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Abstract. We show that k-means clustering is a matrix factorization
problem. Seen from this point of view, k-means clustering can be com-
puted using alternating least squares techniques and we show how the
constrained optimization steps involved in this procedure can be solved
efficiently using the Frank-Wolfe algorithm.

1 Introduction

In this paper, we are concerned with theoretical aspects of machine learning.
In particular, we revisit k-means clustering and investigate it from the point of
view of data matrix factorization.

The k-means procedure is a popular technique to cluster a data set X of
numerical data into subsets C1, . . . , Ck. The underlying ideas are intuitive and
simple and most properties of k-means clustering are text book material [1,
2]. Adding to this material, several authors have recently argued that k-means
clustering can be understood as a constrained matrix factorization problem [3–7].
However, reading the related literature, one cannot but notice that most authors
consider this fact self explanatory and appeal to intuition.

Our goals with this paper are therefore as follows: i) we provide a rigorous
proof for the equivalence of k-means clustering and constrained data matrix
factorization. ii) we show that the matrix factorization point of view immediately
reveals several properties of k-means clustering which are usually difficult to work
out. In particular, we show that k-means clustering is an integer programming
problem and therefore NP-hard, that k-means clustering allows for invoking the
kernel trick, and that k-means clustering is closely related to archetypal analysis
[8, 9] and non-negative matrix factorization [10, 11]. iii) we show that the matrix
factorization perspective leads to yet another algorithm for computing k-means
clustering and we discuss how to efficiently implement it using the Frank-Wolfe
optimization scheme [12–14].

We begin our presentation with a brief summery of the traditional view on
k-means clustering and then move on to the matrix factorization perspective.
Our discussion assumes that readers are familiar with theory and practice of
matrix factorization for data mining and machine learning. Those interested in
a gentle introduction into the underlying mathematical ideas are referred to [11].



2 k-Means Clustering: Known Properties and Algorithms

Given a set X = {x1, . . . ,xn} of data points xj ∈ Rm, hard k-means clustering
attempts to partition the data into k clusters C1, . . . , Ck such that Ci ⊂ X,
Ci ∩Cl = ∅, and C1 ∪C2 ∪ . . .∪Ck = X. In particular, hard k-means clustering
is a prototype-based clustering technique because it understands clusters to be
defined in terms of prototypes or cluster centroids µ1, . . . ,µk ∈ Rm, namely

Ci =
{
xj ∈ X

∣∣∣ ∥∥xj − µi

∥∥2 ≤ ∥∥xj − µl

∥∥2 ∀ l 6= i
}

(1)

The problem at the heart of hard k-means clustering is therefore to search for
k appropriate cluster centroids which are typically determined as the minimizers
of the following objective function

E(k) =

k∑
i=1

∑
xj∈Ci

∥∥xj − µi

∥∥2 =

k∑
i=1

n∑
j=1

zij
∥∥xj − µi

∥∥2 (2)

where the

zij =

{
1, if xj ∈ Ci

0, otherwise.
(3)

are binary indicator variables which indicate whether or not data point xj be-
longs to cluster Ci.

Since hard k-means clustering aims at disjoint clusters where each xj is
assigned to one and only one Ci, we point out the following important properties
of the zij ∈ {0, 1}. If we fix the data index j and sum over the cluster index i,
we obtain the number of clusters data point xj is assigned to, namely

k∑
i=1

zij = 1. (4)

Also, by fixing the cluster index i and summing over the data index j, we find

n∑
j=1

zij = |Ci| = ni (5)

where ni indicates the number of data points assigned to cluster Ci.
Although the objective in (2) looks rather innocent, it is actually NP-hard

[15] and has to be approached using heuristics for which there is no guarantee
to find the optimal solution. Indeed, there are various k-means heuristics or
algorithms of which well known examples include Lloyd’s algorithm (aka “the”
k-means algorithm) [16], Hartigan’s algorithm [17–19], MacQueen’s algorithm
[20], or gradient descend methods [21].



