
Reasoning in a Rational Extension ofSROEL

Laura Giordano1 and Daniele Theseider Dupré1
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Abstract. In this work we define a rational extensionSROEL(⊓,×)R T of
the low complexity description logicSROEL(⊓,×), which underlies the OWL
EL ontology language. The logic is extended with a typicality operatorT, whose
semantics is based on Lehmann and Magidor’s ranked models and allows for the
definition of defeasible inclusions. We consider both rational entailment and min-
imal entailment. We show that deciding instance checking under minimal entail-
ment is aCONP-hard problem while, under rational entailment, instance checking
can be computed in polynomial time. In particular, we develop a Datalog materi-
alization calculus for instance checking under rational entailment.

1 Introduction

The need for extending Description Logics (DLs) with nonmonotonic features has led,
in the last decade, to the development of several extensionsof DLs, obtained by combin-
ing them with the most well-known formalisms for nonmonotonic reasoning [3, 36, 4,
14, 22, 16, 29, 11, 8, 13, 35, 6, 30, 12, 26, 5, 27] to deal with defeasible reasoning and in-
heritance, to allow for prototypical properties of concepts and to combine DLs with non-
monotonic rule-based languages under the answer set semantics [16], the well-founded
semantics [15], the MKNF semantics [35, 30], as well as in Datalog +/- [28]. Systems
integrating Answer Set Programming (ASP) [19, 18] and DLs have been developed,
e.g., the DReW System for Nonmonotonic DL-Programs [37].

In this paper we study a preferential extension of the logicSROEL(⊓,×), intro-
duced by Krötzsch [32], which is a low-complexity description logic of theEL family
[1] that includes local reflexivity, conjunction of roles and concept products and is at the
basis of OWL 2 EL. Our extension is based on Kraus, Lehmann andMagidor (KLM)
preferential semantics [31], and, specifically, on ranked models [34]. We call the logic
SROEL(⊓,×)RT and define notions of rational and minimal entailment for it.

The semantics of ranked interpretations for DLs was first studied in [11], where a ra-
tional extension ofALC is developed allowing for defeasible concept inclusions ofthe
formC⊏

˜
D. In this work, following [23, 27], we extend the language ofSROEL(⊓,×)

with typicality concepts of the formT(C), whose instances are intended to be the typi-
calC elements. Typicality concepts can be used to express defeasible inclusions of the
form T(C) ⊑ D (“the typicalC elements areD”). Here, however, as in [9, 21], we
allow for typicality concepts to freely occur in concept inclusions. In this respect, the
language with typicality that we consider is more general than the language with typi-
cality in [27], where the typicality operatorT(C ) may only occur on the left hand side
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of inclusions as well as in assertions. For the language in [27], minimal ranked mod-
els have been shown to provide a semantic characterization to rational closure for the
description logicALC, generalizing to DLs the rational closure by Lehmann and Magi-
dor [34]. Alternative constructions of rational closure for ALC have been proposed in
[13, 12]. All such constructions regard languages only containing strict or defeasible
inclusions.

We show that, for generalSROEL(⊓,×)RT KBs, deciding instance checking un-
der minimal entailment is aCONP-hard problem. Furthermore, we define a Datalog
translation forSROEL(⊓,×)RT which builds on the materialization calculus in [32],
and, for typicality reasoning, is based on properties of ranked models, showing that in-
stance checking forSROEL(⊓,×)RT can be computed in polynomial time under the
rational entailment. This polynomial upper bound also extends to subsumption, with the
consequence that a Rational Closure construction forSROEL(⊓,×)RT, based on the
definition in [27], can be computed in polynomial time. However, the minimal canoni-
cal model semantics does not provide a general semantic characterization of the rational
closure for the logicSROEL(⊓,×) with typicality, as a KB may have alternative min-
imal canonical models with incompatible rankings, or no canonical model at all. An
extended abstract of this paper appeared in [20].

2 A rational extension ofSROEL(⊓, ×)

In this section we extend the notion of concept inSROEL(⊓,×) adding typicality
concepts (we refer to [32] for a detailed description of the syntax and semantics of
SROEL(⊓,×)). We letNC be a set of concept names,NR a set of role names andNI

a set of individual names. A concept inSROEL(⊓,×) is defined as follows:

C := A | ⊤ | ⊥ | C ⊓ C | ∃R.C | ∃S.Self | {a}

whereA ∈ NC andR, S ∈ NR. We introduce a notion ofextended conceptCE as
follows:

CE := C | T(C) | CE ⊓ CE | ∃S.CE

whereC is aSROEL(⊓,×) concept. Hence, any concept ofSROEL(⊓,×) is also an
extended concept; a typicality conceptT(C) is an extended concept and can occur in
conjunctions and existential restrictions, but it cannot be nested.

A KB is a triple (TBox ,RBox ,ABox ). TBox contains a finite set ofgeneral con-
cept inclusions(GCI) C ⊑ D, whereC andD are extended concepts;RBox (as in
[32]) contains a finite set ofrole inclusionsof the formS ⊑ T , R ◦ S ⊑ T , role con-
junctionsS1 ⊓ S2 ⊑ T , concept product axiomsandC × D ⊑ T andR ⊑ C × D,
whereC andD are concepts, andR, S, S1, S2, T are role names inNR. ABox con-
tains individual assertionsof the formC(a) andR(a, b), wherea, b ∈ NI , R ∈ NR

andC is an extended concept. Restrictions are imposed on the use of roles as in [32]
(and, in particular, all the roles occurring inSelfconcepts and in role conjunctions must
besimple roles, roughly speaking, roles which do not include the composition of other
roles).
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We define a semantics forSROEL(⊓,×)RT based on ranked models [34]. As
done in [27] forALC, we define the semantics ofSROEL(⊓,×)RT by adding to
SROEL(⊓,×) interpretations [32] apreference relation< on the domain, which is
intended to compare the “typicality” of domain elements. The typical instances of a
conceptC, i.e., the instances ofT(C), are the instances ofC that are minimal with re-
spect to<. The properties of the< relation are defined in agreement with the properties
of the preference relation in Lehmann and Magidor’sranked modelsin [34]. A seman-
tics for DLs with defeasible inclusions based on ranked models was first proposed in
[11].

