
Lightning talk:

A Simple Profiling Framework for Software User-

Producer Reciprocity Review

Carole Goble

School of Computer Science

The University of Manchester

Manchester, UK

carole.goble@manchester.ac.uk

The Software Sustainability Institute

UK

Abstract— Mismatches between users and producers of soft-

ware, or indeed producers and funders of software, lead to mis-

ery. We propose a simple software project “reciprocity” frame-

work from the perspective of the producer, covering 4 areas and

12 characteristics. By plotting the relative degree of some or all

characteristics even subjective or rule of thumb values give pro-

ject profiles. Such profiles can be useful tools for comparing pro-

jects against their own expectations and desires, to review and

compare project types and identify user-producer reciprocity

misalignments. Index Terms—software, profiling, reciprocity.

I. INTRODUCTION

Software is fundamental to research: 7 out of 10 researchers

surveyed in the UK report their work would be impossible

without software [1]. Increasingly funding bodies and publish-

ers are pressing for producers to make their software more

available for review and for reuse. Furthermore, software pro-

ducers are frequently required to show their software’s adop-

tion beyond its original development team in order to raise rev-

enues to continue development for their own use. Such adop-

tion requires more than just a link to a binary; it requires active

sharing, documentation, support and commitment to a level of

service that perhaps had not been fully appreciated by the pro-

ducers and may not be welcomed. In a recent study 77% of

respondents cited “time to document and clean up” and 52%

cited “dealing with questions from users” as barriers to sharing

code [2]. “Sustainability debt” is a real cost without a clear

bearer under our current project-based, novelty-first research

software funding regimes [3]. Often as software matures, and

community interest rises, the core funding drops.

Software users are also being pressed to more accountably

credit software [4] and show greater responsibility for support-

ing the software they depend on. Users can have expectations

that software should be freely available and support for it readi-

ly accessible. This can run counter to the resources available to

the software producers and to their own interests. Perhaps the

software was just a proof of concept or an incidental means to

support the work of its originators without any planned subse-

quent use by others. In the controversial article [5] users of

other’s data were characterised as “data parasites”. Software

users who do not contribute or cite the software but demand

support and attention might be considered in such unflattering

terms. Responsibility for software support and sustainability

should be borne by all parties.

Even when software producers explicitly set out to nurture

and grow an open source community (rule 7 in Prlić and

Procter’s “Ten simple rules for the open development of scien-

tific software” [6]), and software users show willingness to

contribute, this is still a resource hungry and difficult exercise.

Managing contributions in a “commons production” setting is

hard, sometimes incurring cost-benefit mismatches, motiva-

tional conflicts and significant integration costs [7] as well as

costs in time and effort to oversee the process.

II. A SIMPLE SOFTWARE RECIPROCITY FRAMEWORK

Mismatches in intentions and actuality between users and

producers of software, or indeed producers and funders of

software, lead to misery. To gather a coarse grained idea of the

producer-user profile of a project we propose a simple reci-

procity framework based on ideas by Crowston [8].

There are many elaborate software maturity frameworks,

some already used by the UK’s Software Sustainability Insti-

tute: for example, the Software Sustainability Maturity Model

(SSMM), OSS Watch Openness Rating, NASA Reuse Readi-

ness Rating, CMM, and QSOS (see [9] for a useful list). Most

include reuse and capability metrics and software and process

quality reviews. We draw on aspects of the openness rating and

the “ripeness” levels of the SSMM [9] but from the perspective

of the intentions of users and producers of the software from

the viewpoint of the producer. Our simple idea is: highlight

reciprocity and service expectation mismatches; review pro-

jects’ expectations and desires; and compare against types.

Table I summarizes the framework, which is intended to be

rough. By plotting the relative degree of some or all character-

istics, even subjective or rule of thumb values give useful visu-

al project profiles. For example, Fig 1 is the classic profile for

software never intended or destined for use outside the walls of

its originating lab. Fig 2 is the profile of a software platform

developed as part of a computational infrastructure programme

intended all along for wide-scale adoption.

III. WHAT NEXT?

Our reciprocity framework focuses on the intentions and

behaviour of producers and consumers of academic software to This work is licensed under a CC-BY-4.0 license.

https://creativecommons.org/licenses/by/4.0/

quickly and simply classify projects; a preliminary and com-

plement to the application of maturity models such as SSMM.