3 k-Means Clustering Is Data Matrix Factorization

Having recalled properties of hard k-means clustering in the previous section, our
goal is now to rigorously establish that k-means clustering is matrix factorization.
In other words, given the objective in (2), we will prove the following identity

k∑
i=1

n∑
j=1

zij
∥∥xj − µi

∥∥2 =
∥∥∥X −MZ

∥∥∥2 (6)

where

X ∈ Rm×n is a column matrix of n data vectors xj ∈ Rm (7)

M ∈ Rm×k is a column matrix of k cluster centroids µi ∈ Rm (8)

Z ∈ Rk×n is a matrix of binary indicator variables such that

zij =

{
1, if xj ∈ Ci

0, otherwise.
(9)

3.1 Notation and Preliminaries

Throughout, we write xj to denote j-th column vector of a matrix X. To refer
to the (l, j) element of a matrix X, we either write xlj or

(
X
)
lj

. Moreover,

subscripts or summation indices i will be understood to range from 1 to k (the
number of clusters), subscripts or summation indices j will range from 1 up to
n (the number of data), and subscripts or summation indices l will be used to
expand inner products between vectors or rows and columns of matrices.

Finally, regarding the squared Frobenius norm of a matrix, we recall that∥∥X∥∥2 =
∑
l,j

x2lj =
∑
j

∥∥xj

∥∥2 =
∑
j

xT
j xj =

∑
j

(
XTX

)
jj

= tr
[
XTX

]
(10)

3.2 Step by Step Derivation of (6)

To substantiate the claim in (6), we first point out a crucial property of the
binary indicator matrix Z in (9). The property of the zij ∈ {0, 1} we worked out
in (4) translates to the statement that each column of Z contains a single entry
of 1 and k − 1 entries of 0. This immediately establishes that the rows of Z are
pairwise perpendicular because

zij zi′j =

{
1, if i = i′

0, otherwise
(11)

which is then to say that the matrix ZZT is a diagonal matrix where(
ZZT

)
ii′

=
∑
j

(
Z
)
ij

(
ZT
)
ji′

=
∑
j

zij zi′j =

{
ni, if i = i′

0, otherwise.
(12)

Having discussed this property of Z, we are now positioned to establish the
equality in (6) and we will do this in a step by step manner.



Step 1: Expanding the expression on the left of (6) First, we expand the
conventional k-means objective function and find∑

i,j

zij
∥∥xj − µi

∥∥2 =
∑
i,j

zij
(
xT
j xj − 2xT

j µi + µT
i µi

)
=
∑
i,j

zij x
T
j xj︸ ︷︷ ︸

T1

−2
∑
i,j

zij x
T
j µi︸ ︷︷ ︸

T2

+
∑
i,j

zij µ
T
i µi︸ ︷︷ ︸

T3

. (13)

This expansion leads to further insights, if we examine the three terms T1,
T2, and T3 one by one. First of all, we find

T1 =
∑
i,j

zij x
T
j xj =

∑
i,j

zij
∥∥xj

∥∥2 =
∑
j

∥∥xj

∥∥2 ∑
i

zij =
∑
j

∥∥xj

∥∥2 (14)

= tr
[
XTX

]
(15)

where we made use of (4) and (10). Second of all, we observe

T2 =
∑
i,j

zij x
T
j µi =

∑
i,j

zij
∑
l

xlj µli (16)

=
∑
j,l

xlj
∑
i

µli zij (17)

=
∑
j,l

xlj
(
MZ

)
lj

(18)

=
∑
j,l

(
XT

)
jl

(
MZ

)
lj

(19)

=
∑
j

(
XTMZ

)
jj

(20)

= tr
[
XTMZ

]
(21)

Third of all, we note that

T3 =
∑
i,j

zij µ
T
i µi =

∑
i,j

zij
∥∥µi

∥∥2 =
∑
i

∥∥µi

∥∥2∑
j

zij =
∑
i

∥∥µi

∥∥2 ni (22)

where we applied (5).

Step 2: Expanding the expression on the right of (6) Next, we look at
the squared Frobenius norm on the right hand side of (6); it can be written as∥∥∥X −MZ

∥∥∥2 = tr
[(
X −MZ

)T (
X −MZ

)]
= tr

[
XTX

]︸ ︷︷ ︸
T4

−2 tr
[
XTMZ

]︸ ︷︷ ︸
T5

+ tr
[
ZTMTMZ

]︸ ︷︷ ︸
T6

(23)



Given our earlier results, we immediately recognize that T1 = T4 and T2 = T5.
Thus, to establish that (13) and (23) are indeed equivalent, it remains to verify
whether T3 = T6?