Definition 1. ASROEL(⊓,×)RT interpretationM is any structure〈∆, <, ·I〉where:

– ∆ is a domain;·I is an interpretation function that maps each concept nameA ∈
NC to a setAI ⊆ ∆, each role nameR ∈ NR to a binary relationRI ⊆ ∆ ×∆,
and each individual namea ∈ NI to an elementaI ∈ ∆. ·I is extended to complex
concepts as usual:
⊤I = ∆; ⊥I = ∅; {a}I = {aI};
(C ⊓D)I= CI ∩DI ;
(∃R.C)I= {x ∈ ∆ | ∃y ∈ CI : (x, y) ∈ RI};
(∃R.Self)I= {x ∈ ∆ | (x, x) ∈ RI};

and the composition of role interpretations is defined as follows:
RI

1 ◦RI
2 = {(x, z) | (x, y) ∈ RI

1 and(y, z) ∈ RI
2, for somey ∈ ∆}

– < is an irreflexive, transitive, well-founded and modular relation over∆;
– the interpretation of conceptT(C) is defined as follows:

(T(C))I = Min<(CI)

whereMin<(S) = {u : u ∈ S and∄z ∈ S s.t.z < u}.

Furthermore, an irreflexive and transitive relation< is well-foundedif, for all S ⊆ ∆,
for all x ∈ S, eitherx ∈ Min<(S) or ∃y ∈ Min<(S) such thaty < x. It is modular
if, for all x, y, z ∈ ∆, x < y impliesx < z or z < y. The well-foundedness condition
guarantees that if, for a non-extended conceptC, there is aC element inM, then there
is a minimalC element inM (i.e.,CI 6= ∅ implies(T(C))I 6= ∅).

In the following, we will refer toSROEL(⊓,×)RT interpretations asranked in-
terpretations. Indeed, as in [34], modularity in preferential models can be equivalently
defined by postulating the existence of a rank functionkM : ∆ 7−→ Ω, whereΩ is a
totally ordered set. The preference relation< can be defined fromkM as follows:x < y

if and only if kM(x) < kM(y). Hence, in the following, we will assume that a rank
functionkM is always associated with any modelM. We also define therankkM(C)
of a conceptC in the modelM askM(C) = min{kM(x) | x ∈ CI} (if CI = ∅, then
C has no rank and we writekM(C) =∞).

Observe that semantics of the typicality operator defined above is exactly the same
as the one introduced in [27] for the typicality operator inALC + TR. Similarly to all
other concept constructors, the typicality operator can beused in TBox and ABox with
different restrictions, depending on the description logic. Differently from [27], where
T(C) can only occur on the left-hand side of concept inclusions (namely, in typicality
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inclusions of the formT(C) ⊑ D) here, as in [9, 21], we do not put restrictions on
the possible occurrences of typicality conceptsT(C) in concept inclusions and in as-
sertions. Instead, as inSROEL(⊓,×), we do not allow negation, union and universal
restriction which are allowed inALC. In the following, we callsimpleKBs the ones
which only allow typicality concepts to occur on the left hand side of typicality inclu-
sions. Given an interpretationM the notions of satisfiability and entailment are defined
as usual.

Definition 2 (Satisfiability and rational entailment). An interpretationM = 〈∆, <

, ·I〉 satisfies:
• a concept inclusionC ⊑ D if CI ⊆ DI ;
• a role inclusionS ⊑ T if SI ⊆ T I ;
• a generalized role inclusionR ◦ S ⊑ T if RI ◦ SI ⊆ T I

• a role conjunctionS1 ⊓ S2 ⊑ T if SI
1 ∩ SI

2 ⊆ T I ;
• a concept product axiomC ×D ⊑ T if CI ×DI ⊆ T I ;
• a concept product axiomR ⊑ C ×D if RI ⊆ CI ×DI ;
• an assertionC(a) if aI ∈ CI ;
• an assertionR(a, b) if (aI , bI) ∈ RI .

Given a KBK = (TBox ,RBox ,ABox ), an interpretationM =〈∆, <, ·I〉 satisfies
TBox (resp.,RBox , ABox ) if M satisfies all axioms inTBox (resp.,RBox , ABox ),
and we writeM |= TBox (resp.,RBox , ABox ). An interpretationM = 〈∆, <, ·I〉 is
a modelof K (and we writeM |= K) if M satisfies all the axioms inTBox , RBox

andABox .
Let a queryF be either a concept inclusionC ⊑ D, whereC andD are extended

concepts, or an individual assertion.F is rationally entailed byK, writtenK |=sroelrt

F , if for all modelsM =〈∆, <, ·I〉 of K,M satisfiesF . In particular, theinstance
checkingproblem (under rational entailment) is the problem of deciding whether an
assertion (C(a), T(C)(a) or R(a, b)) is rationally entailed byK.

