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lenz.furrer@uzh.ch

Nico Colic
Institute of Computational Linguistics

University of Zurich
ncolic@gmail.com

Tilia R. Ellendorff
Institute of Computational Linguistics

University of Zurich
ellendorff@cl.uzh.ch

Carlo Tasso
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Abstract

This paper presents an approach towards
high performance extraction of biomedical
entities from the literature, which is built
by combining a high recall dictionary-
based technique with a high-precision ma-
chine learning filtering step. The tech-
nique is then evaluated on the CRAFT cor-
pus. We present the performance we ob-
tained, analyze the errors and propose a
possible follow-up of this work.

1 Introduction

The problem of technical term extraction (herein
TTE) is the problem of extracting relevant techni-
cal terms from a scientific paper. It can be seen
as related to Named Entity Recognition (NER),
where the entities one wants to extract are tech-
nical terms belonging to a given field. For exam-
ple, while in traditional NER the entities that one
is looking for are of the types “Person”, “Date”,
“Location”, etc., in TTE we look for terms belong-
ing to a particular domain, e.g. “Gene”, “Protein”,
“Disease”, and so on (Nadeau and Sekine, 2007).
A further evolution is the task of Concept Recog-
nition (CR), where the entity is also matched to a
concept in an ontology.

NER (and then TTE) can be solved using very
different techniques:

• Rule-based approach: a group of manually
written rules is used to identify entities. This

technique may require deep domain and lin-
guistic knowledge. A simple example may be
the task of recognizing US phone numbers,
which can be solved by a simple regular ex-
pression.

• Machine learning-based approach: a statisti-
cal classifier is used to recognize an entity,
such as Naive Bayes, Conditional Random
Fields, and so on. Several different types of
features can be used by such systems, for ex-
ample prefixes and suffixes of the entity can-
didates, the number of capital letters, etc. A
major drawback of this approach is that it
typically requires a large, manually annotated
corpus for algorithm training and testing.

• Dictionary-based approach: candidate en-
tities are matched against a dictionary of
known entities. The obvious drawback of this
approach is that it is not able to recognize
new entities, making this technique ineffec-
tive e.g. in documents which present new dis-
coveries.

• Hybrid approaches: two or more of the previ-
ous techniques are used together. For exam-
ple, Sasaki et al. (2008) as well as Akhondi
et al. (2016) combine the dictionary and ML-
based approaches to combine the strengths of
both.

The aim of this work is to propose a hybrid ap-
proach based on two stages. First, we have a dic-



tionary phase, where a list of all the possible terms
is generated by looking for matches in a database.
This aims to build a low precision, high recall set
with all the candidate TTs. Then, this set is fil-
tered using a machine learning algorithm that ide-
ally is able to discriminate between “good” and
“bad” terms selected in the dictionary matching
phase to augment the precision.

This approach is realized by using two software
modules. The first phase is performed by the On-
toGene pipeline (Rinaldi et al., 2012b; Rinaldi,
2012), which performs TTE from documents in
the biomedical field, using a dictionary approach.
Then, OntoGene’s results are handed to Distiller,
a framework for information extraction introduced
in Basaldella et al. (2015), which performs the ma-
chine learning filtering phase.

2 Related Work

The field of technical term extraction has about 20
years of history, with early works focusing on ex-
tracting a single category of terms, such as pro-
tein names, from scientific papers (Fukuda et al.,
1998). Later on, “term extraction” became the
common definition for this task and some schol-
ars started to introduce the use of terminological
resources as a starting point for solving this prob-
lem (Aubin and Hamon, 2006).