Regarding T6, we note that, because of the cyclic permutation invariance of
the trace operator, we have

tr
[
ZTMTMZ

]
= tr

[
MTMZZT

]
. (24)

We also note that

tr
[
MTMZZT

]
=
∑
i

(
MTMZZT

)
ii

(25)

=
∑
i

∑
l

(
MTM

)
il

(
ZZT

)
li

(26)

=
∑
i

(
MTM

)
ii

(
ZZT

)
ii

(27)

=
∑
i

∥∥µi

∥∥2 ni (28)

where we used the fact that ZZT is diagonal. This result, however, shows that
T3 = T6 and, consequently, that (13) and (23) are equivalent. That is, we have
proven that k-means clustering can indeed be cast as a matrix factorization
problem.

4 Consequences

Having proved our central claim in (6), we will next discuss several consequences
we can obtain from the matrix factorization formulation of k-means clustering.

4.1 k-Means Clustering Is NP Hard

Given the above result, further insights into the nature of k-means clustering
result from eliminating matrix M from the right hand side of (6). That is, we

next ask for the matrix M that, for a given Z, would minimize
∥∥X −MZ

∥∥2.
To this end, we consider

∂

∂M

∥∥∥X −MZ
∥∥∥2 =

∂

∂M

[
tr
[
XTX

]
− 2 tr

[
XTMZ

]
+ tr

[
ZTMTMZ

]]
= 2
(
MZZT −XZT

)
(29)

which, upon equating to 0, leads to

M = XZT
(
ZZT

)−1
(30)



which beautifully reflects the fact that each of the k-means cluster centroids µi

coincides with the mean of the corresponding cluster Ci, namely

µi =

∑
j zij xj∑
j zij

=
1

ni

∑
xj∈Ci

xj . (31)

Given the result in (30), we therefore find that the k-means objective can be
cast solely in terms of the data matrix X and the indicator matrix Z

min
Z

∥∥∥X −XZT
(
ZZT

)−1
Z
∥∥∥2

s.t. zij ∈ {0, 1}∑
i

zij = 1

(32)

Looking at (32), we recognize k-means clustering as an integer programming
problem, since it corresponds to the discrete optimization problem of finding a
column stochastic binary matrix Z that minimizes the objective in (32). Integer
programming problems are NP hard and we can actually read this off (32). Z is
an k×n binary matrix such that each column contains a single 1; thus, for each
column there are k ways to place that 1 and since there are n columns, there
are O

(
kn
)

matrices among which we have to determine the optimal one.

4.2 Kernel k-Means Clustering

Observe that the squared Frobenius norm in (32) can also be expanded in terms

of trace operators. If we substitute Ξ = ZT
(
ZZT

)−1
Z for brevity, we find∥∥∥X −XΞ∥∥∥2 = tr

[
XTX

]
− 2 tr

[
XTXΞ

]
+ tr

[
ΞXTXΞ

]
(33)

and recognize that each occurrence of the data vectors xi is in form of an inner
product, because

(
XTX

)
ij

= xT
i xj .

This, however, shows that k-means allows for invoking the kernel trick as we
may replace the n×n Gramian XTX by an n×n kernel matrix K whose entries
correspond to kernel evaluations k(xi,xj).

4.3 k-Means Clustering, Archetypal Analysis and Non-Negative
Matrix Factorization

Even further insights into the nature of k-means clustering arise, if we substitute

Y = ZT
(
ZZT

)−1
so that we can write M = XY . This again reveals that the

centroid vectors µi, i.e. the columns of M , are convex combinations of data
points xj . That is, µi = Xyi where yi is an n dimensional vector with ni
entries equal to 1/ni and n− ni entries equal to 0.



We note that, by definition, Y is a column stochastic matrix. It is non-
negative, i.e. Y � 0, and its columns sum to one, i.e.

∑
j yji = 1Tyi = 1.

Moreover, each column will have high entropy H(yi) = −
∑

j yji log yji � 0.

We also recall that, as a binary matrix, matrix Z will obey Z � 0, 1Tzj = 1,
and H(zj) = −

∑
i zij log zij = 0.

