
MapReduce vs. Pipelining
Counting Triangles

Edelmira Pasarella1?, Maria-Esther Vidal3,4, and Cristina Zoltan1,2

1 Computer Science Department
Universitat Politècnica de Catalunya, Barcelona, Spain

2 Universidad Internacional de Ciencia y Tecnología, Panamá
3 University of Bonn & Fraunhofer IAIS, Bonn, Germany

4 Universidad Simón Bolívar Caracas, Venezuela

Abstract. In this paper we follow an alternative approach named
pipeline, to implement a parallel implementation of the well-known prob-
lem of counting triangles in a graph. This problem is especially interesting
either when the input graph does not fit in memory or is dynamically
generated. To be concrete, we implement a dynamic pipeline of processes
and an ad-hoc MapReduce version using the language Go. We explote the
ability of Go language to deal with channels and spawned processes. An
empirical evaluation is conducted on graphs of different size and density.
Observed results suggest that pipeline allows for the implementation of
an efficient solution of the problem of counting triangles in a graph, par-
ticularly, in dense and large graphs, drastically reducing the execution
time with respect to the MapReduce implementation.

1 Introduction
We tackle limitations of the MapReduce programing schema, and devise an al-
ternative computing approach of the Divide & Conquer paradigm for solving
problems with massive input data. This implementation is based on a dynamic
pipeline of processes via an asynchronous model of computation, synchronized by
channels. To be concrete, we consider the problem of counting triangles. Count-
ing triangles is a building block for determining the connectivity of a community
around a node, and represents a relevant problem in the context of social net-
work analysis. Indeed, this is, to compute the clustering coefficient which is a
measure of interest in social networks. We present both, an implementation of
counting triangles based on two rounds of the MapReduce schema proposed by
Suri et. al. [5], and the pipeline implementation following the approach proposed
by Aráoz and Zoltan [1]. In particular, we use Go5 as the programming language.

Go [2] is a programming language that facilitates efficient implementations
of parallel programs, naturally supports concurrency, and implements processes
for automatic memory management and garbage collection. Go provides a mech-
anism of channels to enable the implementation of both pipeline and MapRe-
duce, and makes available goroutines, which are needed not only for dynamically
? This work has been partially supported by funds from the Spanish Ministry for
Economy and Competitiveness (MINECO) and the European Union (FEDER funds)
under grant COMMAS (ref. TIN2013-46181-C2-1-R)

5 https://golang.org/



spawning processes, but also for describing processes that resume their work
whenever they stop being blocked. These features are fundamental and crucial
for the selection of Go as the programing language for the problem of counting
triangles on pipeline and MapReduce. We empirically evaluate the performance
of pipeline and MapReduce on a variety of graphs of different size and density.
The observed results although initial, show the benefits of pipelining in the im-
plementation of the problem of triangle counting on dense graphs, where the
savings in execution time can be of up to two orders of magnitude.

The rest of the paper is organized as follows. In the next section we describe
the implementations of the problem of triangle counting in both MapReduce
and pipelining using the Go language. In Section 3, results of the experimental
evaluation are reported and discussed. Finally, in the last section we present the
concluding remarks and future work.

2 Implementations of the Problem of Counting Triangles

We present the Go implementation for the algorithms proposed by Suri et al. [5]
and by Aráoz et al. [1], for counting triangles in a graph represented as a sequence
of unordered edges.

MapReduce Implementation: Go implementation proposed by Suri et al. [5].The
program receives as an input a file which is partitioned into as many files as
the number of mappers which is set as the number of available cores. In order
to reduce the execution time in the MapReduce implementation, the hashing
is applied during the Map phase and the mappers communicate via buffered
channels with the reducers. The output of the first phase is the set of 2-length
paths. Results from the first round are sent to files. The first round output,
using the end points as keys, is merged with the set of edges and distributed to
the reducers. The output of each reducer is the number of triangles found in its
input i.e., the triangles formed by 2-length paths having the same end points and
there is an edge between both. A process collects the outputs from the reducers
in order to give the final result.

Pipeline Implementation: Go implementation proposed by Aráoz and Zoltan [1].
Corresponds to the composition of a sequence of filters specialized to the ver-
tices of the input graph, and each one works on a set of values that are not
consumed by the previous filter. The first filter receives the complete set. Each
filter specialize itself with the first incoming edge, using the first node of the
edge as responsible node and add the other to an adjacent list. Afterwards, each
filter treats the incoming edges, keeping those edges incident to its responsible
node and sending the others to its neighbor. The number of filters is equal to
the number of classes generated by the relation on the original set6. In the im-
plementation, filters are processes/goroutines that communicate via unbuffered

6 The partition relation is created during the execution.



channels and each process is specialized by a responsible node. Further, gorou-
tines have three input channels and three output channels. Processes use lists
to keep nodes adjacent to the responsible one. Each goroutine is specialized to
a given node, and utilizes the input of the second channel to collect the edges
adjacent to that node. If the edge is not adjacent to the responsible node, the
goroutine passes the edge to its neighbor. The third channels are used to flow
edges into the pipe and each edges is checked if is incident to two nodes adjacent
to the corresponding responsible one. In the first channel flow the amount of
triangles found by each goroutines. A final process adds up the partial results.