While the most recent state-of-the-art perfor-
mance is obtained by using machine learning
based systems (Leaman et al., 2015), there is
growing interest in hybrid machine learning and
dictionary systems such as the one described by
Akhondi et al. (2016), which obtains interest-
ing performance on chemical entity recognition
in patent texts. In the field of concept recogni-
tion, there are different strategies for improving
the coverage of the recognized entities. For exam-
ple, known orthologous relations between proteins
of different species can be exploited for the detec-
tion of protein interactions in full text (Szklarczyk
et al., 2015). Groza and Verspoor (2015) explore
the impact of case sensitivity and the information
gain of individual tokens in multi-word terms on
the performance of a concept recognition system.

The CRAFT Corpus (Bada et al., 2012) has
been built specifically for evaluating this kind of
systems, and is described in detail in Section 3.1.
Funk et al. (2014) used the corpus to evaluate sev-
eral CR tools, showing how they perform on the
single ontologies in the corpus. Later, Tseytlin et

al. (2016) compared their own NOBLE coder soft-
ware against other CR algorithms, showing a best
F1-score of 0.44. Another system that makes use
of CRAFT for evaluation purposes is described in
Campos et al. (2013).

3 System Design

3.1 CRAFT Corpus
The CRAFT corpus is a set of 671 manually an-
notated journal articles from the biomedical field.
These articles are taken from the PubMed Central
Open Access Subset,2 a part of the PubMed Cen-
tral archive licensed under Creative Commons li-
censes.

The corpus contains about 100,000 con-
cept annotations which point to seven ontolo-
gies/terminologies:

• Chemical entities of Biological Interest
(ChEBI) (Degtyarenko et al., 2008)

• Cell Ontology3

• Entrez Gene (Maglott et al., 2005)

• Gene Ontology (biological process, cellular
component, and molecular function) (Ash-
burner et al., 2000)

• the US National Center for Biotechnology In-
formation (NCBI) Taxonomy4

• Protein Ontology5

• Sequence Ontology (Eilbeck et al., 2005)

Each of the 67 articles contains also linguistic
information, such as tokenized sentences, part-of-
speech information, parse trees, and dependency
trees. Articles are represented in different formats,
such as plain text or XML, and are easily naviga-
ble with common resources, such as the Knowtator
plugin for the Protégé software.6

To make references to documents in the CRAFT
corpus easily retrievable for the reader, when we

1The full CRAFT corpus comprises another 30 annotated
articles, which are reserved for future competitions and have
to date not been released.

2http://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

3https://github.com/obophenotype/
cell-ontology/

4http://www.ncbi.nlm.nih.gov/taxonomy
5http://pir.georgetown.edu/pirwww/

index.shtml
6http://knowtator.sourceforge.net/



will refer to an article contained in the corpus
we will list the name of its corresponding XML
file as contained in the corpus distribution, its
PubMed Central ID (PMCID), and its PubMed ID
(PMID).7

3.2 OntoGene

The OntoGene group has developed an approach
for biomedical entity recognition based on dic-
tionary lookup and flexible matching. Their ap-
proach has been used in several competitive eval-
uations of biomedical text mining technologies,
often obtaining top-ranked results (Rinaldi et al.,
2008; Rinaldi et al., 2010; Rinaldi et al., 2012a;
Rinaldi et al., 2014). Recently, the core parts of
the pipeline have been implemented in a more effi-
cient framework using Python (Colic, 2016). It of-
fers a flexible interface for performing dictionary-
based TTE.

OntoGene’s term annotation pipeline accepts a
range of input formats, e.g. PubMed Central full-
text XML, gzipped chunks of Medline abstracts,
BioC,8 or simply plain text. It provides the an-
notated terms along with the corresponding iden-
tifiers either in a simple tab-separated text file, in
brat’s standoff format,9 or – again – in BioC. It al-
lows for easily plugging in additional components,
such as alternative NLP preprocessing methods or
postfiltering routines.

