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Abstract: When it comes to modelling in atmospheric and
climate science, the two main types of models are taken
into account – dynamical and statistical models. The for-
mer ones have a physical basis: they utilize discretized dif-
ferential equations with a set of conditions (boundary con-
ditions + present state as an initial condition) and model
the system’s state by integrating the equations forward in
time. Models of this type are currently used e.g. as a nu-
merical weather prediction models. The statistical models
are considerably different: they are not based on physical
mechanisms underlying the dynamics of the modelled sys-
tem, but rather derived from the analysis of past weather
patterns. An example of such a statistical model based
on the idea of linear inverse modelling, is examined for
modelling the El Niño – Southern Oscillation phenomenon
with a focus on modelling cross-scale interactions in the
temporal sense. Various noise parameterizations and the
possibility of using a multi-variable model is discussed
among other characteristics of the statistical model. The
prospect of using statistical models with low complexity
as a surrogate model for statistical testing of null hypothe-
ses is also discussed.

1 Modelling in climate science

Climate models, which rely on the use of quantitative
methods to simulate interactions in the climate system, are
one of the most important tools to predict and asses future
climate projections or to study the climate of the past. In
general, two types of models are mainly used: dynamical
models and statistical models. The base for a dynamical
model is a set of discretized differential equations which
are integrated forward in time from the present state, pos-
ing as an initial condition. The most prominent example of
the usage of dynamical models is without doubt a general
circulation model (GCM hereafter). It employs a mathe-
matical model of circulation of the planetary atmosphere
and oceans, therefore it uses the Navier-Stokes equations
on a rotating sphere (describing a motion of viscous fluid)
with thermodynamic terms for energy sources and sinks.
The above described model is used in numerical weather
prediction, to infer the reanalysis datasets of the past cli-
mate and for future climate projections in climate model
intercomparison projects CMIP3 [1] and CMIP5 [2].

The uncertainties of the forecast arisen from the GCM
models are usually classified into two types: the first one is
related to the initial errors (errors in determining the “true”
present state of the climate), while the second one is due to

the model errors [3] and these are intrinsic. The problem
with initial errors is usually tackled by considering an en-
semble of model forecasts (instead of just one realization -
integration from single initial state), starting with slightly
different initial conditions. The model errors are intrinsi-
cally connected with the exponential error growth emerg-
ing from the chaotic behaviour related to nonlinearities in
discretized equations [4]. This limits the predictability of
such GCMs to 6-10 days maximum (e.g. [5]).

1.1 Statistical models

The second kind of models used in climate science are sta-
tistical models. In their design, they are considerably dif-
ferent than the dynamical models in the sense that they
are not based on physical mechanism underlying the dy-
namics of the modelled system, but rather derived from
the analysis of past weather patterns. Probably the most
used concept is that of inverse stochastic model [6], where
the model is designed, then estimated using past data and,
finally, stochastically integrated forward in time to obtain
the prediction. The disadvantages connected to this type of
models consist of the selection of variables that capture the
system we are trying to model. Other possible issue could
be the non-stationarity of the modelled system - since the
statistical model does not involve the underlying physi-
cal mechanisms, just the interaction between subsystems
(ignoring hidden variables), the model estimated on some
subset of the past data may not correctly capture all possi-
ble states of the system. In other words, the training period
of the past data used to estimate the statistical model may
not capture the full phase space of the modelled system.

The motivation for building a statistical model for par-
ticular phenomenon, apart from its forecasting, would be
to scale down the complexity of the problem. When we
find some e.g. nonlinear interactions in the observed data,
and we are interested in uncovering the mechanisms, con-
structing a models of different complexity and seeking
such interactions in them would help to expose the mech-
anisms and shed some light on the problem.

In the following sections, the inverse stochastic model
for forecasting the El Niño - Southern Oscillation (ENSO
hereafter) phenomenon is built following [7], with the fo-
cus on various noise parametrizations and possible use of
multiple variables.
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Figure 1: ENSO phenomenon, its phases and mechanisms: (left) neutral, (center) positive and (right) negative. Figures
taken from [10].

2 Data-based ENSO model

The ENSO phenomenon exhibits strong interannual cli-
mate signal and has a great economic and societal impact.
It originates from the coupled ocean-atmosphere dynam-
ics of the tropical Pacific [8], but has a strong influence on
circulation and air-sea interaction also outside the tropical
belt through teleconnections associated with it [9].