Given the correspondence of typicality inclusions with conditional assertionsC |∼

D, it can be easily seen that each ranked interpretationM satisfies the following seman-
tic conditions, corresponding to Lehmann and Magidor’s postulates of rational conse-
quence relation [34] reformulated in terms of typicality, where, byT(A) ⊑ B we mean
that T(A) ⊑ B is satisfied inM, by T(A) 6⊑ ¬B we mean thatT(A) ⊑ ¬B is not
satisfied inM, and byA ⊑ B (or A ≡ B) we mean thatA ⊑ B (or A ≡ B ) is satisfied
inM (a similar formulation of the semantic properties in terms of defeasible inclusions
can be found in [11]):

(LLE ) If A ≡ B andT(A) ⊑ C thenT(B) ⊑ C

(RW ) If B ⊑ C andT(A) ⊑ B thenT(A) ⊑ C

(Refl) T(A) ⊑ A

(And) If T(A) ⊑ B andT(A) ⊑ C thenT(A) ⊑ B ⊓ C

(Or) If T(A) ⊑ C andT(B) ⊑ C thenT(A ⊔ B) ⊑ C

(CM ) If T(A) ⊑ B andT(A) ⊑ C thenT(A ⊓ B) ⊑ C

(RM ) If T(A) ⊑ C andT(A) 6⊑ ¬B thenT(A ⊓ B) ⊑ C
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It is easy to see that these semantic properties hold in all the ranked models. In particu-
lar, property (RM), can be reformulated as follows:

if (T(A) ⊓ B)I 6= ∅, then(T(A ⊓ B))I ⊆ (T(A))I

and, in this form, it is a rephrasing of property(fT−R), in the semantics with selection
function of the operatorT studied in [27] (Appendix A) forALC + TR. This property
has a syntactic counterpart in the axiom∃U.(T(A) ⊓B) ⊓T(A ⊓B) ⊑ T(A), which
holds in all the ranked models.

Consider the following example of knowledge base, stating that: typical Italians
have black hair; typical students are young; they hate math,unless they are nerd (in
which case they love math); all Mary’s friends are typical students. We also have the
assertions stating that Mary is a student, that Mario is an Italian student, and is a friend
of Mary, Luigi is a typical Italian student, and Paul is a typical young student.

Example 1.TBox :
(a) T(Italian) ⊑ ∃hasHair .{Black}
(b) T(Student) ⊑ Young

(c) T(Student) ⊑ MathHater

(d) T(Student ⊓Nerd) ⊑ MathLover

(e) ∃hasHair .{Black} ⊓ ∃hasHair .{Blond} ⊑ ⊥
(f) MathLover ⊓MathHater ⊑ ⊥
(g) ∃friendOf .{mary} ⊑ T(Student)

ABox :
Student(mary), friendOf (mario,mary), (Student ⊓ Italian)(mario),
T(Student⊓Italian)(luigi), T(Student⊓Young)(paul), T(Student⊓Nerd)(tom)

The fact that conceptsT(C) can occur anywhere (apart from being nested in a
T operator) can be used, e.g., to state that typical working students inherit proper-
ties of typical students (T(Student ⊓ Worker ) ⊑ T(Student)), in a situation in
which typical students and typical workers have conflictingproperties (e.g., as re-
gards paying taxes). Also, we could state that there are typical students who are Italian:
⊤ ⊑ ∃U.T(Student ⊓ Italian), whereU is the universal role (⊤×⊤ ⊑ U ).

Standard DL inferences hold forT(C) concepts andT(C) ⊑ D inclusions. For
instance, we can conclude that Mario is a typical student (by(g)) and young (by (b)).
However, by the properties of defeasible inclusions, Luigi, who is a typical Italian stu-
dent, and Paul, who is a typical young student, both inherit the property of typical stu-
dents of being math haters, respectively, by rational monotonicity (RM) and by cautious
monotonicity (CM). Instead, as Tom is a typical nerd student, and typical nerd student
are math lovers, this specific property of typical nerd students prevails over the less spe-
cific property of typical students of hating math. So we can consistently conclude that
Tom is aMathLover .

A normal form forSROEL(⊓,×)RT knowledge bases can be defined. A KB in
SROEL(⊓,×)RT is in normal formif it admits all the axioms of aSROEL(⊓,×)
KB in normal form:

C(a) R(a, b) A ⊑ ⊥ ⊤ ⊑ C A ⊑ {c}
A ⊑ C A ⊓B ⊑ C ∃R.A ⊑ C A ⊑ ∃R.B

{a} ⊑ C ∃R.Self ⊑ C A ⊑ ∃R.Self



6 L. Giordano, D. Theseider Dupré

R ⊑ T R ◦ S ⊑ T R ⊓ S ⊑ T A×B ⊑ R R ⊑ C ×D

(whereA, B, C, D ∈ NC , R, S, T ∈ NR anda, b, c ∈ NI ) and, in addition, it admits
axioms of the form:A ⊑ T (B) and T (B) ⊑ C with A, B, C ∈ NC . Extending the
results in [1] and in [32], it is easy to see that, given aSROEL(⊓,×)RT KB, a seman-
tically equivalent KB in normal form (over an extended signature) can be computed in
linear time. In essence, for each conceptT(C) occurring in the KB, we introduce two
new concept names,XC andYC . A new KB is obtained by replacing all the occur-
rences ofT(C) with XC in all the inclusions and assertions, and adding the following
additional inclusion axioms:

XC ⊑ T(YC), T(YC) ⊑ XC , YC ⊑ C, C ⊑ YC

Then the new KB undergoes the normal form transformation forSROEL(⊓,×) [32].
The resulting KB is linear in the size of the original one.

Example 2.Considering again the TBox in Example 1, inclusion(a) T(Italian) ⊑
∃hasHair .{Black} is transformed in the following set of inclusions:

(a1) XI ⊑ ∃hasHair .{Black}
(a2) XI ⊑ T(Italian)
(a3) T(Italian) ⊑ XI

Inclusion(d) T(Student ⊓ Nerd) ⊑ MathLover is mapped to the set of inclusions:
(d1) XSN ⊑ MathLover

(d2) XSN ⊑ T(YSN )
(d3) T(YSN ) ⊑ XSN

(d4) Student ⊓ Nerd ⊑ YSN

(d5) YSN ⊑ Student ⊓ Nerd

Then(a1) is transformed further (the normal form transformation forSROEL(⊓,×))
into: (a′

1) XI ⊑ ∃hasHair .B (a′′
1 ) B ⊑ {Black}

All the other axioms in the TBox, apart from (b) and (c), have to be transformed
in normal form. Assertions are also subject to the normal form transformation. For
instance,T(Student ⊓ Nerd)(tom) becomesXSN (tom), whereXSN is one of the
concept names introduced above.

