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Abstract. Temporal data can be found in various sources from patient
histories, purchase histories, employee histories, to web logs. Recent ad-
vances in open information extraction have paved the way for automatic
construction of knowledge graphs (kgs) from such sources. Often the
extraction tools used to construct kgs produce facts and rules along
with their confidence scores, leading to the notion of uncertain temporal
kgs. The facts and rules contained in these graphs tend to be noisy and
erroneous due to either the accuracy of the extraction tools or uncer-
tainty in the source data. In this work, we use a numerical extension of
Markov logic networks to provide formal syntax and semantics for un-
certain temporal kgs. Moreover, we propose a set of datalog constraints
with inequalities, that extend the underlying schema of the kgs and help
in resolving conflicting facts. Finally, we characterize the complexity of
two important queries, maximum a-posteriori and conditional probabil-
ity inference, for uncertain temporal kgs.

1 Introduction

Open Information Extraction (OIE) or ‘machine reading’ has been announced as
a new paradigm for extracting domain independent knowledge from large Web
corpora [3, 8]. OIE is of particular interest for the creation of knowledge graphs
(kgs) and enriching existing ones. Automated construction of knowledge graphs
often results in producing noisy and inaccurate facts and rules. In such graphs,
the errors can propagate upon inference or knowledge base expansion as shown
in [5]. Hence, it is indispensable to clean kgs at an early stage of their creation
in order to avoid maintenance costs and provide clean content. In this work, we
propose an approach to tackle this problem. Among others, Google’s Knowledge
Graph [6], NELL1, and ReVerb2 store probabilistic facts – facts along with their
confidence scores representing how likely that they are correct. Most of these
works have focused on identifying static facts, encoding them as binary relations.
However, the vast majority of facts are fluents (dynamic relations whose truth
is a function of time), only holding true during an interval of time. Thus, it is
very important to extract a fact, for instance coach(ClaudioRanieri, Chelsea),
along with its temporal scope 2000–2004. To overcome this, recently, there is
an increased interest in temporal information extraction [12, 18, 19]. As research

1 http://rtw.ml.cmu.edu/rtw/ 2 http://reverb.cs.washington.edu/



is advancing in building uncertain temporal kgs, it is indispensable to develop
efficient techniques and tools to debug and clean such kgs. In this study, we
provide a formal characterization of uncertain temporal kgs, and propose a way
to debug them.

Related work. A limitation of existing methods for debugging automatically
created knowledge [20, 24] is the incapability to deal with probabilistic and tem-
poral information which leads to situations where statements that refer to ob-
jects at different points in time are assumed to be inconsistent. In addition, little
has been done in debugging uncertain kgs, with the exception of the prelimi-
nary results in [11, 5, 7]. In [11], they use Markov Logic Networks (MLNs) and
hand-crafted temporal constraints based on Allen’s interval calculus, to debug
RDF facts that contain date and time values. The shortcoming of this study
is that: (i) no formal characterization in terms of syntax and semantics is pro-
vided, (ii) only a part of RDF(S) inference rules are considered, and (iii) do not
provide constraints for debugging numerical attributes as we do here. Dylla et
al. [7] have proposed an approach for resolving conflicts in RDF facts that con-
tain date and time values. The authors use first-order logic Horn formulas with
temporal predicates to express temporal and non-temporal constraints. The ap-
proach presented in this paper differs in several aspects: (1) they do not make
use of MLNs to model the problem. Using MLNs allows to seamlessly integrate
our approach with any reasoning tool that supports MAP inference in MLNs. As
a consequence, we will benefit from future progress in developing efficient and
scalable MAP inference engines. (2) We do not only support uncertain facts, but
also uncertain constraints as this will help us model many common sense rules
(“a father does not play in the same soccer club as his son”) that are often not
strict constraints, but express soft constraints. (3) Their approach do not allow
debugging facts containing numerical attributes such as age, weight, and so on.
Chen and Wang [5] debug erroneous facts by using a set of functional constraints
however they do not deal with numerical as well as temporal facts as this is not
their objective.