The ENSO phenomenon expresses itself as a sea surface
temperature (SST hereafter) anomaly and exists in three
distinct phases - the neutral, positive (El Niño) and nega-
tive (La Niña). The basic physical mechanisms for each of
the phases are depicted in Fig. 1. The normal state of the
equatorial Pacific (Fig. 1 left) is warm SST in the western
basin, near Australia and cold SST in the eastern basin,
near the coast of Peru. Above the warm water in the west,
the deep convection takes place, where warm and moist air
is ascending to the border of troposphere, creating an area
of low atmospheric pressure and area of persistent precip-
itation. From the upper part of the troposphere, the air is
moving eastward and then it descends already as cold and
dry, creating an area of high atmospheric pressure above
the eastern equatorial Pacific. From this basin, the air is
blowing westward on the surface, in agreement with the
trade winds, finishing the circulation loop known as the
Walker circulation. The easterly surface air flow triggers
the oceanic surface current to flow poleward, effectively
removing water from the surface, thus the water needs to
be replaced and this is due to the upwelling, where in the
equatorial area, the water is upwelled from roughly 50 me-
ters depth to the surface. Since the thermocline (a border
between cold deep ocean and warm surface ocean) is lo-
cated below 50 meters in the west, the upwelled water is
warm, but in the eastern Pacific the thermocline level is
above the 50 meters, thus the upwelled water is cold, cre-
ating the cold SST in the east and warm SST in the west.

The warm phase of ENSO (Fig. 1 center) creates a warm
SST anomaly in the eastern Pacific, acting to weaken the
Walker circulation, to move the area of persistent precip-
itation eastward, to diminish the difference between east-
ern and western Pacific surface pressures and to level off
the thermocline. Reversely, the negative phase of ENSO

(Fig. 1 right) is acting to strengthen the Walker circula-
tion, to move the area of persistent precipitation even more
westward, the differences in surface pressure is now larger
and the thermocline is even more tilted. The ENSO tends
to naturally oscillate between these three phases without a
distinct period (there is no distinct peak in ENSO signal’s
spectrum) and the reasons why are still largely unknown.

The important aspect of ENSO is that its positive phase
- El Niño is generally characterized by a larger magnitude
than its negative phase - La Niña. This statistical skewness
is one of the indicators that, at least to some extent, the dy-
namics of ENSO involves nonlinear processes [11]. At the
same time, the most detailed numerical dynamical mod-
els seem to severely underestimate this nonlinearity [12],
hence the quality of the forecast is not satisfactory.

From the reviews of statistical models for ENSO fore-
casting before 2000 [13] it was clear, that majority of mod-
els were still linear, but lately the nonlinear models are
getting more attention (e.g. [14]). In the following, we de-
scribe easy-to-interpret nonlinear model for ENSO fore-
casting.

2.1 Inverse models

The concept of inverse stochastic models are used as the
starting point in developing the ENSO model. Let x(t) be
the state vector of anomalies, so x(t) = X(t)−X, where
X(t) is the climate state vector (could be multi- or univari-
ate climate observations e.g. temperature, pressure etc.
or a PCA time series from eigen-decomposition of some
climate field) and X is its time-mean. The evolution of
anomalies could be expressed as

ẋ = Lx+N(x) (1)

where L is a linear operator, N represents the nonlinear
terms and dot denotes time derivative.

The simplest type of inverse models is linear inverse
models (LIM, [6]). By assuming, in eq. (1), that N(x)dx≈
Txdt+dr(0), where T is the matrix describing linear feed-
backs of unresolved (hidden) processes on x and dr(0) is a
white-noise process, eq. (1) could be written as

dx = B(0)xdt +dr(0), B(0) = L+T. (2)
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The matrix B(0) and the covariance matrix of the noise
Q ≡ 〈r(0)r(0)T 〉 can be directly estimated from the ob-
served statistics of x by multiple linear regression [15].
The state vector x, or predictor-variable vector, consists of
amplitudes of corresponding principal components (PCA
analysis [16] yields spatial patterns - empirical orthogonal
functions and its respective time series - principal com-
ponents), while the vector of response variables contains
their tendencies ẋ.

2.2 Nonlinear multilevel model

The assumptions of linear, stable dynamics and of additive
white-noise used to construct LIMs are only valid to cer-
tain degree of approximation. In particular, the stochastic
forcing dr(0) typically involves serial correlations, and, in
addition, the matrices B(0) and Q obtained from the data
exhibit substantial dependence on the lag, that was used to
fit them [17]. The two modifications of the basic inverse
model, that address both nonlinearity and serial correla-
tions are taken into account, as in [18].