3 Experiments

The goal of the experiment is to analyze the impact of graph properties on time
and space complexity of both implementations. We study the following research
questions: RQ1) Is the pipeline based implementation able to overcome the
performance of MapReduce implementation independently of the input graph
characteristics?; RQ2) Are density and size of the input graph equally affecting
pipeline and MapReduce implementations?; RQ3) Is the number of cores equally
affecting pipeline and MapReduce implementations? We compare these two im-
plementations using graphs of different densities and sizes. In particular, these
graphs are part of the 9th DIMACS Implementation Challenge - Shortest Paths7;
DSJC.1, DSJC.5, DSJC.9 are graphs with the same number of nodes and different
densities, while in Fixed-number-arcs-0.1(FNA.1), Fixed-number-arcs-0.5(FNA.5), and
Fixed-number-arcs-0.9(FNA.9) the number of nodes is changed to affect the graph
density. USA-road-d.NY and Facebook-SNAP(107)8 are real-world graphs that cor-
respond to the New York City road network and a subgraph from Facebook,
respectively. We consider the execution time (ET) and Virtual-memory (VM)
measured in GB. Programs are run on a node of the cluster of the RDLab-UPC9

having two processors Intel(R) Xeon(R) CPU X5675 of 3066 MHz with six cores
each one. The configuration used by us for submitting jobs, is up to 12 cores
and 40GB of RAM. Programs are implemented in Go 1.610. The same job is
executed 10 times and average in reported, given enough shared memory and a
timeout of five hours. Jobs time out at five hours. Graphs with different sizes
and densities (0.10, 0.50, and 0.90) are evaluated to study our research ques-
tions RQ1 and RQ2. Graphs with high density can be considered as the worst
case for both program schemes. Jobs for the pipeline program in the different
graphs are finished in less than 3 hours, while three jobs of the MapReduce im-
plementations do not produce any response in five hours. The results suggest
that the pipeline implementation exhibits the best results in response time and
virtual memory consumption for graphs as the ones in DSJC.1, DSJC.5, DSJC.9,
FNA.1, FNA.5, and FNA.9. Particularly, in the highly dense graphs, i.e., DSJC.9

7 http://www.dis.uniroma1.it/challenge9/download.shtml
8 http://snap.stanford.edu/data/egonets-Facebook.html
9 https://rdlab.cs.upc.edu/

10 https://blog.golang.org/go1.6



and FNA.9, pipeline drastically reduces execution time with respect to MapRe-
duce. Similar performance is observed in the real-world subgraph of Facebook
(Facebook-SNAP(107)), where pipeline execution time overcomes MapReduce
by three orders of magnitude. Finally, the graph NY that represents the road
network of NY city, is highly sparse and the pipeline implementation generates
a large number of processes that the Go scheduler is not able to deal with.

For the graphs DSJC.1, DSJC.5, DSJC.9, and 107, jobs of the pipeline imple-
mentation requires less than 18 secs. to be completed and produce the response.
Similarly, in graphs DSJC.9, (Facebook-SNAP(107)) and NY, jobs of the MapRe-
duce implementations produce the responses in less than 29 secs. As the obtained
results show, jobs for the MapReduce implementation time out at five hours for
large graphs: FNA.1, FNA.5, and FNA.9. This negative performance of MapRe-
duce is caused by the replication factor of the problem of counting triangles,
i.e., the size of the set of 2-length paths (output in the first phase of MapRe-
duce) is extremely large, O(n2) where n is the number of graph vertices and
these graphs have up to 10,000 vertices. These results corroborate our statement
that the pipeline programming schema is a promising model for implementing
complex problem and provides an adaptive solution to the characteristics of the
input dataset. Furthermore, pipeline is competitive with MapReduce and does
not require any previous knowledge of the input dataset.

4 Conclusions and Future Work

The well-known problem of triangle counting is utilized to illustrate the features
of a pipeline implementation as well as the differences with the MapReduce
programming schema. Both programs were implemented in multi-processor
nodes. The observed results show a superiority in execution time for the pipeline
implementation even in dense graphs. The only case where MapReduce exhibits
a better performance corresponds to a graph where a large number of nodes
have an approximate degree of 2, and this particular configuration results in
a program that negatively affects the Go scheduler. The results also suggest
that the number of processors has a greater positive impact on the pipeline
implementation than in MapReduce. Based on these results, we can conclude
that the pipeline schema is highly scalable, and is able to exhibit performance
gains on large problem instances with thousands of tasks, seeming to be most
promising when a large number of processors work on shared memory. We plan
to continue the evaluation of the pipeline schema behavior in other complex
computational problems, and create a programing framework. Further, other
algorithms for counting triangles in graph will be implemented and included in
our evaluation study, e.g., algorithms by Hu et. al [3, 4]. However, it is important
to highlight that because these algorithms require different representations of
a graph, e.g., adjacent lists, and are not implemented as MapReduce, they
will require a pre-processing phase and will not be able to be used in graphs
dynamically generated. In consequence, the experimental evaluation will have
to be redefined in order to conduct a fair comparison of the studied approaches.



Acknowledgements. We thank the staff of the Laboratori de Recerca i
Desenvolupament (RDlab) of the Computer Science Department of the UPC
for their support during execution of the experimental evaluation.

References

1. Julián Aráoz and Cristina Zoltan. Parallel triangles counting using pipelining. http:
//arxiv.org/pdf/1510.03354.pdf, 2015.

2. Alan A.A. Donovan and Brian W. Kernighan. The Go Programming Language.
Addison-Wesley Professional, 1st edition, 2015.

3. Xiaocheng Hu, Miao Qiao, and Yufei Tao. Join dependency testing, loomis-whitney
join, and triangle enumeration. In Proceedings of the 34th ACM Symposium on
Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May
31 - June 4, 2015, pages 291–301, 2015.

4. Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. I/o-efficient algorithms on triangle
listing and counting. ACM Trans. Database Syst., 39(4):27:1–27:30, 2014.

5. Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last
reducer. In Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, pages 607–614, New York, NY, USA, 2011. ACM.