In the present work, the pipeline was config-
ured as follows: After sentence splitting, the input
documents were tokenized with a simple method
based on character class: Any contiguous se-
quence of either alphabetical or numerical char-
acters was considered a token, whereas any other
characters (punctuation and whitespace) were con-
sidered token boundaries and were ignored during
the dictionary look-up. This lossy tokenization al-
ready has a normalizing effect, in that it collapses
spelling variants which arise from inconsistent use
of punctuation symbols, e.g. “SRC 1” vs. “SRC-1”
vs. “SRC1”. (A similar approach is described by
Verspoor et al. (2010), which refer to it as “reg-
ularization”.) All tokens are then converted to
lowercase, except for acronyms that collide with
a word from general language (e.g. “WAS”). We
enforced a case-sensitive match in these cases by

7We will not include articles from the CRAFT corpus in
the references as they are not actual bibliography for the pur-
poses of this work.

8http://bioc.sourceforge.net/
9http://brat.nlplab.org/standoff.html

using a list of the most frequent English words.
As a further normalization step, Greek letters were
expanded to their letter name in Latin spelling, e.g.
α→ alpha, since this is a common alternation.

For term matching, we compiled a dictionary
resource using the Bio Term Hub (Ellendorff et
al., 2015). The Bio Term Hub is a large biomed-
ical terminology resource automatically compiled
from a number of curated terminology databases.
Its advantage lies in the ease of access, in that
it provides terms and identifiers from different
sources in a uniform format. It is accessible
through a web interface,10 which recompiles the
resource on request and provides it as a tab-
separated text file.

Selecting the seven ontologies used in CRAFT
resulted in a term dictionary with 20.2 million en-
tries. Based on preliminary tests, we removed all
entries with terms shorter than two characters or
terms consisting of digits only; this reduced the
number of entries by less than 0.3%. In the On-
toGene system, the entries of the term dictionary
were then preprocessed in the same way as the
documents. Finally, the input documents were
compared to the dictionary with an exact-match
strategy.

3.3 Distiller
Distiller11 is an open source framework written in
Java and R for machine learning, introduced in
Basaldella et al. (2015). While the framework has
its roots in the work of Pudota et al. (2010), thus
focusing on the task of automatic keyphrase ex-
traction (herein AKE), Distiller’s framework de-
sign allows us to adapt its pipeline to various pur-
poses.

AKE is the problem of extracting relevant
phrases from a document (Turney, 2000), and the
difference with TTE is that, while the former is
interested in a small set of relevant phrases from
the source document, the latter is interested in all
domain-specific terms.

While AKE can be performed using unsuper-
vised techniques, the most successful results have
been obtained using a supervised machine learn-
ing approach (Lopez and Romary, 2010). Super-
vised AKE is performed using a quite common
pipeline: first, the candidate keyphrases are gen-
erated, using some kind of linguistic knowledge;

10http://pub.cl.uzh.ch/purl/biodb/
11https://github.com/ailab-uniud/

distiller-CORE



then, the AKE algorithm filters the candidates
assigning them some features which are in turn
used to train a machine learning algorithm, which
is able to classify “correct” keyphrases. These
keyphrases can be then used for several purposes,
such as document indexing, filtering and recom-
mendation (De Nart et al., 2013).

To adapt Distiller to perform TTE effectively,
we substituted the candidate generation phase with
the output of OntoGene, i.e. candidate technical
terms become the potential “key phrases”. This
configuration is then evaluated as our baseline.
Next, we gradually add new features into the sys-
tem to train a machine learning model specialized
in the actual TTE task, and assess the improve-
ments in the performance of the system.

4 Features

4.1 Baseline

First, we evaluated the performance of the Onto-
Gene/Distiller system using the same feature set
used in the original keyphrase extraction model
presented by Basaldella et al. (2015), which con-
tains:

Frequency The frequency of the candidate in the
document, also known as TF.

Height The relative position of the first appear-
ance of the candidate in the document.

Depth The relative position of the last appearance
of the candidate in the document.

Lifespan The distance between the first and the
last appearance of the candidate.