3 Minimal entailment

In Example 1, we cannot conclude that all typical young Italians have black hair (and
that Luigi has black hair) using rational monotonicity, as we do not know whether there
is some typical Italian who is young. To supports such a stronger nonmonotonic infer-
ence, a minimal model semantics is needed to select those interpretations where indi-
viduals are as typical as possible. Among models of a KB, we select the minimal ones
according to the followingpreference relation≺ over the set of ranked interpretations.
An interpretationM =〈∆, <, I〉 is preferred toM′ = 〈∆′, <′, I ′〉 (M ≺ M′) if:
∆ = ∆′; CI = CI′

for all non-extended conceptsC; for all x ∈ ∆, kM(x) ≤ kM′(x),
and there existsy ∈ ∆ such thatkM(y) < kM′(y).

We can see that, in all the minimal models of the KB in Example 1luigi is an
instance of the concept∃hasHair .{Black} and the inclusionT(Young ⊓ Italian) ⊑
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∃hasHair .{Black} is satisfied, as nothing prevents aYoung ⊓ Italian individual from
having rank0.

In particular, we consider the notion of minimal canonical model defined in [27] to
capture rational closure of anALC KB extended with typicality. The requirement of
a model to be canonical is used to guarantee that models contain enough individuals.
Given a KBK and a queryF , let S be the set of all the (non-extended) concepts (and
subconcepts) occurring inK or F together with their complements (S is finite). In the
following, we will assume that all concepts occurring in thequeryF are included inK.

Definition 3 (Canonical models).A modelM = 〈∆, <, I〉 of K is canonicalif, for
each set ofSROEL(⊓,×)RT concepts{C1, C2, . . . , Cn} ⊆ S consistent withK (i.e.,
s.t.K 6|=sroelrt C1⊓C2⊓. . .⊓Cn ⊑ ⊥), there exists (at least) a domain elementx ∈ ∆

such thatx ∈ (C1 ⊓ C2 ⊓ . . . ⊓ Cn)I .

Among canonical models, we select the minimal ones.

Definition 4. M is a minimal canonical modelof K if it is a canonical model ofK
and it is minimal with respect to the preference relation≺.

Definition 5 (Minimal entailment). Given a queryF , F is minimally entailed byK,
writtenK |=min F if, for all minimal canonical modelsM of K,M satisfiesF .

We can show that the problem of instance checking inSROEL(⊓,×)RT under
minimal entailment isCONP-hard. The proof is based on a reduction from tautology
checking of propositional 3DNF formulae to instance checking inSROEL(⊓,×)RT

and its structure has similarities with the proof ofCO-NP-hardness forFL subsumption
in [2] (Chapter 3, Theorem 3.2). Given an alphabet of propositional variablesL =
{p1, . . . , pk}, let γ = G1 ∨ . . . ∨ Gn be a propositional formula where each disjunct
Gi = l1i ∧ l2i ∧ l3i (i = 1, . . . , n) is the conjunction of three literals and each literal
l
j
i (j = 1, . . . , 3) is either a variablep ∈ L or its negation¬p. The 3DNF tautology

problem, i.e. the problem of deciding whetherγ is a tautology (in the propositional
calculus), is known to beCONP-complete [17].

Theorem 1. Instance checking inSROEL(⊓,×)RT under minimal entailment isCONP-
hard.

Proof. (sketch)Given an alphabet of propositional variablesL = {p1, . . . , pk} and a
propositional formula in 3DNFγ = G1 ∨ . . . ∨ Gn as defined above, we define a KB
K = (TBox ,RBox ,ABox ) in SROEL(⊓,×)RT as follows. We introduce inNC

two concept namesPh, P h for each variableph ∈ L, a concept nameDγ associated
with the formulaγ and a new concept nameE. LetR ∈ NR be a role name anda ∈ NI

be an individual name. We defineK as follows:RBox = {Ph × Ph ⊑ R, h = 1 , ..., k},
ABox = {T(Ph⊓P h)(a), h = 1, ..., k}∪{T(E)(a)}, andTBox contains the follow-
ing inclusions:

(1) T(Ph) ⊓T(P h) ⊑ ⊥,
(2) T(⊤) ⊓ ∃R.T(⊤) ⊑ ⊥
(3) T(E) ⊓ C1

i ⊓ C2
i ⊓ C3

i ⊑ Dγ , for eachGi = l1i ∧ l2i ∧ l3i



8 L. Giordano, D. Theseider Dupré

whereh = 1, . . . , k and, for eachi = 1, . . . , n andj ∈ {1, 2, 3}, C
j
i is defined as

follows:

C
j
i =

{
T(Ph) if l

j
i = ph

∃U.(T(⊤) ⊓T(Ph)) if l
j
i = ¬ph

Let us consider any modelM= 〈∆, <, ·I〉 of K. Observe that, asaI ∈ Ph ⊓ P h, aI

cannot have rank 0, otherwise it would be both a typicalPh and a typicalP h, falsifying
(1). By the role inclusions eachPh element is in relationR with anyP h element. Also,
by (2), there cannot be aPh elementx and aPh elementy both with rank 0, otherwise
x andy would be related byR and axiom (2) excludes that twoT(⊤) elements are in
relationR. It is possible that, in a model ofK, there are noPh elements with rank 0
and noP h elements with rank 0. However, if we consider minimal canonical models of
K, there must be either aPh element or aP h element with rank 0.