The first modification is obtained by assuming polyno-
mial, rather than linear form of N(x) in eq. (1), in par-
ticular, a quadratic dependence. The ith component Ni(x)
could be written as

Ni(x)≈
(

xT Aix+ tix+ c(0)i

)
dt +dr(0)i (3)

The matrices Ai represent the blocks of a third-order ten-
sors, while the vectors b(0)

i = li + ti are the rows of the
matrix B(0) = L+T (as in eq. (2)). These objects, as well
as components of the vector c(0), are estimated by multiple
polynomial regression [19].

The second modification, considering the serial correla-
tions in residual forcing, is due to the multilevel structure
of our model. In particular, consider the ith component of
the first, main level of the inverse stochastic model

dxi =
(

xT Aix+b(0)
i + c(0)i

)
dt +dr(0)i , (4)

where x = {xi} is the state vector and matrices Ai, vec-

tors b(0)
i and the components c(0)i of the vector c(0) as well

as the components r(0)i of the residual forcing vector r(0)

are determined by the least squares. The additional model
level is added to express the known increments dr(0) as a
linear function of an extended state vector [x,r(0)]. We
estimate this level’s residual forcing again by the least
squares. More levels are added the same way, until the
Lth level’s residual, r(L+1), becomes white in time, and its
lag-0 correlation matrix converges to constant, hence

dr(0)i = b(1)
i [x,r(0)]dt + r(1)i dt,

dr(1)i = b(2)
i [x,r(0),r(1)]dt + r(2)i dt,

. . .

dr(L)i = b(L+1)
i [x,r(0), . . . ,r(L)]dt + r(L+1)

i dt (5)

The eqs. (4) and (5) describe a wide variety of processes
in a fashion that explicitly accounts for the modeled pro-
cess x feeding back on the noise statistics. The linear mul-
tilevel model is obtained by assuming Ai ≡ 0 and c(0) ≡ 0
in eq. (4). Details of the methodology and further discus-
sion could be found in [7].

It is well known, that the extreme ENSO events tend to
occur in boreal winter. From several ways to include this
phase locking to the annual cycle, the alternative approach
used here is to include seasonal dependence in the dynam-
ical part of the first level. Namely, we assume the matrix
B(0) and vector c(0) to be periodic, with period T = 12
months:

B(0) = B0 +Bs sin(2πt/T )+Bc cos(2πt/T ),

c(0) = c0 + cs sin(2πt/T )+ cc cos(2πt/T ) (6)

In this case, the whole record is used to estimate four
seasonal-dependent coefficients. The model is trained
in the leading EOF (empirical orthogonal function)
space [16] of tropical Pacific SST anomalies. The opti-
mal number of state-vector components and the degree of
nonlinearity has to be assessed by cross-validation. The
parameters in this paper were used as in [7].

3 Results

In this section, the brief results are presented of how the
statistical model is able to simulate the ENSO signal. The
skill of the model is determined in the sense of basic linear
ENSO metrics such as the amplitude of the ENSO signal,
the seasonality (since the seasonality is important aspect
of ENSO dynamics) and finally, the power spectrum of
ENSO signal. The model is employed as described in the
previous section, the matrices and vectors are estimated
from the previous data and then the model is integrated to
obtain the time series of same length as the training data.
Since the model is stochastic (forced by a white noise),
we employed an ensemble of 20 members. Each member
is integrated with slightly different initial conditions and
these members are referred to as realizations.

The basic ENSO metric is its amplitude, which could
be characterized by the standard deviation of SST anoma-
lies averaged over Nino3.4 box (bounded by 5◦S - 5◦N
and 120◦W - 170◦W). In Fig. 2 we can see the ENSO
amplitude as derived from the Nino3.4 index [20] (thick
black line), along with 20 realizations from the data-based
ENSO model, both linear and quadratic (gold for linear,
red for quadratic).

As can be seen, the linear model slightly overestimates
the ENSO amplitude, while the quadratic model slightly
underestimate the ENSO amplitude. From the spread of
the ensemble members we could infer that the model is
sensitive to initial conditions and the forcing. Still, the
ensemble averages for both models are within reasonable
distance from the data borderline, therefore in this aspect
the model performs adequately.
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Figure 2: ENSO amplitude as standard deviation of SST
anomalies in data (black line) and in 20 realizations of lin-
ear (gold) and quadratic (red) model.

