a finite set of points, then the integral in (2) is reduced to the finite sum

$$f(z) = \sum_{j=1}^{k} z(t_j) \cdot \mu_f(t_j) = \sum_{j=1}^{k} z_j \cdot \mu_j^f,$$
(3)

where $z_i = x_i + iy_i$, and $\mu_i^f \in \mathbb{C}$. So (1) takes one of the forms

$$f(z^m) = \int_{K \subset \mathbb{R}^2} z^m(t) d\mu_f(t) = \int_{K_f \subset \mathbb{R}^2} z^m(t) d\mu_f(t) = S_m,$$
(4)

or

$$f(z^{m}) = \sum_{j=1}^{k} z_{j}^{m} \cdot \mu_{j}^{f} = s_{m}.$$
(5)

We will show the uniqueness of a linear functional f (and so K_f) that is determined from (5) by a known finite number of values s_m . Then we extend this result to the special case of (4), when the compact support K_f is a polyline with a finite number of segments, and the integral is understood as a line integral along a plane curve.

Note that the moment problem (5) arises in a contour analysis based on the integral representations for Gaussian beams [6].

It is easy to give an example of different compact subsets $K_f \subseteq K \subset \mathbb{R}^2$, which produce an equal moments S_m to a corresponding functionals f, even in the case $m \in I = \mathbb{N}_0$.

As a compact $K \subset \mathbb{R}^2$ we consider a circle $K = \{(x, y) | x^2 + y^2 \le r_0^2\}$ and define a family of subcompacts:

$$K_{1}^{r_{1}} = \left\{ (x, y) \mid x^{2} + y^{2} = r_{1}^{2} < r_{0}^{2} \right\},$$

$$K_{2}^{r_{2},r_{3}} = \left\{ (x, y) \mid r_{2}^{2} \le x^{2} + y^{2} \le r_{3}^{2} < r_{0}^{2} \right\},$$

$$K_{3}^{r_{4}} = \left\{ (x, y) \mid x^{2} + y^{2} \le r_{4}^{2} < r_{0}^{2} \right\}.$$
Then we define continuous linear functionals
$$f_{1}^{r_{1}}(z) = \int z(x, y) dL \in C(K)^{*},$$
(6)

Information Technology and Nanotechnology (ITNT-2016)

 K_1^{η}

$$f_2^{r_2,r_3}(z) = \iint_{K_2^{r_2,r_3}} z(x, y) dx dy \in C(K)^*,$$
(7)

$$f_{3}^{r_{4}}(z) = \iint_{K_{1}^{r_{4}}} z(x, y) dx dy \in C(K)^{*},$$
(8)

where the integral in (6) is understood as a line integral.

For all $m \in N_0$ functions $z_m(x, y) = z^m = (x + iy)^m$ form an orthogonal system over the scalar products

$$\begin{aligned} \left\langle z_1, z_2 \right\rangle_1 &= \int\limits_{K_1^{r_1}} z_1(x, y) z_2(x, y) dL, \\ \left\langle z_1, z_2 \right\rangle_2 &= \iint\limits_{K_2^{r_2, r_3}} z_1(x, y) \overline{z_2(x, y)} dx dy, \\ \left\langle z_1, z_2 \right\rangle_3 &= \iint\limits_{K_1^{r_4}} z_1(x, y) \overline{z_2(x, y)} dx dy, \end{aligned}$$

So for all m > 0 we have the zero moments

$$f_1^{r_1}(z^m) = S_m^1 = \int_{K_1^{r_1}} z^m dL = 0,$$

$$f_2^{r_2, r_3}(z^m) = S_m^2 = \iint_{K_2^{r_2, r_3}} z^m dx dy = 0,$$

$$f_3^{r_4}(z^m) = S_m^3 = \iint_{K_1^{r_4}} z^m dx dy = 0,$$

and non zero moments $S_0^1 = 2\pi r_1$, $S_0^2 = \pi \left(r_3^2 - r_2^2\right)$, $S_0^3 = \pi r_4^2$, for m = 0. Then we fix $0 < r_1 < \frac{r_0^2}{2}$ and set $r_4 = \sqrt{2r_1}$, $r_3^2 = r_4^2 + r_2^2$. It's clear that for all $0 < r_2^2 < r_0^2 - 2r_1$ we obtain an infinite number of different continuous linear functionals $f_1^{r_1}$, $f_2^{r_2,r_3}$, $f_3^{r_1}$ with compact supports $K_1^{r_1}$, $K_2^{r_2,r_3}$, $K_3^{r_4}$, and equal moments $f_1^{r_1}(z^m)$, $f_2^{r_2,r_3}(z^m)$, $f_3^{r_1}(z^m)$.