Remember thatkM(C) is the rank of a conceptC in a ranked modelM. It can be
seen that, in all the minimal canonical models ofK, for all h = 1, . . . , k, the following
conditions hold:

(i) eitherkM(Ph) = 0 or kM(P h) = 0;
(ii) kM(Ph ⊓ Ph) = 1 andkM(aI) = 1.

As a consequence,aI is either a typicalPh element (when the rank ofPh is 0) or a typ-
ical P h (when the rank ofPh is 0). So there are alternative minimal canonical models
in which, for eachh, aI is either aT(Ph), and in this case there exists a typicalP h ele-
ment with rank 0; ora is aT(P h), and in this case there exists a typicalPh element with
rank 0. Therefore, in any minimal canonical modelsM of K: eitheraI ∈ (T(Ph))I

or aI ∈ (∃U .(T(⊤) ⊓T(Ph )))I (but not both). Then foraI the two concepts in the
definition ofCj

i are disjoint and complementary and the following can be proved:
K |=min Dγ(a) if and only if γ is a tautology ⊓⊔

It is an open issue whether a similar proof can be done also forsimple knowledge
bases (i.e., forSROEL(⊓,×)RT knowledge bases where the typicality operator only
occurs on the left hand side of concept inclusionsT(C) ⊑ D). For simple KBs, it was
proved forALC+TR [27] that all minimal canonical models of the KB assign the same
ranks to concepts, namely, the ranks determined by the rational closure construction.
This is clearly true, in particular, for the fragment ofSROEL(⊓,×)RT included in
the language ofALC plus typicality (which however, does not contain nominals,role
inclusions, and other constructs ofSROEL(⊓,×)).

Note thatK, in the proof above, has alternative minimal canonical models with in-
comparable rank assignments. The existence of alternativeminimal models for a KB
with free occurrences of typicality in the propositional case was observed in [9] for
Propositional Typicality logic (PTL). As an example of a KB in SROEL(⊓,×)RT

with alternative minimal canonical models with incomparable rank assignments, con-
siderK ′ = (TBox ′,RBox ′,ABox ′), whereRBox ′ = {P × P ⊑ R},ABox ′ = {T(P
⊓P)(a)} andTBox contains the inclusionT(P )⊓T(P ) ⊑ ⊥ andT(⊤)⊓∃R.T(⊤) ⊑
⊥ (meaning that two elements of rank 0 cannot be related byR). Consider the follow-
ing two canonical modelsM1,M2 of K ′, over the domain∆ = {x, y, z, w}, where,

for i = 1, 2, P Ii = {y, z}, P
Ii

= {z, w}, RIi = {(z, z), (z, w), (y, z), (y, w)} and
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aIi = z. Furthermore, concerning the rankings, forM1, kM1
(x) = kM1

(y) = 0,
kM1

(z) = kM1
(w) = 1; forM2, kM2

(x) = kM2
(w) = 0, kM2

(z) = kM2
(y) = 1.

M1 andM2 are both minimal canonical models ofK ′ and have incomparable rank-
ings, withP having rank 0 inM1 and rank 1 inM2.

4 Deciding rational entailment in polynomial time

While instance checking inSROEL(⊓,×)RT under minimal entailment isCONP-
hard, in this section we prove that instance checking under rational entailment can be
decided in polynomial time for normalized KBs, by defining a translation of a normal-
ized KB into a set of Datalog rules, whose grounding is polynomial in the size of the
KB. In particular, we extend the Datalog materialization calculus forSROEL(⊓,×),
proposed by Krötzsch [32], to deal with typicality concepts and with instance checking
under rational entailment inSROEL(⊓,×)RT.

The calculus in [32] uses predicatesinst(a,C ) (whose meaning includes: the in-
dividuala is an instance of concept nameC, see [33] for details),triple(a,R, b) (a is
in relationR with b), self (a,R) (a is in relationR with itself). To map aSROEL(⊓,
×)RT KB to a Datalog program, we add predicates to represent that:an individual
a is a typical instance of a concept name (typ(a,C )); the ranks of two individualsa
andb are the same (sameRank(a, b)); the rank ofa is less or equal than the one ofb

(leqRank(a, b)).
Besides the constants for individuals inNI (which are assumed to be finitely many),

the calculus in [32] exploits auxiliary constantsauxA⊑∃R.C (one for each inclusion of
the formA ⊑ ∃R.C ) to deal with existential restriction. We also need to introduce an
auxiliary constantauxC for any conceptT(C) occurring in the KB or in the query,
used as a representative typicalC, in caseC is non-empty.

Given a normalized KBK = (TBox ,RBox ,ABox ) and queryQ of the formC(a)
or T(C)(a), whereC is a concept name in the normalized KB, the Datalog program
for instance checking inSROEL(⊓,×)RT, i.e. for querying whetherK |=sroelrt Q , is
a programΠ(K), the union of:

1. ΠK , the representation ofK as a set of Datalog facts, based on the input translation
in [32];

2. ΠIR, the inference rules of the basic calculus in [32];
3. ΠRT , containing the additional rules for reasoning with typicality in
SROEL(⊓,×)RT.

A query Q of the formT(C)(a), or C(a), is mapped to a goalGQ of the form
typ(a,C ), or inst(a,C ). Observe that restricting queries to concept names is not a
severe restriction as an arbitrary queryC(b) can be replaced by a queryA(b) with A

new concept name, by addingC ⊑ A to the TBox [1] and, of course, this inclusion is
normalized when normalizing TBox.

We defineΠ(K) in such a way thatGQ is derivable in Datalog fromΠ(K) (written
Π(K) ⊢ GQ) if and only if K |=sroelrt Q .