TF-IDF The peculiarity of the candidate with
respect to the current document and the
CRAFT corpus. This is a very common fea-
ture both in the AKE and TTE fields.

Abstract Presence A flag set to 1 if the candidate
appears in the abstract, 0 otherwise. This is
motivated by the fact that often keyphrases
are found to appear in the abstract.

This small feature set is the baseline of the ex-
perimental evaluation performed on the proposed
approach.

4.2 Feature Set 1

To improve the performance of the TTE task we
start to augment our feature set by introducing fea-
tures that should be able to catch some more fine-
grained information about the candidate terms.

Title Presence A flag which is set to 1 if the term
appears in the title of the document and 0 oth-
erwise, much like the Abstract Presence fea-
ture.

Symbols Count A counter for the number of
punctuation symbols, i.e. not whitespaces
and not alpha-numeric characters, appearing
in the candidate term.

Uppercase Count A counter for the number of
uppercase characters in the candidate term.

Lowercase Count A counter for the number of
lowercase characters in the candidate term.

Digits Count A counter for the number of digits
in the candidate term.

Space Count A counter for the number of spaces
in the candidate term.

Greek Flag A flag that is set to 1 if the candidate
contains a Greek letter in spelled-out form,
like “alpha”, “beta”, and so on.

These features offer a good improvement
for detecting the particular shape that a tech-
nical term could have. For example, from the
document PLoS Biol-2-1-314463.nxml
(PMC: PMC314463, PMID: 14737183) we
have the term “5-bromo-4-chloro-3-indolyl
beta-D-galactoside”. This term contains:

• A spelled-out Greek letter, beta;
• An uppercase letter;
• Seven symbols (dashes);
• A whitespace.

Without the new features this information would
have been lost, so it may have been much harder
to recognize the term as a technical one.

4.3 Feature Set 2

In this step we add even more features aimed at de-
tecting more fine-grained information about candi-
date terms. The new features are:



Dash flag Dashes are one of the most (if not the
most) common symbols found in technical
terms. This flag is set to 1 if the term con-
tains a dash, 0 otherwise.

Ending number flag This flag is set to 1 if the
term ends with a number, 0 otherwise.

Inside capitalization This flag is set to 1 if the
term contains an uppercase letter which is not
at the beginning of a token.

All uppercase This flag is set to 1 if the term con-
tains only uppercase letters, 0 otherwise.

All lowercase This flag is set to 1 if the term con-
tains only lowercase letters, 0 otherwise.

4.4 Feature Set 3: Affixes
This feature set adds information about the affixes
(i.e. prefixes and suffixes) of the words. This in-
formation is particularly useful in the biomedical
field, since affixes in this field convey often a par-
ticular meaning: for example, words ending with
“ism” are typically diseases, words starting with
“zoo” refer to something from the animal life, and
so on. Another example is the naming of chemical
compounds: for example, many ionic compounds
have the suffix “ide”, such as Sodium Chloride (the
common table salt).

Using the Bio Term Hub resource, we compiled
a list of all the prefixes and suffixes of two or three
letters from the following databases:

• Cellosaurus,12 from the Swiss Institute of
Bioinformatics;
• Chemical compounds found in the Toxicoge-

nomics Database (CTD),13 from the North
Carolina State University Comparative;
• Diseases found in the CTD;
• EntrezGene (Maglott et al., 2005);
• Medical Subject Headings (MeSH),14 from

the US National Center for Biotechnology
Information (restricted to the subtrees “or-
ganisms”, “diseases”, and “chemicals and
drugs”);
• Reviewed records from the Universal Protein

Resource (Swiss-Prot),15 developed by the
UniProt consortium, which is a joint USA-
EU-Switzerland project.

12http://web.expasy.org/cellosaurus/
13http://ctdbase.org/
14http://www.ncbi.nlm.nih.gov/mesh
15http://www.uniprot.org/

Since not all affixes are equally important, the
affixes list needs to be cut at some point. While a
trivial decision could have been to pick the top 100
or 10% ranked prefixes and suffixes, our choice
was to let the machine learning algorithm decide
by itself where to apply the cut.