Other metric connected with ENSO amplitude is its sea-
sonality. As written above, the ENSO phenomenon ex-
hibits seasonal changes in variance, with elevated variance
in winter months and lower variance in spring and summer
months. This can be also seen in Fig. 3, where the monthly
variance is plotted for the data and for both models. Both
models are capable of modelling higher variance in winter
months and drop in variance through spring and summer,
although the difference in variance is higher in data than in
both models. Still, the ensemble averages are reasonably
close to the data.
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Figure 3: ENSO seasonality as standard deviation per
month in data (black curve) and in 20 realizations of linear
(gold) and quadratic (red) model. Thicker lines represent
the mean over 20 realizations in the respective model.

The last metric taken into account was the power spec-
trum of Nino3.4 time series. The spectrum for the Nino3.4
data and both linear and quadratic model realizations can
be seen in Fig. 4. The main peak in data occurs at roughly
5 year period, but still the ensemble averages for respec-

tive models are more flat in this area of frequencies. In
the higher frequencies (around annual frequency and less)
the power spectra are in agreement. In general, the spectra
of modelled time series could be said to copy the actual
Nino3.4 time series. The power spectra were computed
using the Welch method [21].
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Figure 4: ENSO power spectra estimated using the Welch
method in data (black curve) and in 20 realizations of lin-
ear (gold) and quadratic (red) model. Thicker lines repre-
sent the mean over 20 realizations in the respective model.

4 Noise parametrization in the model

The statistical model, once estimated, is integrated for-
ward in time and forced by a noise - usually a realization
of spatially correlated random process. In the most in-
tuitive and basic case, the last level residuals’ covariance
matrix is estimated and decomposed using Cholesky fac-
torization yielding a lower triangular matrix R. When the
model is integrated, the random realization of white noise
is multiplied by the matrix R, yielding spatially corre-
lated white noise which is used as a random forcing in the
model. The results for quadratic and linear ENSO models
from the previous section were obtained using this simple
noise parametrization, and the question is whether looking
deeper into the residuals’ structure could aid the model’s
performance.

4.1 Dependence on the system’s state

First refinement for the noise parametrization arises from
the concept of modelling climate processes which exhibit
low-frequency variability (LFV). In this method, we find
and select noise samples, snippets, from the past noise
(residuals) which have forced the system during short time
intervals that resemble the LFV phase just preceding the
currently observed state, and then use these snippets (or in-
formation contained in them) to drive the current state into
the future. For full methodology and discussion, see [22].
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The found past noise snippets can be used in two differ-
ent ways. The first one (as used in [22]) seeks various snip-
pets from the past observations and then directly uses them
to force the model as an ensemble. When e.g. we find 4
intervals which resemble the LFV phase, we integrate the
model 4 times using all 4 noise snippets directly and than
average over them. The second version (as used in our
study) is to find, say, 100 samples of the past noise clos-
est to the current state of the system, cluster them together
and create covariance matrix from them. Afterwards, the
Cholesky decomposition is used to obtain the matrix R and
finally, the random white noise realization is multiplied by
the matrix R. Using this matrix, the spatial covariance of
the forcing is dependent on the current state of the sys-
tem. In both noise parametrizations, the current system
state could be estimated in multiple ways: either using
correlation of the SSA time series, or using the Euclidean
distance in the subspace spanned by first few EOFs.

As can be seen in Fig. 5, although the amplitude statis-
tics are not substantially shifted, the transient from high-
variance winter period to low-variance spring and summer
are better captured by the later model, with noise forcing
conditioned on system’s state. The power spectra for both
models are practically the same (not shown).

4.2 Seasonal dependence of the forcing

Although the seasonal dependence of the model is cap-
tured in model’s dynamics by fitting the seasonally depen-
dent matrices B(0) and c(0) (recall eq. (6)), our analysis
showed, that the last level’s residuals still exhibit season-
ally dependent amplitude. To address this issue, we com-
puted the standard deviations for each month from the last
level’s residuals, then fitted the 5 harmonics of the annual
cycle to capture the seasonal dependence, removed this
dependence from the residuals, then estimated covariance
matrix and subsequently the matrix R and finally gener-
ated spatially correlated white noise realization which was
multiplied back by the requisite seasonal amplitude to ac-
count for the seasonally dependent amplitude of the forc-
ing. The fitted harmonics of the annual cycle were selected
as

Pi = cos(2πit/T )+ sin(2πit/T ), i = 1, . . . ,5 (7)

and then regressed on the seasonally varying standard de-
viation of the last level’s residuals.