Despite the general complexity of MLNs, it has been shown that it can be
used to reason about extracted facts at Web scale using hand-crafted [21] and
extracted inference rules [22]. It has also been shown that MLNs can be used to
deal with temporal relations in open information extraction [13]. Besides, MLNs
are used to check the consistency of knowledge bases [4, 5, 11]. Consequently, in
this study, we make use of an extension of MLNs to clean uncertain temporal
kgs. Our contributions are the following: (i) we present a formal syntax and
semantics, based on a numerical extension of MLN, for uncertain temporal kgs

along with a set of temporal inference rules, (ii) we formalize MAP and condi-
tional probability inference problems in uncertain temporal kgs and show that
these problems remain NP-hard and #P-hard respectively, and (iii) we propose
a set of constraints in order to clean erroneous facts in kgs.

Problem. Given an uncertain temporal kg G, a set of temporal inference rules
F , and a set of temporal constraints, what is the most probable and error free
temporal kg?



Problem: Debug Uncertain (temporal) kgs

Input: Uncertain (temporal) kg G, a set of inference rules F , and
(optionally) a set of constraints C

Output: Most probable and conflict-free kg G′ = clean(G,F , C).

Consider for instance the following uncertain temporal kg containing the facts
that describe the footballer Cristiano Ronaldo:

Fact Validy time Weight

bdate(CristianoRonaldo,1951) 0.65

plays(CristianoRonaldo,Manchester) [2003, 2009] 0.85

These facts conflict with each other because when Cristiano joined Manchester in
2003, he was already 52 years old while in fact he is only 31 as of 2016. Hence, it
is highly unlike that he was playing for Manchester united at the age of 52. Thus,
either the valid time3 of the second fact or his birth date is wrong. In order to
identify this kind of conflicts, we can introduce constraints. For instance, ‘every
player is at most 40 when playing for a club’, corresponds to the constraint:

∀p, c, t, t1, t2 : bdate(p, t) ∧ plays(p, c, [t1, t2]) ∧ NC(t, [t1, t2])→ ⊥,
NC(t, [t1, t2]) = t1 − t < 40

If this problem is modeled using MLN and inference is done to obtain the most
probable state, then we obtain both facts as a result. However, if the above
constraint is included, the result contains only the second fact (the one with the
higher weight). Note that NC can be encoded into the numerical extension of
MLN [4].

2 Preliminaries

We present a brief introductory of knowledge graphs and Markov logic networks
along with their temporal and numerical extensions respectively.

2.1 Knowledge Graphs

RDF is a language used to express structured information on the Web as graphs.
We present a compact formalization of RDF [10]. Let I and L be two disjoint
infinite sets denoting the set of IRIs (identifying a resource) and literals (a char-
acter string or some other type of data) respectively. We abbreviate the union of
these sets as: IL = I ∪L. A triple of the form (s, p, o) ∈ I ×I ×IL is called an
RDF triple4. s is the subject, p is the predicate, and o is the object of the triple.
Each triple can be thought of as an edge between the subject and the object
labelled by the predicate, hence a set of RDF triples is often referred to as an
RDF graph. We use the term knowledge graph loosely to refer to an RDF graph.

3 Valid time is the time period in which a fact is considered valid. 4 We do not
consider blank nodes.



Temporal Knowledge Graphs In [14, 9], it is shown that an RDF graph
can be extended with some temporal information by labeling each triple in the
graph with some temporal element. The temporal element represents the time
period in which the triple is valid, i.e, the valid time of the triple. We consider a
discrete time domain T as a linearly ordered finite sequence of time points, for
instance, days, minutes, or milliseconds. The finite domain assumption ensures
that there are finitely many possible worlds in MLNs (see Section 3). A time
interval is an ordered pair [t1, t2] of time points, with t1 ≤ t2 and t1, t2 ∈ T ,
which denotes the closed interval from t1 to t2. We will work with the interval-
based temporal domain for defining our data model. Note that time point-based
temporal domains can be converted into interval-based by using for every time
point t, introduce an interval [t, t].

Definition 1 (Temporal kg). A temporal kg is an kg where each fact (s, p, o)
in the graph has a valid time [t1, t2], i.e., tt = (s, p, o, [t1, t2]). We refer to tt

as a temporal fact.

For a temporal kg G, its snapshot at time t is the graph G(t) (the non-
temporal kg): G(t) = {(s, p, o) | (s, p, o, [t, t]) ∈ G}. The kg associated with
a temporal kg, denoted u(G), is

⋃
tG(t), the union of the graphs G(t). We

define temporal entailment as follows: for temporal kgs G1, G2, G1 |=t G2 if
G1(t) |= G2(t) for each t, |=t denotes temporal entailment [9] and |= is the
standard RDF(S) entailment [10].

