
The BioDynaMo Project: Creating a Platform for
Large-Scale Reproducible Biological Simulations

Lukas Breitwieser∗, Roman Bauer†, Alberto Di Meglio∗, Leonard Johard‡,
Marcus Kaiser†, Marco Manca∗, Manuel Mazzara‡, Fons Rademakers∗, Max Talanov§,

Affiliation: ∗CERN (Switzerland), †Newcastle University (United Kingdom),
‡Innopolis University (Russian Federation), §Kazan Federal University (Russian Federation)

Email: biodynamo-talk@cern.ch

Abstract—Computer simulations have become a very powerful
tool for scientific research. In order to facilitate research in
computational biology, the BioDynaMo project aims at a general
platform for biological computer simulations, which should be
executable on hybrid cloud computing systems. This paper de-
scribes challenges and lessons learnt during the early stages of the
software development process, in the context of implementation
issues and the international nature of the collaboration.

I. INTRODUCTION

The BioDynaMo project is a long term effort in the field of
biological simulation to build a scalable and flexible platform.
The purpose is to give life scientists access to increasing
amounts of computational resources and provide a framework
that hides the computational complexity, allows them to focus
on their research, and promotes reusability and reproducibility
of the results from shared open access data. In order to have an
impact on the community, the system must be flexible enough
to execute simulations from different specialities with possibly
quite distinct requirements.

The project started as a code modernization initiative, in-
spired by the scientific principles underlying the simulation
software Cx3D [1]. Cx3D is a software framework that is able
to simulate the development of neural tissue, based on physical
mechanisms and neural growth [1]. However, Cx3D can not
leverage cloud computing systems or coprocessors, and so
is limited in terms of the simulation size and complexity.
Moreover, Cx3D is limited in terms of extendability and
modifiability for other purposes in computational biology.

In general, software modernization is a collective term that
subsumes a variety of activities. In our case it means trans-
forming the application from Java to C++ and changing the
architecture in a way to utilize multiple levels of parallelism
offered by today’s hardware and modern distributed computing
models.

II. SOFTWARE DEVELOPMENT PRACTICES

Although Cx3D has a very compact code base (15 kLOC),
it is able to perform complex simulations like “cortical lamina-
tion”. However, the absence of modern software development
practices such as automated tests, continuous integration,
coding standards compliance, and code reviews hinders a
sustainable development process.

Our first step was to introduce development techniques and
infrastructure aimed at improving code quality and maintain-
ability, which are essential for our long time effort. Based on
available effort, we opted for testing the whole application
rather than writing unit tests for the entire codebase. Existing
demo simulations were taken and transformed into test cases.
The resulting simulation state is then transformed into JSON
format and compared to a ground truth obtained from Cx3D
0.03. A public code repository was created on Github [2] and
connected to the continuous integration service Travis-CI [3]
that automatically checks every code change if it generates
the correct results. This procedure proved to be a good choice
given the goal of improving application performance without
changing the final output. Furthermore, a coding styleguide
was selected to ensure that code is readable, maintainable and
follows best practices. A coding standard is only helpful if
it is followed by the developers. Thus, tools are needed that
help to conform to these rules. We chose the Google C++
styleguide [4] which comes with an Eclipse code formatting
definition and cpplint, a tool that checks code for violations. A
dedicated “BioDynaMo Developers Guide” [5] introduces new
developers to the project, describes conventions beyond the
coding style, e.g. usage of the revision system git, and stresses
the importance of testing and documentation. External contri-
butions are introduced through Github’s pull request system
and are reviewed before they are merged into our repository.
Github also offers an issue tracking system that is helpful to
report and document software errors and to plan future work
packages. Moreover, communication is an important aspect
especially with project partners based in different countries.
Our team uses the message system Slack [6] for real time low
bandwith communication which integrates well with Github
and Travis-CI. Alternatively, we have set-up two mailing lists
for asynchronous communication. Additionally, conference
calls using Skype and periodic plenary meetings complement
our communication toolbox and help us to coordinate this
project.

III. MODERNIZING LEGACY CODE: EXAMPLES OF THE
METHODOLOGIES APPLIED

High performance and high scalability are the prerequi-
sites to address ambitious research questions like modeling
epilepsy. Our efforts in code modernization were driven by theThis work is licensed under a CC-BY-4.0 license.

https://creativecommons.org/licenses/by/4.0/


goal to remove unnecessary overhead and update the software
design to tap the unused potential enabled by the paradigm
shift to multi and many-core distributed systems.

The Intel Modern Code Development Challenge organized
in 2015 with CERN and Newcastle focused on optimizing se-
quential C++ brain simulation code provided by the Newcastle
University in the UK. The contest followed a gamification
approach where participating students competed against each
other to win an internship at CERN. The ranking was based
on the runtime of the provided simulation. Using data layout
transformations (array of structures to structure of arrays),
parallelization with OpenMP, a custom memory allocator
and Intel Cilk Plus array notation, the winner was able to
decrease the runtime by a factor of 320. This clearly shows
the economic potential of code modernization efforts coupled
with gamification and encourages to repeat the challenge.