To obtain this goal, each affix a from a database
D is assigned a normalized score s ∈ [0, 1] com-
puted this way:

s(a) =
freq(a,D)

max({freq(a1, D) . . . freq(a|D|, D)})

where freq(a,D) is the frequency of an affix a
in D. This way we obtain a simple yet effective
mechanism to let a ML algorithm learn which of
affixes are the most important.

It is also worth noting that since we generate
scores for prefixes and affixes of two and three
letters from six databases, we have a total of
2 × 2 × 6 = 24 features generated with this ap-
proach.

4.5 Feature Set 4: Removing AKE Features

Now that we have many features that are more spe-
cific for the technical term extraction field, we re-
move the baseline feature set, which was tailored
on keyphrase extraction, to use only the features
aimed at recognizing technical terms.

These features (depth, height, lifespan, fre-
quency, abstract presence, title presence, TF-IDF)
are specific for the AKE field and supposedly
bring little value on knowing if a term is techni-
cal or not. In fact, a term may appear just once in
a random position of the text, and still be techni-
cal; the same does not hold for a keyphrase, which
is assumed to appear many times in specific posi-
tions (introduction, conclusions. . . ) in the text.

4.6 Test Hardware

Both OntoGene and Distiller have been tested on a
laptop computer with an Intel i7 4720HQ proces-
sor running at 2,6GHz, 16 GB RAM and a Cru-
cial M.2 M550 SSD. The operating system was
Ubuntu 15.10.

The speed was of 16275 words/second for On-
toGene and 4745 words/second for Distiller. On-
toGene requires an additional time of about 25
second to load the dictionary at start up, but since
this operation is run only once we do not consider
it for the average.



Metric OntoGene Baseline FS1 FS2 FS3 FS4
Precision 0.342 0.692 0.682 0.710 0.771 0.853
Recall 0.550 0.187 0.247 0.264 0.325 0.368
F1-Score 0.421 0.294 0.362 0.385 0.457 0.515

Table 1: Scores obtained with the Distiller/Ontogene pipeline using a MLP trained on the CRAFT corpus.
In the column headers, “FSn” stands for “Feature Set n”.

System Precision Recall F1
MMTx 0.43 0.40 0.42
MGrep 0.48 0.12 0.19
Concept Mapper 0.48 0.34 0.40
cTakes Dictionary Lookup 0.51 0.43 0.47
cTakes Fast Lookup 0.41 0.4 0.41
NOBLE Coder 0.44 0.43 0.43
OntoGene 0.34 0.55 0.42
OntoGene+Distiller 0.85 0.37 0.51

Table 2: Comparison of the scores obtained with OntoGene, with the combined OntoGene/Distiller
pipeline and the scores obtained in Tseytlin et al. (2016).

5 Results

Using the feature sets defined above, we trained
a neural network to classify technical terms. The
network used is a simple multi-layer perceptron,
with one hidden layer containing twice the number
of neurons of the input layer and configured to use
maximum conditional likelihood. The network is
trained using 47 documents of the CRAFT corpus
as training set and its performance is evaluated on
the remaining 20, which in turn form the test set.

We also experimented using a C5.0 decision
tree, but with unsatisfactory results (the perfor-
mance decreases with the number of features) so
we do not include its analysis in this paper.

The metrics used are simple Precision, Recall
and F1-Score. Table 1 presents the performance
of the different iterations of the proposed system.
Plain OntoGene obtains 55.0% recall and 34.2%
precision, while the baseline AKE feature set im-
proves the precision score with 69.2% score in
precision but shows a dramatic drop in recall to
18.7%.

It can be seen that the introduction of TTE-
specific features brings an important improvement
in recall, with a 6% improvement between the
baseline and Feature Set 1. Together with a small
drop in precision by 1%, it augments the F1-score
by 7 points.