Hard k-Means Clustering Given these prerequisites, we can therefore express
hard k-means clustering as a constrained quadratic optimization problem

min
Y ,Z

∥∥∥X −XY Z∥∥∥2
s.t. Y � 0, 1Tyi = 1, H(yi)� 0

Z � 0, 1Tzj = 1, H(zj) = 0.

(34)

Archetypal Analysis If we drop the entropy constraints in (34), we obtain

min
Y ,Z

∥∥∥X −XY Z∥∥∥2
s.t. Y � 0, 1Tyi = 1

Z � 0, 1Tzj = 1

(35)

and recover a problem known as archetypal analysis (AA) [8, 9]. Dropping the
entropy constraints has an interesting effect. Instead of computing basis vectors
M = XY that correspond to local means, AA determines basis vectors that
are extreme points of the data in X. In fact, the archetypes in matrix M reside
on the data convex hull [22].

Non-Negative Matrix Factorization If we further drop the sum-to-one con-
straints in (35), we obtain

min
Y ,Z

∥∥∥X −XY Z∥∥∥2
s.t. Y � 0

Z � 0

(36)

a problem known as non-negative matrix factorization (NMF) [10]. Dropping the
stochastic constraints has the effect that NMF computes basis vectorsM = XY
that are conic combinations of the data in X.

The expressions in (34), (35), and (36) therefore reveal k-means clustering to
be a particularly severely constrained quadratic optimization problem. This is
interesting in so far as algorithms for computing k-means clustering conceptually
much simpler than AA or NMF algorithms. Nevertheless, it now appears as if
methods that have been developed for AA and NMF might also apply to k-means
clustering. In the next section, we show that this is indeed the case.



5 Yet Another Algorithm for k-Means Clustering

Since we just found that hard k-means clustering is indeed a constrained form
of archetypal analysis, the question is if algorithms that have been developed for
archetypal analysis can be used to compute k-means clustering.

In order to see how this can be accomplished, we note that the objective
function in (34) is convex in either Y or Z but not in the their product Y Z.
An idea for solving the problem in (34) could therefore be to apply the following
constrained alternating least squares procedure

1) randomly initialize Y and Z under the appropriate constraints
2) fix matrix Z and update Y to the solution of

min
Y

∥∥∥X −XY Z∥∥∥2
s.t. yi � 0, 1Tyi = 1, H(yi)� 0

3) fix matrix Y and update Z to the solution of

min
Z

∥∥∥X −XY Z∥∥∥2
s.t. zi � 0, 1Tzj = 1, H(zj) = 0

4) if not converged, continue at 2)

for which we note that the seemingly difficult constrained quadratic optimization
problems it involves can actually be solved rather easily.

First of all, we observe that the stochastic constraints yi � 0 and 1Tyi = 1
require the columns of matrix Y to reside in the standard n-simplex

∆n−1 =
{
y ∈ Rn

∣∣ y � 0 ∧ 1Ty = 1
}
. (37)

Second of all, the column entropy H(yi) = −
∑

j yji log yji is a concave
function so that −H(yi) is convex and we are interested in solutions for Y that
maximize H(yi). We can thus rewrite the first problem in the above procedure
as

min
Y

∥∥∥X −XY Z∥∥∥2 −∑
i

H(yi)

s.t. yi ∈ ∆n−1.

(38)

Written in this form, we recognize the problem as a convex minimization
problem over a compact convex set. This, however, is to say that it can be tackled
using the efficient Frank-Wolfe procedure [12]. The Frank-Wolfe algorithm shown
in Alg. 1 solves problems of the form

min
x

f(x) (40)

s.t. x ∈ S



Algorithm 1 Frank-Wolfe algorithm to solve problem such as in (40)

guess a feasible point x0

for t = 0, . . . , tmax do
determine st by solving

min
s∈S

sT∇f(xt) (39)

update the learning rate γt = 2
t+2

update the current estimate xt+1 = xt + γt (st − xt)

where S ⊂ Rm is a compact, convex set and f : S → R is a convex function. The
key idea is to compute s ∈ S that minimizes sT∇f(xt) and to use sub-gradient
updates s − xt which guarantee that the updates will never leave the feasible
set. The efficiency of the algorithm stems from the fact that it turns a quadratic
optimization problem into a series of linear optimization problems and we point
out that the minimum of a linear function sT∇f(x) over a compact convex set
will be attained at a vertex of that set.