This is explained by the fact that the set of functions $z_m(x, y) = z^m = (x + iy)^m$ is not a dense set in C(K). According to the Weierstrass theorem, a dense set is formed by the system of polynomials $p_{m,n}(x, y) = x^m y^n$, $m, n \in \mathbb{N}_0$. Based on the representations $x = \operatorname{Re}(z) = \frac{z + \overline{z}}{2}$, $y = \operatorname{Im}(z) = \frac{z - \overline{z}}{2}$, we can say that the system of functions $P_{m,n}(x, y) = z^m \overline{z}^n$ has the same quality.

Thus any continuous linear functionals $f \in C(K)^*$, including those that are defined by (6)-(8) will be uniquely determined by the system of values

Information Technology and Nanotechnology (ITNT-2016)

Tsvetov VP...

$$f(z^m \overline{z}^n) = S_{m,n}, m, n \in \mathbb{N}_0.$$
⁽⁹⁾

If we consider the linear functionals defined by integrals over plain domains or rectifiable curves, then the system of moments (9) will uniquely determine bounded curve or plain domain.

2 Moment problem for a finite set of points

Let's consider a moment problem in the following form. From a given system of equations

$$\sum_{j=1}^{k} z_{j}^{m} \cdot \mu_{j} = s_{m}, m \in 0..M, M \in \mathbb{N},$$
(10)

we want to determine a set of pairs of complex numbers $S = \{(z_j, \mu_j)\}_{j=1}^k$ under the assumption that all the numbers z_j are pairwise distinct, and $\mu_j \neq 0$. In (10) we put $z^0 = 1$ for all $z \in \mathbb{C}$.

Two sets $S = \{(z_j, \mu_j)\}_{j=1}^k$ and $\tilde{S} = \{(\tilde{z}_j, \tilde{\mu}_j)\}_{j=1}^k$ will be considered as equivalent $S \approx \tilde{S}$, if there exists a total bijection $h: 1..k \to 1..k$ that is $z_j = \tilde{z}_{h(j)}$ and $\mu_j = \tilde{\mu}_{h(j)}$

(in other words, if they match up to a permutation).

We are interested in the uniqueness of the solution for the problem above, which is understood as equivalent in the above sense.

Suppose that there are two sets S and \tilde{S} that satisfies (10). Therefore we have the following system of equations

$$\sum_{j=1}^{k} \left(z_{j}^{m} \cdot \boldsymbol{\mu}_{j} - \tilde{z}_{j}^{m} \cdot \tilde{\boldsymbol{\mu}}_{j} \right) = 0, \, m \in 0..M, \tag{11}$$

Denote by $\{z_j\} \cap \{\tilde{z}_j\}$ the intersection of sets $\{z_j \mid j \in 1..k\}$ and $\{\tilde{z}_j \mid j \in 1..k\}$. Now we define the sets of indices $J_{z\tilde{z}} = \{j \mid z_j \in \{z_j\} \cap \{\tilde{z}_j\}\}$, $J_{\tilde{z}z} = \{j \mid \tilde{z}_j \in \{z_j\} \cap \{\tilde{z}_j\}\}$,

 $J_z = 1..k \setminus J_{z\tilde{z}} \;,\; J_{\tilde{z}} = 1..k \setminus J_{\tilde{z}z} \;.$

Let $s = |J_{z\bar{z}}| = |J_{\bar{z}z}| \le k$. Without loss of generality, we assume that $J_{z\bar{z}} = J_{\bar{z}z} = 1..s$ (s > 0), and $J_{z\bar{z}} = J_{\bar{z}z} = \emptyset$ (s = 0). It is clear that in this case $J_z = J_{\bar{z}} = s + 1..k$ (s < k) and $J_z = J_{\bar{z}} = \emptyset$ (s = k).