Feature Set 2 performs slightly better than Fea-

ture Set 1, with a general improvement between
2% and 3%. Then Feature Set 3, adding the af-
fixes, brings a great improvement of 7% F1-Score,
thanks to a general improvement of precision and
recall of the same order.

Finally, it is clear that the Feature Set 4 (i.e.
all the TTE-focused features, without the AKE-
focused ones) is the best performing one. The ob-
tained precision of 85.3% is a large improvement
from the baseline of 69% and more than twice the
precision of the raw OntoGene output, which is
just 34.2%.

More importantly, recall rises from 18.7% to
36.8% (over a theoretical maximum of 55.0% of
the raw OntoGene output). Feature Sets 3 and 4
also obtain a better F1-score than OntoGene, with
45.7% and 51.5%, respectively, while the score
obtained by the OntoGene system is just 42.1%.

To compare our pipeline with similar TTE/CR
software, we use the results by Tseytlin et al.
(2016), which compared the NOBLE coder with
MMTx,16 Concept Mapper,17 cTAKES18 and
MGrep (Dai et al., 2008), as shown in Table 2.
We can see that our result outperforms the 0.47
F1-score obtained by the best performing system,
i.e. cTAKES Dictionary Lookup, in that compar-

16https://mmtx.nlm.nih.gov/MMTx/
17https://uima.apache.org/sandbox.html#

concept.mapper.annotator
18http://ctakes.apache.org/



ison. This result is achieved thanks to the high
precision obtained by Distiller’s machine learn-
ing stage, which boosts precision to 78%, while
the precision of the best performing system in the
same comparison is just 51%.

We must stress that our results are not directly
comparable to the ones in Tseytlin et al. (2016),
for three reasons. Firstly, we evaluate the com-
bined pipeline only on a portion of the dataset,
since a training set is needed for the Distiller sys-
tem. Secondly, we do not do concept disambigua-
tion, but rather we consider a true positive when-
ever our pipeline marks a term that spans the same
text region as a CRAFT annotation, regardless of
what entity is associated with this term, which is
an easier task than concept recognition. On the
other hand, Tseytlin et al. (2016) count also par-
tial positives, i.e. if the software annotation does
not exactly overlap with the gold annotation, they
allocate one-half match in both precision and re-
call. Instead, while evaluating our system, we
count only exact matches, giving a disadvantage
to our system.

Still, the more than doubling of precision from
the dictionary-only approach is noteworthy, espe-
cially because it compensates the loss in recall
well enough to have a general improvement in
F1-score. The comparison, while not completely
fair, shows that the high precision of our system is
hardly matched by other approaches.

The biggest drawback of our approach is the
relatively low recall still obtained by the Onto-
Gene pipeline, which puts an upper bound to the
recall obtainable by the complete pipeline. The
55% recall score obtained on the CRAFT corpus
is not a bad result per se, as it is better to the best
performance obtained in Tseytlin et al. (2016) by
NOBLE Coder and cTAKES Dictionary Lookup.
Nevertheless, we believe that recall can be im-
proved by addressing some specific issues we an-
alyze in greater detail in Section 6.2.

6 Error Analysis

6.1 False Positives and CRAFT Problems

Looking at the errors performed by our system,
we believe that some outcomes that seem to
be false positive should actually be marked as
true positives. Take as an example document
PLoS Genet-1-6-1342629.nxml (PMC-
ID: PMC1315279, PMID: 16362077). In the
Discussion section, we have (emphasis ours):

Serum levels of estrogen decreased in
aging Sam68−/− females as expected;
however, the leptin levels decreased in
aged Sam68−/− females.

The term estrogen is not annotated in the CRAFT
corpus, even though it is found in the ChEBI re-
source. OntoGene, on the other hand, recognizes
this as a relevant term. The same holds for the two
other occurrences of this term in the same article.