With respect to our problem of a matrix minimization problem, we note that
the gradient ∇f we are concerned with is given by

∇Y

(∥∥∥X −XY Z∥∥∥2 −∑
i

H(yi)

)
= 2

[
XTXY ZZT −XTXZT

]
−L (41)

where the components of matrix L amount to

Lji =
∂

∂yji

∑
j

yji log yji = log yji + 1 (42)

We can use the columns of this gradient matrix G to update the columns yi of
Y according to the Frank-Wolfe algorithm. We also point out, the the compact
convex set we are dealing with is the standard simplex ∆n−1 whose vertices
are given by the standard basis vectors el ∈ Rn. The problem of finding the
minimizer s ∈ ∆n−1 thus simplifies to finding the basis vector el that minimizes
eTl gi which is simply to determine the minimal entry gli in each column gi of
G. All in all, these consideration then lead to Alg. 2 for computing updates of
matrix Y .

Similar considerations apply to the problem of computing the updates of the
indicator matrix Z and correspondingly lead to Alg. 3.

To conclude this discussion, we point out that the Frank-Wolfe procedure
quickly achieves ε-approximations of the optimal solution that are provably
sparse [13]. In fact, one can show that after t iterations the current estimate
is O(1/t) from the optimal solution [13] which provides a convenient criterion
for choosing the number tmax of iterations to be performed. For further de-
tails on the Frank-Wolfe algorithms as well as for a recent excellent survey of
projection-free convex optimization over compact convex sets, we refer to [14].



Algorithm 2 Frank-Wolfe procedure to compute Y whose columns are in ∆n−1

Require: data matrix X, indicator matrix Z, and parameter tmax ∈ N
Y ← [e1, e1, . . . , e1] where e1 = [1, 0, . . . , 0]T ∈ Rn // initialize n× k matrix Y
t← 0
repeat

G = 2
[
XTXY ZZT −XTXZT

]
−L // compute gradient matrix

for i = 1, . . . , k do // update columns yi of Y
i′ = argminlGli

zi ← zi + 2/(t+ 2) · (ei′ − zi)

t← t+ 1
until updates “become small” or t = tmax

Algorithm 3 Frank-Wolfe procedure to compute Z whose columns are in ∆k−1

Require: data matrix X, coefficient matrix Y , and parameter tmax ∈ N
Z ← [e1, e1, . . . , e1] where e1 = [1, 0, . . . , 0]T ∈ Rk // initialize k × n matrix Z
t← 0
repeat

G = 2
[
Y TXTXY Z − Y TXTX

]
// compute gradient matrix

for j = 1, . . . , n do // update columns zj of Z
j′ = argminlGlj

zj ← zj + 2/(t+ 2) · (ej′ − zj)

t← t+ 1
until updates “become small” or t = tmax

6 Conclusion

In this paper, we were concerned with machine learning theory. In particular,
we were concerned with theoretical aspects of k-means clustering.

First of all, we rigorously established that k-means clustering is a constrained
data matrix factorization problem. Second of all, this insight allowed us to easily
uncover several properties of k-means clustering that are otherwise more difficult
to show. Third of all, the matrix factorization point of view on k-means clustering
allowed us to reveal its connections to archetypal analysis and non-negative
matrix factorization. Finally, given that k-means clustering can be understood as
a constrained version of archetypal analysis, we discussed yet another algorithm
for k-means clustering. Archetypal analysis is often computed using alternating
least squares optimization and we showed how to adapt this idea to k-means
clustering. In particular, we discussed that the seemingly difficult constrained
optimization problems involved in this procedure can be solved using the efficient
Frank-Wolfe procedure for convex optimization over compact convex sets.

Again, the work reported here is of mainly theoretical interest. What is par-
ticularly striking is that it established k-means clustering as a more constrained
and thus more difficult problem than archetypal analysis or non-negative matrix
factorization. Yet, at the same time, traditional algorithms for k-means clus-
tering are considerably simpler than those for the latter problems. This can be



seen as a call to arms for it suggests that there may be simpler algorithms for
these kind of problems as well. Indeed, techniques such as k-maxoids clustering
[23] which were derived from k-means clustering indicate that, say, archetypal
analysis should be solvable by simple algorithms, too.
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