Denote by $h: J_{z\tilde{z}} \to J_{\tilde{z}z}$ the total bijection that takes each j_1 to j_2 in accordance with the rule $z_{j_1} = \tilde{z}_{j_2}$. Then the system of equalities (11) takes the form

Information Technology and Nanotechnology (ITNT-2016)

Tsvetov VP...

$$\sum_{j \in J_{z}} z_{j}^{m} \cdot \mu_{j} - \sum_{j \in J_{z}} \tilde{z}_{j}^{m} \cdot \tilde{\mu}_{j} - \sum_{j \in J_{z \cap \bar{z}}} \left(\mu_{j} - \tilde{\mu}_{h(j)} \right) \cdot z_{j}^{m} = 0, m \in 0..M.$$

$$(12)$$
Further denote

Further denote

$$\begin{split} \xi_{j} &= \begin{cases} \mu_{j} - \tilde{\mu}_{h(j)}, 1 \leq j \leq s \\ \mu_{j}, & s+1 \leq j \leq k \\ - \tilde{\mu}_{h(j-k+s)}, k+1 \leq j \leq 2k-s \end{cases} \\ \alpha_{ij} &= \begin{cases} z_{j}^{i-1}, 1 \leq j \leq k, 1 \leq i \leq M+1 \\ \tilde{z}_{h(j-k+s)}^{i-1}, k+1 \leq j \leq 2k-s, 1 \leq i \leq M+1 \end{cases} \end{split}$$

and rewrite (12) in the form

$$\sum_{j=1}^{2k-s} \alpha_{ij} \cdot \xi_j = 0, \, i \in 1..M + 1.$$
(13)

We note that the leading principal minors of the matrix (α_{ij}) are Vandermonde determinants composed by powers of distinct numbers. Thus the rank of this matrix is equal to $\min(M+1, 2k-s)$. Let us consider (13) as a system of linear equations with variables ξ_j . If $M+1 \ge 2k-s$, the system (13) can have only the trivial solution. In this case $J_z = J_{\tilde{z}} = \emptyset$, $J_{z\tilde{z}} = J_{\tilde{z}z} = 1..k$, and for all $j \in 1..k$ we obtain

$$z_j = \tilde{z}_{h(j)}, \, \mu_j = \tilde{\mu}_{h(j)}.$$

It's mean that $S \approx \tilde{S}$.

Obviously that $M + 1 \ge 2k - s$ for all $s \ge 0$, if $M + 1 \ge 2k$. Hence, if $M \ge 2k - 1$, then the moment problem (10) can have only one solution. The converse may be proved in such a way as is done in [7].

3 Moment problem for polyline with a finite number of segments

Let's consider the unclosed polyline $L^k \subset \mathbb{R}^2$ with k nodes $\{t_j = (x_j, y_j)\}_{j=1}^k$, and without self-intersections. We assume that associated nodes t_{j-1} , t_j , t_{j+1} does not lie on the same straight line, and each node can belong to no more than two segments of a polyline. So polyline has k-1 segments.

Information Technology and Nanotechnology (ITNT-2016)

Tsvetov VP...

As before, we define the map $z: \mathbb{R}^2 \to \mathbb{C}$ in accordance with the rule z = z(t) = z(x, y) = x + iy. For each of k-1 segments we consider the parameterizations $L_j^k: [0,1] \to \mathbb{R}^2$ that given by $\tau \mapsto L_j^k(\tau) = t_j + (t_{j+1} - t_j) \cdot \tau$. Let's denote $z_j = z(t_j) = z(x_j, y_j) = x_j + iy_j,$ $z_j(\tau_j) = z(L_j^k(\tau)) = z_j + (z_{j+1} - z_j) \cdot \tau,$ $\varphi_j = \arg(z_{j+1} - z_j),$

and take a system of complex moments S_m with $m \in 0..M \subset N_0$

$$S_{m} = \int_{L^{k}} z^{m} dL^{k} = \sum_{j=1}^{k-1} \int_{0}^{1} z_{j}^{m}(\tau) |dz_{j}(\tau)|.$$
(14)