In the Results section of the same document, we
have

Given the apparent enhancement of
mineralized nodule formation by
Sam68−/− bone marrow stromal cells
ex vivo and the phenotype observed
with short hairpin RNA (shRNA)-
treated C3H10T1/2, we stained sections
of bone from 4- and 12-month-old mice
for evidence of changes in marrow
adiposity.

Here, OntoGene annotates the Sequence-Onto-
logy term shRNA both in its full and abbreviated
form. Nevertheless, they are missing from the
CRAFT annotations (along with 6 more occur-
rences of shRNA); however, CRAFT provides an-
notations to parts of the term (hairpin and RNA).

Then, in the Materials and Methods section, we
have

Briefly, cells were plated on glass cover-
slips or on dentin slices in 24-well clus-
ter plates for assessment of cell number
and pit number, respectively.

Again, the term dentin, which is present in the Cell
Ontology, is found by OntoGene but absent from
the CRAFT corpus, together with 5 more occur-
rences of the same term.

Looking at this example document, we can see
that the annotation of the CRAFT corpus seems
to be somewhat inconsistent. While the reasons
may be various and perfectly reasonable (e.g. the
guidelines might explicitly exclude the mentioned
terms in that context), this fact may affect the
training and evaluation of our system.

6.2 Causes of Low Recall
Many terms annotated in the CRAFT corpus are
missed by the OntoGene pipeline. As a general
observation, the OntoGene pipeline – originally
geared towards matching gene and protein names



– is not optimally adapted to the broad range of
term types to be annotated. A small number of the
misses (less than 1%) is caused by the enforced
case-sensitive match for words from the general
vocabulary (such as “Animal” at the beginning of
a sentence). Another portion (around 5%) are due
to the matching strategy, in that the aggressive to-
kenization method removed relevant information,
such as trailing punctuation symbols or terms con-
sisting entirely of punctuation (e.g. “+”). Approx-
imately 9% are short terms of one or two char-
acters’ length, which had been excluded from the
dictionary a priori, as described above. A major
portion, though, are inflectional and derviational
variants, such as plural forms or derived adjec-
tives (e.g. missed “mammalian” besides matched
“mammal”). Some CRAFT annotations include
modifiers that are missing from the dictionary,
e.g. the protein name “TACC1” is matched on
its own, but not when disambiguated with a
species modifier such as “mouse TACC1”/“human
TACC1”. Other occasional misses include para-
phrase (“piece of sequence”) or spelling errors
(“phophatase” instead of “phosphatase”).

7 Conclusions and Future Work

In this paper we have presented and evaluated an
approach towards efficient recognition of biomed-
ical entities in the scientific literature. Although
some limitations are still present in our system, we
believe that this approach has the potential to de-
liver high quality entity recognition, not only for
the scientific literature, but on any related form
of textual document. We have analyzed the lim-
itations of our approach, clearly discussing the
causes of the low recall when evaluated over the
CRAFT corpus. The results show that the post-
annotation filtering step can significantly increase
precision at the cost of a small loss of recall. Ad-
ditionally, the approach provides a good ranking
of the candidate entities, thus enabling a manual
selection of the best terms in the context of an as-
sisted curation environment.

As for future work, we intend to improve cov-
erage of the OntoGene pipeline with respect to the
CRAFT annotations. Based on the false-negative
analysis, the next steps include: (1) use a stemmer
or lemmatizer, (2) optimize the punctuation han-
dling, (3) revise the case-sensitive strategy.

We also plan to improve Distiller’s machine
learning phase, adding more features to the neu-

ral network classifier or switching to other ap-
proaches used in literature, such as conditional
random fields (Leaman et al., 2015). Another ap-
proach that we will investigate is to make the algo-
rithm able to disambiguate between different term
types proposed by the OntoGene pipeline, using a
multi-class classifier.
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