The syntax of temporal kgs is given by reifying temporal facts into non-
temporal facts by using the underlying RDF syntax [9]. Another possibility is
to extend the RDF syntax and explicitly capture temporal information. In this
paper, we do not discuss such implementation details, but instead focus on the
conceptual aspects for use in uncertain temporal reasoning (Section 3).

The semantics of temporal kgs is given by extending the model theoretic
semantics of RDF graphs. The notion of entailment for temporal kgs needs ma-
nipulating intervals in order to combine the notion of temporality and deductive
properties. A deductive system5 for temporal kgs, based on a sound and com-
plete set of deduction rules, is presented in [9]. A modified version of these rules
is given below:

(a, type, class, T1)

(a, sc, a, T1)

(a, type, property, T1)

(a, sp, a, T1)

(a, sc, b, T1) (x, type, a, T2) check(T1, T2)

(x, type, b, T3)

(a, sc, b, T1) (b, sc, c, T2) check(T1, T2)

(a, sc, c, T3)

(a, sp, b, T1) (b, sp, c, T2) check(T1, T2)

(a, sp, c, T3)

(a, sp, b, T1) (x, a, y, T2) check(T1, T2)

(x, b, y, T3)

(a, dom, c, T1) (x, a, y, T2) check(T1, T2)

(x, type, c, T3)

(a, range, d, T1) (x, a, y, T2) check(T1, T2)

(y, type, d, T3)

5 In the rules, we use the following shorthands, sp for rdfs:subPropertyOf, type for
rdf:type, property for rdf:Property, sc for rdfs:subClassOf, class for rdfs:Class,
dom for rdfs:domain, and range for rdfs:range. Equivalently, the non-temporal de-
duction rules are those without valid time argument and the test check(T1, T2).



T3 = T1 ./ T2, and the definition of ./ is given in Figure 1 and T1, T2 and T3 are
time intervals define over T . FOL translations of the above rules are used as hard
formulas for probabilistic reasoning in uncertain temporal kgs (see Section 3).
We use MLNs to extend temporal kgs with uncertainty.

2.2 Markov Logic Networks

Markov Logic Networks (MLNs) can be seen as a first-order template language
for log-linear models with binary variables. MLNs combine Markov networks
and first-order logic (FOL) by attaching weights to first-order formulas and
viewing these as templates for features of Markov networks [17]. Markov Logic
networks have been extended with numerical [4] and continuous [25] constraints.
In this paper, we will use the numerical extension which is useful for reasoning
in uncertain temporal kgs.

Definition 2 (MLN with Numerical Constraints). A numerical constraint
NC is composed of numerical constants (such as elements of N, I, and so on),
variables, elementary operators or functions (such as, +, ∗, −, ÷, %,

√
),

standard relations (>, <, =, 6=, ≥, ≤), and boolean operators (∧, ∨, ¬). An
MLN L with numerical constraints (simply MLN) is a set of pairs (FCi, wi)
where FCi is a formula in FOL that may contain a NC and wi is a real number
representing the weight of formula FCi.

Together with a finite set of constants C, it defines a Markov Network ML,C ,
where ML,C contains one node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true, and
0 otherwise. The probability distribution over possible worlds x specified by the
ground Markov network ML,C is given by:

P (X = x) =
1

Z
exp
( F∑
i=1

wini(x)
)

where F is the number of formulas in the MLN and ni(x) is the number of
true groundings of FCi in x. The groundings of a formula are formed simply by
replacing its variables with constants in all possible ways.

Example 1. Using MLN it is possible to represent the hard constraint: footballers
born before 1850 are not alive:
{∀a, y : footballer(a) ∧ bdate(a, y) ∧ NC(y)⇒ dead(y), NC(y) = y < 1850}.

A common inference task over MLNs is finding the most probable state of the
world, i.e., finding a complete assignment to all ground atoms which maximizes
the probability. This is known as maximum a-posteriori inference (MAP). Find-
ing a most likely world of an MLN is a generalization of the (NP-hard) MaxSAT
problem. Another equally important inference problem is, conditional probabil-
ity inference. This is the task of computing the probability of a set of variables
given evidence. The complexity of this problem is known to be #P-hard [17].