After simple calculations we obtain

$$S_{m} = \frac{1}{m+1} \cdot \left(-e^{-i\phi_{1}} \cdot z_{1}^{m+1} + \sum_{j=1}^{k-1} \left(e^{-i\phi_{j-1}} - e^{-i\phi_{j}} \right) \cdot z_{j}^{m+1} + e^{-i\phi_{k-1}} \cdot z_{k}^{m+1} \right).$$
(15)

Let $s_m = m \cdot S_{m-1}$, $\mu_1 = -e^{-i\varphi_1}$, $\mu_k = e^{-i\varphi_{k-1}}$, $\mu_j = e^{-i\varphi_{j-1}} - e^{-i\varphi_j}$ with $j \in 2..k - 1$. It's easy that

$$\sum_{j=1}^{k} \mu_{j} = -e^{-i\varphi_{1}} + \sum_{j=2}^{k-1} \left(e^{-i\varphi_{j-1}} - e^{-i\varphi_{j}} \right) + e^{-i\varphi_{k-1}} = 0,$$

and therefore (15) can be written as (10).

By assumption of polyline we have

$$\mu_1 = -e^{-i\varphi_1} = -\frac{|z_2 - z_1|}{z_2 - z_1} \neq 0, \tag{16}$$

$$\mu_k = e^{-i\varphi_{k-1}} = \frac{|z_k - z_{k-1}|}{z_k - z_{k-1}} \neq 0.$$
(17)

$$\mu_{j} = e^{-i\varphi_{j-1}} - e^{-i\varphi_{j}} = \frac{\left|z_{j} - z_{j-1}\right|}{z_{j} - z_{j-1}} - \frac{\left|z_{j+1} - z_{j}\right|}{z_{j+1} - z_{j}} \neq 0,$$
(18)
with $j \in 2..k - 1$.

From the results of the previous section it follows that no exists more than one sets of points $\{z_j\}_{j=1}^k$ and the weights $\{\mu_j\}_{j=1}^k$ that satisfy (14) with $m \in 0..2k$.

It is easy to prove that the pairs $\{(z_j, \mu_j)\}_{j=1}^k$ completely determine the nodes and segments of the polyline L^k . Indeed, μ_1 uniquely determines the value of $e^{i\varphi_1} = -\mu_1^{-1}$ and

Information Technology and Nanotechnology (ITNT-2016)

thus the direction $w = \left(-\operatorname{Re}\left(\mu_{1}^{-1}\right), -\operatorname{Im}\left(\mu_{1}^{-1}\right)\right)$ from node $t_{1} = \left(\operatorname{Re}\left(z_{1}\right), \operatorname{Im}\left(z_{1}\right)\right)$ to the node t_{2} . Thus $t_{2} = t_{1} + r \cdot w$ for some real value r > 0. At least one such point must exist in the node set $\left\{t_{j}\right\}_{j=1}^{k}$ If there are several nodes that satisfy the relations $t_{j} = t_{1} + r_{j} \cdot w$ with some $r_{j} > 0$, then we should choose the one which corresponds to the minimum value of r_{i} . This follows from our assumption that the points t_{j-1}, t_{j}, t_{j+1} should not lie on the same straight line and each node can belong to no more than two segments of a polyline. The same applies for μ_{k} , which together with z_{k} uniquely identifies the segment in the polyline $\left(t_{k-1}, t_{k}\right)$. As for the other pairs of values, we can use the obvious equality $e^{-i\varphi_{j}} = -\sum_{s=1}^{j} \mu_{s} = \sum_{s=0}^{n-j} \mu_{n-s}$ and consistently hold the previous arguments, starting with one of the node t_{1} or t_{k} .

A similar result holds for the closed polyline L^k defined by the nodes $\{t_j = (x_j, y_j)\}_{j=1}^k$ with $t_1 = t_k$. In this case, the analogue of (15) takes the form (10) if we substitute k-1 for k and put $\mu_1 = e^{-i\varphi_{k-1}} - e^{-i\varphi_1}$.

4 Applications to the recognition of similarity for planar contours

A moment problem has a relation to the image analysis [8], including analysis of similarity discrete planar contours [6, 9].