We need further work to define the levels of each characteristic

using analytical and empirical investigation. The UK’s Soft-

ware Sustainability Institute (http://www.software.ac.uk) Re-

search Software Group, have consulted on 55 software projects,

with another 9 currently underway. We intend to retrospective-

ly review our consultancy cohort to see if this simple frame-

work reveals informative patterns that chime with our experi-

ences and to hone our characteristics and their levels.

TABLE I. A SIMPLE RECIPROCITY REVIEW FRAMEWORK

 Software Producer Software User

A
d

o
p

ti
o

n
 I

n
te

n
ti

o
n

s

Incidental

Built for

me, stuck it

out there

Me Just my lab

A
d

o
p

tiv
e
 C

o
m

m
u

n
ity

Familial

Built for

people just

like me

Family Friends People I

know

Fundamental Built for

others,
many not

like me

Acquaintances

Strangers
Rivals

People I

don’t know

C
o

n
tr

o
l

In
te

n
ti

o
n

s

Autocratic I want/need
control

Selfish Download,
use,

no credit

C
o

n
tr

ib
u

tio
n

 in
te

n
tio

n
s

Cooperative Community
effort,

credit

shared

Contribute Champion,
credit,

donate

Incidental Not my
core

business,

don’t care
about credit

Collaborate
Sponsor

Co-resource,
co-develop

Fig. 1. Software only meant for its producers. Not a service.

During the Dagstuhl Perspectives Workshop 16252

“Engineering [of] Academic Software” held in June 2016

(http://www.dagstuhl.de/16252), we began to build on the

ideas in this paper, maturity models and on Howison’s

organizational forms [10]. We are currently developing a set

of dimensions to describe a set of software project types to use

as a review tool for software producers, users and funders.

Fig. 2. Software intended for widespread use and as an outcome in its own

right; a service and a possible candidate for further assessment.

ACKNOWLEDGMENT

This work was supported by EPSRC EP/H043160/1. We

thank the WSSSPE reviewers for their insightful comments.

REFERENCES

[1] S. Hettrick et al (2014) UK Research Software Survey 2014,

doi:10.5281/zenodo.14809

[2] V. Stodden (2010) The scientific method in practice:

reproducibility in the computational sciences, MIT Sloan

Research Paper No. 4773-10

[3] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S.M. Easterbrook,

B. Penzenstadler, N. Seyff and C.V. Venters (2016)

Requirements: the key to sustainability IEEE Software 33(1):

56-65. http://doi.ieeecomputersociety.org/10.1109/MS.2015.158

[4] A.M. Smith, D.S. Katz, K.E. Niemeyer, FORCE11 Software

Citation Working Group. (2016) Software citation principles.

PeerJ Preprints 4:e2169v3

https://doi.org/10.7287/peerj.preprints.2169v3

[5] D.L. Long and J.M. Drazen (2016) Data sharing, N Engl J Med

374:276-277 doi: 10.1056/NEJMe1516564

[6] A. Prlić and J.B. Procter (2012) Ten Simple Rules for the Open

Development of Scientific Software. PLoS Comput Biol 8(12):

e1002802. doi:10.1371/journal.pcbi.1002802

[7] J. Howison and J.D. Herbsleb (2013) Incentives and Integration

In Scientific Software Production in CSCW '13 Proceedings of

the 2013 conference on Computer supported cooperative work:

459-470, doi:10.1145/2441776.2441828

[8] K. Crowston, K. Wei, J. Howison, A. Wiggins (2012) Free/Libre

open-source software development: What we know and what we

do not know, ACM Computing Surveys 44(2),

doi:10.1145/2089125.2089127

[9] R. Gardler (2010) Software Sustainability Maturity Model

http://oss-watch.ac.uk/resources/ssmm (accessed 12 Aug 2016)

[10] J. Howison (2015) Organizational forms,

http://www.slideshare.net/jameshowison/scisoftdays-talk-

howison-spreading-the-work-in-software-ecosystems/18

http://www.software.ac.uk/
http://doi.ieeecomputersociety.org/10.1109/MS.2015.158
https://doi.org/10.7287/peerj.preprints.2169v3
http://oss-watch.ac.uk/resources/ssmm
http://www.slideshare.net/jameshowison/scisoftdays-talk-howison-spreading-the-work-in-software-ecosystems/18
http://www.slideshare.net/jameshowison/scisoftdays-talk-howison-spreading-the-work-in-software-ecosystems/18