3 Reasoning in Uncertain Temporal KGs

Uncertain temporal knowledge graphs (utkgs) are extensions of temporal kgs

with log-linear models that are capable of representing uncertainties and rea-
soning over temporal knowledge bases. A utkg is a temporal knowledge graph
where each triple has a valid-time and an associated weight or confidence. In
other words, each triple has an associated timestamp or valid time, in addition
to a confidence value.

Syntax. A utkg graph G = (GD,GU) consists of a deterministic (hard) temporal
kg GD and a utkg GU with GD ∩ GU = ∅. An uncertain (soft) temporal kg is
defined as GU = {〈tti, wtti〉} where tti is a temporal fact and wtti is a real-
valued weight assigned to tti. The syntax of an uncertain temporal fact is similar
to the underlying temporal RDF, besides, each fact has an associated weight,
written as {(tti, wtti)}.
Example 2. Consider the following utkg which represents sport’s personality
Claudio Raineri’s courier:

Temporal fact Weight

(1) (CRanieri, coach, ChelseaFC, [2000,2004]) 0.9

(2) (CRanieri, coach, LeicesterFC, [2015,2016]) 0.7

(3) (CRanieri, playsFor, PalermoFC, [1984,1986]) 0.5

(4) (CRanieri, bdate,1951) 1.0

(5) (CRanieri, coach, NapoliFC, [2001,2003]) 0.6

Before providing semantics to utkgs, we need to extend membership (∈) to
(∈∗) and subset (⊆) to (⊂∗) relations as follows. Given a utkgs G, a tempo-
ral fact (s, p, o, [t1, t

′
1]), and a utkg G′, we denote by (s, p, o, [t1, t

′
1]) ∈∗ G if

∃(s, p, o, [t2, t′2]) ∈ G such that t2 ≤ t1 and t′1 ≤ t′2. We denote by G′ ⊆∗ G if for
all tt ∈∗ G′, then tt ∈∗ G.

Semantics. The semantics of a utkg is based on a joint probability distribution
over the uncertain part of the utkg. In particular, the weights of the facts in GU
determine a log-linear probability distribution. As mentioned earlier, we assume
that the time domain, in which the validity of triples is expressed is finite as
well as discrete, hence the set of possible worlds is finite. Formally, for a given
utkg G = (GD,GU) and some G′ over the same set of IRIs and literals IL, the
probability of G′ is defined as:

P (G′)=


1
Z exp

( ∑
{(tti,wtti

)∈∗GU:G′|=ttti}
wtti

)
if G′ |=t GD,

0 otherwise
where |=t is a temporal entailment relation, and Z is the normalization constant
of the log-linear probability distribution P . Note that in MAP inference (i.e.,
obtaining the most probable temporal kg) Z is not computed. A utkg can be
mapped into a first-order knowledge base as discussed below.



Herbrand Models. The set of formulas, denoted by F , listed in Figure 1 are
derived from the deduction rules of Section 2.1. Implicitly, F also contains the
non-temporal equivalents of the inference rules, i.e., those that do not contain
time interval arguments and the check function (more precisely, FOL translations
of RDF/S entailment rules [10]). Let C be the set of IRIs and Literals that appear
in some utkg G, the Herbrand base of F can be constructed by instantiating
all the variables in F using the constants in C. The function θ, given a finite set
C and a set of time points T , maps each fact in some utkg into a subset of the
Herbrand base HB of F with respect to C and T . Each subset of the Herbrand
base is a Herbrand interpretation specifying which ground atoms are true. A
Herbrand interpretation H is a Herbrand model of F , denoted as |=H F , iff it
satisfies all groundings of the formulas in F .

Definition 3 (Mapping utkg into FOL). Given a utkg G over a finite set
of IRIs and literals C, a time domain T , and HB the Herbrand base of F with
respect to C and T , θ : P(G)→ P(HB) maps G into subsets of HB as follows:

θ(G) =
⋃
tt∈G

θ(tt), where θ((s, p, o, T )) = tt(s, p, o, T ).

The predicate tt is typed, i.e., s, p ∈ I, o ∈ IL and T ∈ T . At this point
we need to show that the function θ is bijective, i.e., it induces a one-to-one
correspondence between Herbrand models of F and expanded kgs. Applying F
repeatedly on an uncertain kg may generate a set of new facts, this results in
an expanded kg.