ΠK includes the result of the input translation in section 3 in [32] wherenom(a),
cls(A), rol(R) are used fora ∈ NI , A ∈ NC , R ∈ NR, and, for example:
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– subClass(a,C ), subClass(A, c), subClass(A,C ) are used forC(a), A ⊑ {c},
A ⊑ C;

– subEx (R,A,C ) is used for∃R.A ⊑ C ;

and similar statements represent other axioms in the normalized KB.
The following is the additional mapping for the extended syntax of the

SROEL(⊓,×)RT normal form (note that no mapping is needed for assertionsT(C)(a),
as they do not occur in a normalized KB):

A ⊑ T(B) 7→ supTyp(A,B)
T(B) ⊑ C 7→ subTyp(B ,C )

Also, we need to addtop(⊤) to the input specification.
ΠIR contains all the inference rules from [32]1:

(1) inst(x , x )← nom(x )
(2) self (x , v)← nom(x ), triple(x , v , x )
(3) inst(x , z )← top(z ), inst(x , z ′)
(4) inst(x , y)← bot(z ), inst(u, z ), inst(x , z ′), cls(y)
(5) inst(x , z )← subClass(y, z ), inst(x , y)
(6) inst(x , z )← subConj (y1 , y2 , z ), inst(x , y1 ), inst(x , y2 )
(7) inst(x , z )← subEx (v , y, z ), triple(x , v , x ′), inst(x ′, y)
(8) inst(x , z )← subEx (v , y, z ), self (x , v), inst(x , y)
(9) triple(x , v , x ′)← supEx (y, v , z , x ′), inst(x , y)
(10) inst(x ′, z )← supEx (y, v , z , x ′), inst(x , y)
(11) inst(x , z )← subSelf (v , z ), self (x , v)
(12) self (x , v)← supSelf (y, v), inst(x , y)
(13) triple(x ,w , x ′)← subRole(v ,w), triple(x , v , x ′)
(14) self (x ,w)← subRole(v ,w), self (x , v)
(15) triple(x ,w , x ′′)← subRChain(u, v ,w), triple(x , u, x ′), triple(x ′, v , x ′′)
(16) triple(x ,w , x ′)← subRChain(u, v ,w), self (x , u), triple(x , v , x ′)
(17) triple(x ,w , x ′)← subRChain(u, v ,w), triple(x , u, x ′), self (x ′, v)
(18) triple(x ,w , x )← subRChain(u, v ,w), self (x , u), self (x , v)
(19) triple(x ,w , x ′)← subRConj (v1 , v2 ,w), triple(x , v1 , x ′), triple(x , v2 , x ′)
(20) self (x ,w)← subRConj (v1 , v2 ,w), self (x , v1 ), self (x , v2 )
(21) triple(x ,w , x ′)← subProd(y1 , y2 ,w), inst(x , y1 ), inst(x ′, y2 )
(22) self (x ,w)← subProd(y1 , y2 ,w), inst(x , y1 ), inst(x , y2 )
(23) inst(x , z1 )← supProd(v , z1 , z2 ), triple(x , v , x ′)
(24) inst(x , z1 )← supProd(v , z1 , z2 ), self (x , v)
(25) inst(x ′, z2 )← supProd(v , z1 , z2 ), triple(x , v , x ′)
(26) inst(x , z2 )← supProd(v , z1 , z2 ), self (x , v)
(27) inst(y, z )← inst(x , y),nom(y), inst(x , z )
(28) inst(x , z )← inst(x , y),nom(y), inst(y, z )
(29) triple(z , u, y) ← inst(x , y),nom(y), triple(z , u, x )

1 Here,u, v, x, y, z, w, possibly with suffixes, are variables.
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Note that “statementsinst(a, b), with a andb individuals, encode equality ofa andb”
[33].

ΠRT , i.e. the set of rules to deal with typicality, is as follows;it contains rules for
supTyp andsubTyp axioms, and rules that deal with the rank of domain elements.In
the rules,x, y, z, A, B, C are all Datalog variables.

(SupTyp) typ(x , z )← supTyp(y, z ), inst(x , y)
(SubTyp) inst(x , z )← subTyp(y, z ), typ(x , y)
(Refl) inst(x , y)← typ(x , y)
(A0 ) typ(auxC ,C )← inst(x ,C )
(A1 ) leqRank(x , y)← typ(x ,B), inst(y,B)
(A2 ) sameRank(x , y)← typ(x ,A), typ(y,A)
(A3 ) typ(x ,B)← sameRank(x , y), inst(x ,B), typ(y,B)
(A4 ) typ(x ,B)← inst(x ,A), supTyp(A,B)
(B1 ) sameRank(x , z )← sameRank(x , y), sameRank(y, z )
(B2 ) sameRank(x , y)← sameRank(y, x )
(B3 ) sameRank(x , x )← inst(x ,T )
(B4 ) leqRank(x , y)← sameRank(y, x )
(B5 ) leqRank(x , z )← leqRank(x , y), leqRank(y, z )
(B6 ) sameRank(x , y)← leqRank(x , y), leqRank(y, x )
(B7 ) sameRank(x , y)← nom(y), inst(x , y)

Rule(Refl) corresponds to the reflexivity property (see Section 2). Rules(A0 )− (A4 )
encode properties of ranked models: if there is aC element, there must be a typicalC

element(A0 ); a typicalB element has a rank less or equal to the rank of anyB element
(A1 ); two elements which are both typicalA elements have the same rank(A2 ); if x is
a B element and has the same rank as a typicalB element,x is also a typicalB element
(A3 ); if x is anA element and allA’s are typicalB’s, thenx is a typicalA (A4 ).
(B1 )− (B7 ) define properties of rank order. In particular, by(B7 ), two constants that
correspond to the same domain element have the same rank.