Furthermore, we ported the Java code base to C++. This
language is better suited for high performance computing as it
is compiled to native machine code removing the overhead of
running in a virtual machine and provides the right ecosystem
for parallelization and optimization. The following iterative
porting approach has been chosen. First, a Java class is selected
and replaced by its C++ translation. In the second step, this
C++ class is connected to the remaining Java application.
Finally, the Java/C++ hybrid is compiled and used to execute
a number of tests. If all tests pass, the developer can proceed
with the next iteration by selecting another Java class. On the
other hand this means that errors, indicated by test failures,
must have been introduced by code changes since the last
iteration. Therefore, this procedure significantly simplifies de-
bugging. Although this approach is associated with additional
development overhead in connecting classes in C++ to Java,
it gives the benefit of obtaining a runnable system after each
iteration. Without that additional effort, the first time the C++
version would be able to execute tests, would be at the very
end, after all classes have been ported. Porting would have
been a lot easier if every class / function had sufficient unit
tests. In this scenario connecting both languages would no
longer be required since tests could be executed for each
function independently. Testing the whole simulation software
had another drawback: floating point differences on diverse
systems amplified over many iterations and were responsible
for test failures although the code was correct. We fixed that
issue using the math-library crlibm to obtain reproducible
results across different environments as suggested in [7].
Setting up the whole development environment and porting
the application took six months. A preliminary performance
benchmark of the single threaded, non vectorized C++ version
showed promising performance improvements of up to 4.8x
with a median of 1.7x.

IV. CONCLUSION

The field of computational biology covers a wide range
of scientific topics, each producing many different scientific
models, such as for instance described by [8], [9] and [10].
Hence, a general platform for biological research should be

able to meet a number of different requirements. It is crucial
that this diversity of the prospective users is already taken
into account during the software development process. Incor-
porating such diversity means that the multidisciplinary project
team of BioDynaMo must be able to efficiently interact, and
make decisions based on the expertise of each team member.

In addition to these more scientifically-centered as-
pects, also considerable challenges arise from a computa-
tional/technological point of view. First steps towards such ef-
ficient software implementation have been made in the context
of the “Intel Modern Code Developer Challenge” competition.
Overall, we believe we have created a collaborative foundation
for the efficient continuation of the very ambitious software
development project of BioDynaMo.

However, considerable challenges remain in the current
software development process. The verification and validation
of the software is paramount. The recent study of [11] demon-
strates the extraordinary risks that arise when the correctness
and validity of software tools for scientific research are not
properly assessed. Moreover, the efficient communication and
orchestration among the members are crucial components of
this international project. We have identified these key aspects
to require further efforts in parallel to the overall development
process.

ACKNOWLEDGMENT

This work was possible thanks to the support by CERN
and CERN openlab Code Modernization program in cooper-
ation with Intel; by the Human Green Brain Project (www.
greenbrainproject.org) through the Engineering and Physical
Sciences Research Council (EP/K026992/1); by Innopolis
University, and its Service Science and Engineering lab (SSE);
and by SCImPULSE Foundation. The funding institutions had
no role in the design of the project, decision to publish, or
preparation of the manuscript.

REFERENCES

[1] F. Zubler and R. Douglas, “A framework for modeling the growth
and development of neurons and networks,” Frontiers in computational
neuroscience, vol. 3, p. 25, 2009.

[2] “Biodynamo code repository on github,” https://github.com/BioDynaMo/
biodynamo.

[3] “Travis ci,” https://travis-ci.com/.
[4] “Google c++ style guide,” https://google.github.io/styleguide/cppguide.

html.
[5] “Biodynamo developers guide,” https://github.com/BioDynaMo/

biodynamo/wiki/BioDynaMo-Developers-Guide.
[6] “Slack,” https://slack.com/.
[7] E. Mcintosh, F. Schmidt, F. de Dinechin et al., “Massive tracking

on heterogeneous platforms,” in 2006 ICAP Conference in Chamonix,
France, 2006.

[8] R. Bauer, F. Zubler, S. Pfister, A. Hauri, M. Pfeiffer, D. R. Muir, and
R. J. Douglas, “Developmental self-construction and-configuration of
functional neocortical neuronal networks,” PLOS Comput Biol, vol. 10,
no. 12, 2014.

[9] J. B. Freund, “Numerical simulation of flowing blood cells,” Annual
review of fluid mechanics, vol. 46, pp. 67–95, 2014.

[10] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mam-
malian thalamocortical systems,” Proceedings of the national academy
of sciences, vol. 105, no. 9, pp. 3593–3598, 2008.

[11] A. Eklund, T. E. Nichols, and H. Knutsson, “Cluster failure: Why
fmri inferences for spatial extent have inflated false-positive rates,”
Proceedings of the National Academy of Sciences, 2016.

www.greenbrainproject.org
www.greenbrainproject.org
https://github.com/BioDynaMo/biodynamo
https://github.com/BioDynaMo/biodynamo
https://travis-ci.com/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://github.com/BioDynaMo/biodynamo/wiki/BioDynaMo-Developers-Guide
https://github.com/BioDynaMo/biodynamo/wiki/BioDynaMo-Developers-Guide
https://slack.com/

	Introduction
	Software Development Practices
	Modernizing Legacy Code: Examples of the Methodologies Applied
	Conclusion
	References