Theorem 1. Let C ⊆ IL be a set of IRIs and literals and let T be a set of time
points. In addition, let G be a utkg over C and let HB be the Herbrand base of
F with respect to C. Then, for any G′ ⊆ G, G |=t G′ ⇒ θ(G′) |=H F and for any
H ⊆ HB, H |=H F ⇒ θ−1(H) |= G′′ and G |=t G′′.

3.1 MAP Inference

MAP inference in utkg corresponds to obtaining the most probable, consistent
and non-probabilistic temporal kg. Given a utkg G, a set of inference rules F ,
and a translation function θ, we denote the MAP problem by clean(θ(G),F).
Computing clean(θ(G),F) requires to translate G with the function θ into an
equivalent Markov logic formalization. Then the inference rules F are added to
this translation. The MAP state is computed with the help of a cutting planes
algorithm in [4] applied to this input data. To do so, the evidence clauses θ(G)
and the grounding of F with respect to θ(G) are given as input to the algorithm.
Applying the inverse translation function θ−1 to the MAP state, yields the most
probable temporal kg. The MAP problem in MLN can be turned into an integer
linear program [15] which allows to integrate extrenal functions (for instance the
check function in Figure 1) as already shown in [4].



(r1) tt(a, type, property, T1)→ tt(a, sp, a, T1)

(r2) tt(a, sp, b, T1) ∧ tt(b, sp, c, T2) ∧ check(T1, T2)→ tt(a, sp, c, T3) T3 = T1 ./ T2

(r3) tt(a, sp, b, T1) ∧ tt(x, a, y, T2) ∧ check(T1, T2)→ tt(x, b, y, T3) T3 = T1 ./ T2

(r4) tt(a, type, class, T1)→ tt(a, sc, a, T1)

(r5) tt(a, sc, b, T1) ∧ tt(b, sc, c, T2) ∧ check(T1, T2)→ tt(a, sc, c, T3) T3 = T1 ./ T2

(r6) tt(a, sc, b, T1) ∧ tt(x, type, a, T2) ∧ check(T1, T2)→ tt(x, type, b, T3) T3 = T1 ./ T2

(r7) tt(a, dom, c, T1) ∧ tt(x, a, y, T2) ∧ check(T1, T2)→ tt(x, type, c, T3) T3 = T1 ./ T2

(r8) tt(a, range, d, T1) ∧ tt(x, a, y, T2) ∧ check(T1, T2)→ tt(y, type, d, T3) T3 = T1 ./ T2

[t1, t
′
1] ./ [t2, t

′
2] =



[t1, t
′
1] if t1 = t2 ∧ t′1 = t′2

[t′1, t2] if t′1 = t2
[t2, t

′
1] if t1 < t2 ∧ t2 < t′1∧

t′1 < t′2
[t1, t

′
1] if t1 < t2 ∧ t′1 < t′2

[t1, t
′
1] if t1 = t2 ∧ t′1 < t′2

[t2, t
′
2] if t′1 < t1 ∧ t2 = t′2

∅ if t′1 < t2

check(T1, T2) =

{
false if T1 ./ T2 = ∅
true otherwise

Fig. 1. A set of temporal RDF/S inference rules F . If check(T1, T2) = false, then
the head of the rules (r1) – (r8) becomes false (⊥). All of the formulas are universally
quantified over all the variables.

Theorem 2. Given the following:

– a utkg G = (GD,GU) over a finite set IL of IRIs and literals, and a finite
set of time points T ,

– the Herbrand base HB of the formulas F with respect to IL and T ,
– the set of ground formulas G1 constructed from GD, and
– the set of ground formulas G2 constructed from GU.

The most probable, expanded and consistent temporal kg is obtained with:

θ−1(H) = arg max
HB⊇H|=G1∪F

( ∑
(ttj ,wj)∈G2:H|=Httj

wj

)
From Theorem 1 and the results in [4] taken together, the problem of computing
the most probable temporal kg is NP-hard.

Example 3 (MAP state). Given a utkg which contains the uncertain temporal
triples (1)–(5) of Example 2 and the hard temporal constraints (6) and (7), its
most probable and consistent temporal kg contains the facts (1)–(4) without
their associated weights.