4.3 Using extended covariance matrix

The last modification to the noise is to use the extended co-
variance matrix instead of lag-0 covariance matrix. When
evaluating system’s state we do not take just the state clos-
est to the current state of the model, but, say 5 consecu-
tive months and construct the extended matrix out of this
snippet. Then the matrix is decomposed using Cholesky
factorization and used as a spatial correlation matrix R is
random forcing generation.
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Figure 5: ENSO amplitude (upper) and seasonality (bot-
tom) in data (black curve) and in 20 realizations of linear
(gold) and linear with conditioned noise on the system’s
state (red) model. Thicker lines represent the mean over
20 realizations in the respective model.

The two latter modifications bring just a slight improve-
ments into ENSO metrics (not shown), but could have
more substantial advancements in modelling different at-
mospheric phenomena.

5 Synchronization and causality in the
observed and modelled data

Better understanding of the complex dynamics of the at-
mosphere and climate is one of the challenges for con-
temporary science. Considering the climate system as
a complex network of interacting subsystems [23] is a
new paradigm bringing new data analysis methods help-
ing to detect, describe and predict atmospheric phenom-
ena [24]. A crucial step in constructing climate networks
is inference of network links between climate subsys-
tem [25]. Directed links determine which subsystems in-
fluence other subsystems, i.e. uncover the drivers of at-
mospheric phenomena. Inference of causal relationships
from climate data is an intensively developing research
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field, e.g. [26, 27]. Typically, a causal relation is sought
between different variables or modes of atmospheric vari-
ability.

Paluš [28] has open another view at the complexity
of atmospheric dynamics by uncovering causal relations
or information flow between dynamics on different time
scales in the same variable. Recently, phase-phase and
also phase-amplitude interactions between dynamics on
different temporal scales were observed in the ENSO dy-
namics (captured by the Nino3.4 index) using the ap-
proach as in [28]. Shortly, we use the continuous wavelet
transform to the time series for particular time scales to
obtain the instantaneous phase and amplitude of the oscil-
latory mode as

ψ(t) = s(t)+ iŝ(t) = A(t)e(iφ(t)), (8)

φ(t) = arctan
ŝ(t)

s(t)
, (9)

A(t) =
√

s2(t)+ ŝ2(t). (10)

Then the time series of phase and / or amplitude are used
to study the interactions. We adopt measures from infor-
mation theory, namely mutual information and conditional
mutual information, where the mutual information could
be expressed as

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
, (11)

where p(·) is the probability distribution or joint probabil-
ity distribution and X and Y are our time series of either
phase or amplitude derived from the ENSO SST data. Fi-
nally, the measures we are interested in could be written
as:

• phase synchronization – I(φ1(t);φ2(t)),

• phase-phase causality – I(φ1(t);φ2(t + τ) −
φ2(t)|φ2(t)),

• phase-amplitude causality – I(φ1(t);A2(t +
τ)|A2(t),A2(t−η),A2(t−2η)),

5.1 Interactions in the data

As can be seen from Fig. 6, in ENSO dynamics captured
by the Nino3.4 index, the synchronization of annual cycle
with quasi-biennal and combination frequencies (frequen-
cies that arise from the interactions between annual and
the most prominent ENSO period) is observed. Also, the
4-6 year cycle of phase in ENSO dynamics influence the
quasi-biennal range of the amplitude time series.

5.2 Interactions in the model

Our goal was to simulate the nonlinear cross-scale inter-
actions in the model. This is important since it might help

Figure 6: Phase synchronization (left) and phase-
amplitude causality (right) in Nino3.4 time series. Shown
is the significance (over 95th percentile against 500 Fourier
transform surrogates) of k-nearest neighbours estimate of
mutual information and conditional mutual information.

to uncover the mechanisms of these interactions and shed
more light onto the dynamics of ENSO in general. We
constructed the ENSO model and repeated the above anal-
ysis to modeled ensemble of the Nino3.4 time series.

Figure 7: Phase synchronization (left) and phase-
amplitude causality (right) in modeled Nino3.4 time series
by the data-based model. Shown is the aggregate of 5 real-
izations of k-nearest neighbours estimate of mutual infor-
mation and conditional mutual information. Significance
against 500 Fourier transform surrogate data.

As seen from the analysis of modelled data (Fig. 7),
the main phase synchronization bands (annual cycle with
quasi-biennal cycle and combination frequencies) are also
captured by the modelled data, while the phase - ampli-
tude interactions are not very well captured. This might
arise from the low complexity of the model, or the absence
of some nonlinear interactions in the model design (apart
from quadratic).