The semantic properties of rational consequence relation introduced in Section 2
are enforced by the specification above. Consider, for instance,(CM ). Suppose that
subTyp(A,B) and subTyp(A,C ) are in ΠK (asT(A) ⊑ B , T(A) ⊑ C are in K)
and thatD is a concept name defined to be equivalent toA ⊓ B in K. Suppose that
typ(a,D) holds. One can infertyp(a,A) and henceinst(a,C ), i.e., typicalA ⊓ B’s
inherit from typicalA’s the property of beingC ’s (the inference forPaul in Exam-
ple 1). In fact,typ(a,A) is inferred showing thata (who is a typicalD and anA,
as it is aD) andauxA (who is a typicalA, by (A1 ), and aD, since all the typical
A’s are alsoB’s and henceA ⊓ B’s) have the same rank. In fact, using(A1 ) twice,
one can conclude bothleqRank(a, auxA) and leqRank(auxA, a) so that, by(B6 ),
sameRank(a, auxA). Then, by(A3 ), we infer typ(a,A). With rule (subTyp), from
typ(a,A) andsubTyp(A,C ), we concludeinst(a,C ).

Reasoning in a similar way, one can see that also the properties(RM ) and(LLE )
are enforced by the rules above. In particular, for (RM), we can show that: from the fact
that there is a domain elementa who is aT(A) and aC element (i.e.typ(a,A) and
inst(a,C ) hold), and from the fact that there is ab who is a typicalA ⊓ C element
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(i.e. thattyp(b,D) holds, for some conceptD equivalent toA ⊓ C), we can conclude
that b is also a typicalA element (i.e.typ(b,A) holds). Inference inSROEL(⊓,×)
already takes care of the semantic properties of conjunctive consequences(And) and
right weakening(RW ).

Theorem 2. For a SROEL(⊓,×)RT KB in normal formK, and a queryQ of the
formT(C)(a) or C(a), K |=sroelrt Q if and only ifΠ(K) ⊢ GQ.

Proof. (sketch) For completeness, we procede by contraposition, similarlyto [33]. As-
sume thatinst(a,C ) (respectively,typ(a,C )) is not derivable fromΠ(K). Let J be
the minimal Herbrand model of the Datalog programΠ(K); theninst(a,C ) 6∈ J (resp.
typ(a,C ) 6∈ J). FromJ we build a ranked modelM for K such thatC(a) (respec-
tively, T(C)(a)) is not satisfied inM. As in [33], we can build the domain∆ ofM
from the setConst including all the name constantsc ∈ NI occurring in the ASP pro-
gramΠ(K) as well as all the auxiliary constants, then defining an equivalence relation
≈ over constants and the domain∆ including the equivalence classes and, possibly,
additional domain elements for auxiliary constants, as in the proof of Lemma 3 in [33].
J contains all the details about the interpretation of concepts and roles, from which an
interpretationM can be defined (for instance, forc ∈ NI , [c] ∈ AI iff inst(c,A) ∈ J ,
and similarly for other domain elements and for roles). However, predicatessameRank

andleqRank only provide partial information about the ranks of the domain elements.
We define a relation< overconstants, lettingx < y iff there is a concept nameC, s.t.
typ(x ,C ), inst(y,C ) ∈ J andtyp(y,C ) 6∈ J and we show thatits transitive closureis
a strict partial order. Also, we show that< is compatible withthesameRank predicate
in J and with the≈ equivalence relation between constants so that< can be extended
to a modular partial order over the domain∆. First, a partial ordering over elements in
∆ is defined, letting[c] < [d] iff c < d (where the definition does not depend on the
choice of the representative element in a class) and similarly for domain elements cor-
responding to auxiliary constants. Then the elements in∆ are partitioned into the sets
Rank0, . . . , Rankn, whereRanki (the set of domain elements of ranki) is defined by
induction oni, as follows:Rank0 contains all the elementsx ∈ ∆ such that there is no
y ∈ ∆ with y < x; Ranki contains all the elementsx ∈ ∆− (Rank0∪ . . .∪Ranki−1)
such that there is noy ∈ ∆ − (Rank0 ∪ . . . ∪ Ranki−1) with y < x. We letn be the
least integer such that∆ − (Rank0 ∪ . . . ∪Rankn) = ∅. It can be shown thatM is a
model ofK and it does not satisfyC(a) (respectively,T(C)(a)).

Proving the soundness of the Datalog encoding, requires showing that, ifΠ(K) ⊢
GQ, for a queryQ of the formT(C)(a) or C(a), then,Q is a logical consequence of
K. The proof is similar to the proof of Lemma 1 in [33]. First we associate to each
constantc of the Datalog programΠ(K) a concept expressionκ(c) a follows:

if c ∈ NI thenκ(c) = {c};
if c = auxα, for α = A ⊑ ∃R.B, thenκ(c) = B ⊓ ∃R−.A;
if c = auxC , thenκ(c) = T(C).

The following statements:
- if Π(K) ⊢ inst(c,A), for A ∈ NC , thenK |=sroelrt κ(c) ⊑ A;
- if Π(K) ⊢ inst(c, d), for d ∈ NI , thenK |=sroelrt κ(c) ⊑ {d};
- if Π(K) ⊢ typ(a,A), thenK |=sroelrt κ(c) ⊑ T(A);
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- if Π(K) ⊢ triple(c,R, d), thenK |=sroelrt κ(c) ⊑ ∃R.κ(d);
- if Π(K) ⊢ self (c,R), for A ∈ NC , thenK |=sroelrt κ(c) ⊑ ∃R.Self ;
- if Π(K) ⊢ sameRank(c, d) then for all modelsM of K, kM(cI) = kM(dI);
- if Π(K) ⊢ leqRank(c, d) then, for all modelsM of K, kM(cI) ≤ kM(dI).

can be proved by induction on the height of the derivation tree of each atom from the
programΠ(K). ⊓⊔

Π(K) contains a polynomial number of rules and exploits a polynomial number of
concepts in the size ofK, hence instance checking inSROEL(⊓,×)RT can be de-
cided in polynomial time using the calculus in Datalog. The encoding can be processed,
e.g., in an ASP solver such as Clingo or DLV (with the proper capitalization of vari-
ables); computation of the (unique, in this case) answer settakes a negligible time for
KBs with a hundred assertions (half of them withT).