– A person cannot be a coach of two clubs at the same time.
(6) ∀x, y, z, T1, T2 : tt(x, coach, y, T1)∧tt(x, coach, z, T2)→ disjoint(T1, T2)

– A person cannot be a coach before he or she was born.
(7) ∀x, y, z, T1, T2 : tt(x, bdate, y, T1) ∧ tt(x, coach, z, T2)→ before(T1, T2)

The predicates disjoint and before are Allen’s interval relations [2]. Below,
we introduce expressive constraints that allow to identify erroneous facts.



3.2 Debugging numerical attributes in Uncertain KGs

Often uncertain knowledge graphs may contain a large number of numerical
data which can be dates, times, latitudes/longitudes, numerical values measured
in different units, and so on. For instance, Claudio Ranieri is 1.82 meters tall
corresponds to the fact (CRanieri , height , 1 .82 ). It contains a numeric datum
(1.82). Uncertain facts which contain numerical data can be conflicting. One
way of resolving this is to compute a MAP state of a given kg which basi-
cally throws out facts which have inferior weights or confidences given some
inference rules. However, this is not enough. Consider for instance, if there
is an uncertain kg that contains two facts: (1) ((CRanieri , height , 1 .80 ), 0 .3 )
and (2) ((CRanieri , height , 3 .5 ), 0 .9 ). Assume that these facts are translated
into an MLN framework along with the constraint that the property ‘height’
is functional, i.e., ∀x, y : tt(x, height, y) ∧ tt(x, height, y′) → y = y′. In this
setting, performing MAP inference results in a kg containing the certain fact
(CRanieri , height , 3 .5 ). However, the correct output should contain only the
first triple because normally people cannot be taller than 2.5 meters. In order
to remove such conflicts, we can add another constraint as discussed below.
Constraints are used in description logics and database systems to ensure data
validity. In the following, we introduce such constraints in order to ensure validity
of temporal facts in uncertain kgs.

Constraints A Datalog [1] constraint is an expression of the form body → head,
where the head is an atom (i.e., an expression of the form p(x1, . . . , xn) in which
each xi is either a constant or a variable) and body is a set of atoms, such that
each variable occurring in the head also occurs in some atom in the body. Since
our choice of MLN with numerical constraints allows us to use external functions
whose truth values are computed outside the MLN setting (see Chekol et al. [4]),
we can extend datalog constraints (specifically, inclusion dependencies, equality
generating dependencies and negative constraints [1]) with numerical constraints.
To debug uncertain kgs we can introduce a set of datalog inspired constraints
which become hard (deterministic) or soft (uncertain) formulas in MLNs. For
instance, if we want to state that “a person cannot be taller that 2.5 meters”, then
we can introduce a rule of the form: ∀x, y : (x, type, person) ∧ (x, height, y) →
y < 3.5. In the following, we introduce three different kinds of constraints.

Inclusion dependencies with inequalities (IDIs). IDIs are first-order for-
mulas of the form ∀X,Y : Φ(X,Y ) ∧ NC(Xi, Yj)→ Ψ(Y ), where Φ(X,Y ) is the
body of the formula, it is a conjunction of atoms, Ψ(Y ) is the head of the formula,
X,Y are sets of variables, and Xi ⊆ X and Yj ⊆ Y . In addition, NC(Xi, Yj) de-
notes a numerical constraint which is an arithmetic expression (see Definition 2).

Example 4. Those who are above the age of 40 are probably retired footballers:

∀x, y : tt(x, type,Footballer) ∧ tt(x, age, y) ∧ NC(y) → tt(x, type,RFootballer),
NC(y) = y > 40.



(In)equality generating dependencies (IGDs). IGDs are first-order formu-
las of the form ∀X : Φ(X) → NC(Xi), where Φ(X) is the body of the formula
which is a conjunction of atoms, X is a set of variables, and Xi ⊆ X. In addition,
NC(Xi) denotes a numerical constraint.

Example 5. Temperature Celsius tc can be converted into an equivalent Fahren-
heit scale tf using the formula tf = 1.8tc + 32: ∀x, tc, tf : tt(x, tempc, tc) ∧
tt(x, tempf, tf ) → NC(tc, tf ), NC(tc, tf ) = 1.8tc + 32. From a practical view-
point, this rule can be used for checking if two facts extracted from Wikipedia,
one containing temperature in Celsius format and the other in Fahrenheit, are
conflicting.