We say that two sets $M_1 \subseteq C$ and $M_2 \subseteq C$ are called similar, if there exist $\lambda_0, \kappa_0 \in C$ such that $M_2 = \{z' \mid z' = \lambda_0 + \kappa_0 \cdot z, z \in M_1\}$. Here λ_0 describes parallel transport of points M_1 , $|\kappa_0|$ is equal to the coefficient of similarity, and $\arg(\kappa_0)$ corresponds to the angle of rotation ($\kappa_0 \neq 0$).

If the similar sets M_1 , M_2 are finite, then

$$\begin{aligned} z'_j - \frac{1}{k} \sum_{s=1}^k z'_s &= \lambda_0 + \kappa_0 \cdot z_j - \frac{1}{k} \sum_{s=1}^k (\lambda_0 + \kappa_0 \cdot z_s) = \\ \kappa_0 \cdot \left(z_j - \frac{1}{k} \sum_{s=1}^k z_s \right), \end{aligned}$$

and so without loss of generality, we assume that $\sum_{j=1}^{k} z_j = \sum_{j=1}^{k} z'_j = 0$ or the same $\lambda_0 = 0$.

Information Technology and Nanotechnology (ITNT-2016)

Let's consider two unclosed polyline L^k , $L'^k \subset \mathbb{R}^2$ with the same number of segments. As follows from the previous section, each of them is uniquely determined by a system of moments

$$\sum_{j=1}^{k} z_{j}^{m} \cdot \mu_{j} = \sum_{j=1}^{k} z_{j}^{m} \cdot \mu(z_{j-1}, z_{j}, z_{j+1}) = s_{m},$$
(19)

$$\sum_{j=1}^{k} z_{j}^{\prime m} \cdot \mu_{j}^{\prime} = \sum_{j=1}^{k} z_{j}^{\prime m} \cdot \mu \left(z_{j-1}^{\prime}, z_{j}^{\prime}, z_{j+1}^{\prime} \right) = s_{m}^{\prime},$$
(20)

with $m \in 0..2 k - 1$ and $\mu(z_{j-1}, z_j, z_{j+1})$ that satisfy (16)-(18)

Given that

$$\mu\left(\kappa_0\cdot z_{j-1},\kappa_0\cdot z_j,\kappa_0\cdot z_{j+1}\right) = \frac{|\kappa_0|}{\kappa_0}\mu\left(z_{j-1},z_j,z_{j+1}\right),$$

we finally obtain the similarity criterion for polyline L^k , L'^k in the following form

$$s'_{m} = \left| \kappa_{0} \right| \cdot \kappa_{0}^{m-1} \cdot s_{m}, m \in 0..2 \, k - 1.$$
(21)

Criterion (21) also holds for closed polylines.

References

- 1. Kantorovich LV, Akilov GP. Functional analysis. Moscow: "Nauka" Publisher; 1984. [In Russian]
- 2. Lavrentiev MM, Saveliev LYa Operator theory and ill posed problems. Novosibirsk: "Institut Matematiki" Publisher; 2010. [In Russian]
- Khakhlyutin VP. On a problem of integral geometry in the plane (English. Russian original) Sov. Math., Dokl., 1992; 44(2): 574-576; translation from Dokl. Akad. Nauk SSSR, 1991; 320(4): 832-834.
- 4. Akhiezer NI. The classical moment problem: And some related questions in analysis. Moscow: "Fizmatlit" Publisher, 1961. [In Russian]
- 5. Edwards RE. Functional analysis. N.Y.: Holt, -Rinehart & Winston, 1965.
- Volostnikov VG, Kishkin SA, Kotova SP. Contour analysis and modern optics of Gaussian beams. Computer Optics, 2014; 38(3): 476-481. [In Russian]
- 7. Gantmacher FR. The Theory of Matrices. Moscow: "Nauka" Publisher, 1960. [In Russian]
- 8. Pratt WK. Digital image processing. N.Y.: John Wiley & Sons, Inc, 1978.
- Furman YaA, Krevetsky AV, Peredreev AK, Rojentsov AA, Khafizov RG, Egoshina IL, Leukhin AN. Introduction into a contour analysis. Ed by Furman YaA. Moscow: "Fizmatlit" Publisher, 2003. [In Russian]