6 Modelling surrogate data with statistical
model

Surrogate data (or analogous data) is a method to generate
synthetic data set (time series) that preserve some of the
statistical properties, while omitting the others. One way
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of using them, is to test statistical significance by contra-
diction. This involves posing a null hypothesis describing
some kind of a process and then generating an ensemble
of surrogate data according to null hypothesis using Monte
Carlo methods. One of the most used technique for gener-
ating surrogate data is the Fourier transform surrogate [29]
(FT surrogates), which preserve the linear correlations in
the data (periodogram or spectrogram, including autocor-
relation) of the time series, but omits any other interactions
in them.

As an example, consider two intertwined Lorenz sys-
tems, where one of them drives the other. Now, using the
time series in one dimension, say the x dimension from
both Lorenz systems, we can use some method for detect-
ing causality, e.g. conditional mutual information between
the two time series of two Lorenz systems. We get the
value of conditional mutual information, but this is still
not enough to interpret it in the means of whether there
is a causal relationship between them or the result arose
by chance. For this purpose, we construct an ensemble of
Fourier transform surrogate data (which qualitatively pre-
serves properties of the time series, but allows no causal
relationship between them) and repeat the analysis using
the very same method on this ensemble and finally com-
pare the value for actual data with the histogram of values
obtained from the ensemble of surrogate data. When the
value from the data exceeds some percentile (e.g. 95th) of
the surrogate data distribution, we say that the causal re-
lationship is significant in comparison with e.g. 500 FT
surrogates.

When studying nonlinear cross-scale interactions in
time series using the above method, the statistical test in-
volves creating an ensemble of surrogate, synthetic time
series and repeat the analysis for the whole ensemble.
Then we computed the percentile, where the observed in-
teractions could not arose by random chance. Of course,
one could use Fourier transform method to generate the
surrogate time series, effectively posing a null hypothe-
sis of a linear process which has the same spectrum to
that of an observed data. On the other hand, one can cre-
ate a more sophisticated null hypothesis by exploiting the
options of a data-based model: when one consider just a
linear model, omit the dynamical seasonal dependence in
B(0) and c(0) terms (as in eq. (6)) and use the simplest noise
parametrisation (just consider the spatial covariance struc-
ture), the model will omit the nonlinear interactions and
could pose as a surrogate data model copying the basic
statistical properties of a modelled time series. This way,
the analysis would show whether the cross-scale interac-
tions are arising from the seasonal dependent dynamics, or
from nonlinear (e.g. quadratic) interactions between sub-
systems and so on.

When comparing Fig. 6 (testing against 500 Fourier
transform surrogates) and Fig. 8 (testing against 500 data-
based model surrogates), the significant interactions are
virtually the same, expect in the latter, the “fluctuations”
(or they might be false positives as well) are attenuated to

Figure 8: Phase synchronization (left) and phase-
amplitude causality (right) in modelled Nino3.4 time se-
ries by the data-based model. Shown is the aggregate of
5 realizations of k-nearest neighbours estimate of mutual
information and conditional mutual information. Signifi-
cance against 500 surrogate time series created with data-
based model.

minimum. This way, we can get better idea of the statisti-
cal significance of the interactions between subsystems, in
particular the nonlinear ones, since we are testing against
the model with just linear interactions.

7 Conclusions

Statistical modelling in climate science is continuously
getting more attention, since their usage is not limited to
forecast some of the phenomena of interest (like ENSO),
but could also be used to infer some of the statistical prop-
erties and relationships among different subsystems. Since
the statistical models live in phase space of particularly re-
duced dimensionality, when we could observe the inter-
actions of interest, the identification of their sources will
become more feasible.

We showed that the statistical model with the right set-
tings, which were selected based on careful inspection of
the modelled system, could generate synthetic time series
of interest, copying the desired properties of the system -
both linear and nonlinear statistics. Since the stochastic-
ity is the important aspect of the data-based model, var-
ious parametrization techniques exist to correctly model
the system’s external forcing. Finally, the possibility of
usage of the low complexity model as surrogate data was
discussed, showing advantages of usage of such technique
to infer statistical significance.

The outlook for future work combines various differ-
ent paths which appeared. One direction would be fo-
cusing on statistical modelling itself, experimenting with
various variable model, with input time series and their
preprocessing and so on and so forth. Other direction
would be connecting the statistical models with dynami-
cal ones, in the sense, that statistical models could be used
for parametrization of e.g. sub-grid phenomena (micro-
physics of clouds, local convection etc.) in large coupled
atmospheric-oceanic models.
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