Disjointness constraints (DCs). DCs are first-order formulas of the form
∀X : Φ(X) ∧ NC(Xi) → ⊥, where Φ(X) is the body of the formula which is a
conjunction of atoms, X is a set of variables, and Xi ⊆ X. In addition, NC(Xi)
denotes a numerical constraint.

Example 6. A valid life span of a person is less than 150 years, can be expressed
as DCs formula: ∀bd, dd : tt(x, bdate, bd) ∧ tt(x, ddate, dd) ∧ NC(bd, dd)→ ⊥,
NC(bd, dd) = (dd− bd) > 0 ∧ (dd− bd) < 150.

These constraints are more expressive than RDF schema because they allow to
express disjointness, functionality of properties, inverse properties, among others.
Once an uncertain kg is translated into an equivalent Markov logic formalism
using the formula θ, and sets of IDIs, IGDs, and DCs constraints over the kg
have been constructed, we can apply MAP inference in order to retrieve the most
probable and conflict-free kg using clean(θ(G),F , C).

3.3 Conditional Probability Inference

The conditional probability of a temporal fact tt given a utkg G is the sum
of the probabilities of the consistent temporal kgs containing tt. In general, a
conditional probability query is conjunction of a set of temporal facts. Given a
query q and a utkgs G, the conditional probability of q is obtained using:

Pq(q | G) =
∑

G′:q⊆∗G′
P (G′)

G′ is a possible world over the same signature IL and T as G. In order to sum over
all G′, we need to compare the time intervals in the facts of q with those of G′. To
do so, we rewite the query q as follows: for each temporal fact tt ∈ q if ∃tt′ ∈ G
and that tt ⊆+ tt′, then we replace tt in q with tt′. The relation ⊆+ is de-
fined as: for two temporal facts tt = (s, p, o, [t1, t

′
1]) and tt′ = (s′, p′, o′, [t2, t

′
2]),

tt ⊆ tt′ if s = s′, p = p′, o = o′, t2 ≤ t1 and t′1 ≤ t′2. This allows us to compute
conditional probabilities on top of current solvers such as MC-SAT [16]. The
rewriting can be done in polynomial time in the size of the utkg in the worst
case. Since no additional computation is required, the complexity of conditional
probability inference remains #P-hard for utkgs. For example the conditional



query tt(CRanieri , coach,Chelsea, [2001 , 2003 ] given G (from Example 2), can
be rewritten as: Pq(tt(CRanieri , coach,Chelsea, [2000 , 2004 ]) | G). Since condi-
tional inference is intractable, computing exact probabilities is hard. Thus, it is
usual to resort to sampling methods for approximate inference. The state of the
art marginal inference algorithm is MC-SAT. A Monte Carlo algorithm must
sample consistent or conflict-free temporal kgs according to the distribution Pq.
This is very difficult for three reasons: (i) the complexity of reasoning in MLN,
(ii) the size of uncertain kgs (such as NELL, ReVerb), and (iii) the presence of
deterministic dependencies in the utkgs. Due to these reasons, we need to use
emerging lifted inference techniques for marginal inference [23]. We consider this
as a future work.

4 Conclusion and Future Work

In this paper, we have presented an MLN based approach for reasoning over
uncertain temporal knowledge graphs. In doing so, we proposed a formal syntax
and semantics. Besides, we formalized MAP and conditional probability inference
problems in utkgs and shown that these problems remain NP-hard and #P-hard
respectively. Importantly, we extended the datalog constraints in order to clean
erroneous facts in utkgs. Thereby, we are able to apply MAP inference in order
to obtain a most probable and conflict-free temporal kg from an uncertain one.

Currently, we are in the process of conducting experiments by using an ex-
isting implementation, that supports the numerical extension of MLN, called
ROCKIT6. At present, there is no avaiable uncertain temporal dataset. We are
preparing a gold standard from Freebase and ReVerb, by converting those facts
that contain dates and times into temporal facts. With that, we can test the
efficiency and scalability of the proposed approach. Another direction for future
work is, to investigate how lifted inference can be applied. This is important
because the complexity of reasoning in MLNs is intractable in general.
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