Exploiting the approach presented in [32], a version of the Datalog specification
where predicatesinst , typ, triple andself have an additional parameter (and is there-
fore less efficient than the previous one, although polynomial) can be used to check
subsumption forSROEL(⊓,×)RT.

For simpleSROEL(⊓,×)RT knowledge bases, i.e., for KBs where the typical-
ity operator only occurs on the left hand side of inclusions,the materialization calcu-
lus for subsumption can be used to construct the rational closure of TBox, adopting
the construction in [27] (Definitions 21 and 23). Such construction can be rephrased
replacing the exceptionality check inALC + TR with the exceptionality check in
SROEL(⊓,×)RT and the entailment inALC + TR with the entailment inSROEL
(⊓,×)RT. In particular, inSROEL(⊓,×)RT one can define, for a simple KBK, the
notion of exceptionality as follows:C is exceptional wrtK iff K |=sroelrt T(⊤)⊓C ⊑
⊥. This subsumption is not in the language of normalized KBs, but it can be replaced
by the subsumptionA ⊑ ⊥, addingT(⊤) ⊑ X andX⊓C ⊑ A to K. The construction
requires a quadratic number of subsumption checks (in the number of typicality inclu-
sions in the KB, and, hence, in the size of the KB), each one requiring polynomial time,
using the above mentioned polynomial calculus for subsumption.

The correspondence between the rational closure construction and the canonical
minimal model semantics in [27], does not extend to all the constructs inSROEL(⊓,
×)RT and, specifically, the canonical model semantics is not adequate for dealing with
nominals. In particular, there are knowledge bases with no canonical model and knowl-
edge bases with more than one minimal canonical model (as theknowledge baseK ′

at the end of Section 3). However, in many cases, the rationalclosure of a KB with no
canonical model is still meaningful. What has to be devised is, on the one hand, a less
restrictive semantic requirement to give meaning also to KBs containing nominals; on
the other hand, a syntactic condition to identify the KBs forwhich the rational closure is
by itself meaningful and corresponds to the semantics. In this paper, we do not address
these issues and we leave them for further work.

5 Related Work

Among the recent nonmonotonic extensions of DLs are the formalisms for combining
DLs with logic programming rules, such as for instance, [16,15], [35], [30] and Dat-
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alog +/- [28]. DL-programs in [16, 15] support a loose coupling of DL ontologies and
rule-based reasoning under the answer set semantics and under the well-founded se-
mantics, where rules may contain DL-atoms in their bodies, corresponding to queries
to a DL ontology, which can be modified according to an input list of updates. In [30]
a general DL language is introduced, which extendsSROIQ with nominal schemas
and epistemic operators according to the MKNF semantics [35], which encompasses
some of the most prominent nonmonotonic rule languages, including ASP. In [5] a non
monotonic extension of DLs is proposed based on a notion of overriding, supporting
normality concepts and enjoying good computational properties. In particular, it pre-
serves the tractability of low complexity DLs, includingEL++ andDL-lite. In [10],
the CKR framework is presented, which is based onSROIQ-RL, allows for defeasible
axioms with local exceptions and a translation to Datalog with negation. It is shown
that instance checking over a CKR reduces to (cautious) inference under the answer
sets semantics.

Preferential extensions of low complexity DLs in theEL and DL-lite families have
been studied In [24, 25], based on preferential interpretations which are not required to
be modular, and tableaux-based proof methods have been developed for them. In [25],
for a preferential extension ofEL⊥ based on a minimal model semantics different from
the one in this paper, it is shown that minimal entailment is EXPTIME-hard already for
simple KBs, similarly to what happens for circumscriptive KBs [6].

6 Conclusions

In this paper we defined a rational extensionSROEL(⊓,×)R T of the low complex-
ity description logicSROEL(⊓,×), which underlies the OWL EL ontology language,
introducing a typicality operator. For general KBs, we haveshown that minimal entail-
ment inSROEL(⊓,×)RT is CONP-hard. When free occurrences of typicality con-
cepts in concept inclusions are allowed, alternative minimal models may exist with
different rank assignments to concepts. In [9] this phenomenon has been analyzed in
the context of PTL, considering alternative preference relations over ranked interpreta-
tions which coincide over simple KBs but, for general ones, define different notions of
entailment satisfying alternative and possibly incompatible postulates.

Building on the materialization calculus forSROEL(⊓,×) in Datalog presented
in [32], a calculus for instance checking and subsumption under rational entailment is
defined, showing that these problems can be decided in polynomial time.

This result also provides a polynomial upper bound for the construction of the ra-
tional closure of a knowledge base inSROEL(⊓,×)RT. Although for the fragment of
SROEL(⊓,×)RT which is also included in the language ofALC+TR in [27] the ra-
tional closure is semantically characterized by the minimal canonical models of the KB,
a general semantic characterization of the rational closure for the logicSROEL(⊓,×)
is still missing.

Future work may also include optimizations, based on modularity as in [7], of the
calculus for rational entailment, and the development of rule based inference meth-
ods forSROEL(⊓,×)RT minimal entailment based on model generation in ASP. An
upper bound on the complexity of minimal entailment for general KBs has to be es-
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tablished. A further issue to understand is whether a materialization calculus can be
defined also for the preferential extensions of DLs in theEL family in [24, 25], whose
interpretations are not required to be modular.

Apart from providing a complexity upper bound, the Datalog encoding presented
in this paper is intended to provide a way to integrate the useof SROEL(⊓,×) KBs
under rational entailment with other kinds of reasoning that can be performed in ASP,
and, by extending the encoding to deal with alternative models of the KB, also to allow
the experimentation of alternative notions of minimal entailment, as advocated in [9].
The approach can be possibly integrated with systems like DReW [37], that already
exploits the mapping by Krötzsch for OWL 2 EL.
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