
Why Do We Need To Compare Research Software,
And How Should We Do It?

Neil P. Chue Hong
Software Sustainability Institute

University of Edinburgh
JCMB, Peter Guthrie Tait Road

Edinburgh, EH9 3FD, United Kingdom
N.ChueHong@software.ac.uk

ORCID: 0000-0002-8876-7606

Abstract— How can we measure research software? Is it possi-
ble to compare it, given the myriad different research domains,
practices and pieces of software? Do we even need to do this, and
what benefits might it bring? This position paper sets out the
reasons for why different stakeholders, from users to developers
to funders, might wish to undertake this difficult task, and de-
scribes a proposed framework for doing so (based around
measures of accessibility, usability, maintainability and portabil-
ity) which takes into account the possibility of variation between
different communities about how they prioritise different aspects
of research software.

Index Terms — software, research software, software metrics,
software engineering, software sustainability.

I. BACKGROUND
Software underpins much of the scientific research under-

taken today. As well as the “traditional” use of software for
modelling and simulation, it is used to manage and control in-
struments, and analyse and visualise data. A challenge for us-
ers, funders, and developers of scientific software is how to
determine how “good” a piece of software is – in large part
because they have differing notions of what “good” means.
This has implications for the software’s usability and reusabil-
ity, as well as its impact and return on investment.

An incredible amount of investment of effort and money is
put into scientific software. In the UK, the Engineering and
Physical Sciences Research Council (EPSRC) estimated that it
had invested approximately £9m per annum on scientific soft-
ware [1]. Studies done by the Software Sustainability Institute
suggest that a total of £840m was invested in RCUK research
grants that rely on software to undertake the proposed research
[2]. It is clear that something is required to make it easier to
understand which software should be promoted, which soft-
ware reused, and which software retired. The question is what
this should be.

In the UK, the e-Infrastructure Leadership Council1 created
a Software Taskforce to identify issues related to scientific
software, and make recommendation for how the impact of
scientific software could be improved. As part of this, the con-

This work is licensed under a CC-BY-4.0 license.
1 https://www.gov.uk/government/groups/e-infrastructure-leadership-council

cept of a Software Accreditation Framework was discussed.
This initial concept was similar to the “traffic light” labelling
scheme for nutritional information applied in the UK [3], where
information on each of a defined set of categories are displayed
on packaging based on both standardised and serving based
sizes, highlighting levels using red/amber/green colouring to
give guidance to consumers.

One of the benefits of such a system is that it gives a small
set of quantitative indicators for a consumer to look at, and the
colouring can be used in different ways depending on the type
of product. For instance, whilst a cake and a salad will have
very different measurements for fat, it is not the case that a
high (red) fat level is bad for both. Many people would choose
a cake with a high fat level because they prioritised other fac-
tors associated with fat (e.g. as a proxy for taste).

Similarly for research software, there are differing priorities
which might factor into a users choice. Rapid releases might be
welcomed as a sign of continued development and support by
some users, whereas for others it is an indication that the soft-
ware changes too fast to be integrated into a larger stable sys-
tem. Likewise some users may prioritise extensibility (e.g. to
use a different chemical structure model) whilst others may
prioritise performance – it would be impossible to come up
with a single metric that satisfied both, hence the need for a
software assessment framework that could be used to provide
ways for different stakeholders to make informed and appro-
priate decisions, based on their own requirements.

The benefits of assessing software in this way might in-
clude:

• Providing measures understandable to an end-user
which are reasonable proxies for software quality

• Facilitating discovery and choice of software by other
researchers and small and medium-sized enterprises
(SMEs)

• Improving software reuse and commercialisation
• Increasing recognition for developers
• Increasing recognition for good software development

practice
• Creating a basis for a marketplace for research soft-

ware

To ensure adoption and impact, it is important that the use
of this framework is both bottom-up (encouraging code owners
to be proactive in getting their codes accredited); easy-to-use
(with objective measures); simple (to avoid confusion); enable
community norms (be understanding of the relative priorities of
different communities); and minimise game playing.

This means that wherever possible, a framework should
concentrate on objective measures, which can be used to guide
subjective indicators.

II. RELATED WORK
Many aspects of what one might choose to measure about

software have been investigated separately.
Models have been proposed to define such elements as cost

models for software reuse [4][5], maturity models [6][7], and
component reusability [8][9] across software in general. This
author’s own Five Stars of Research Software [10] posited a set
of categories which “good” scientific software could be as-
sessed on, but did not fully define how each category could be
objectively measured.

The software engineering community has developed a large
body of knowledge regarding software quality and the meas-
urement of software [11][12] and more recently looking at the
various aspects of sustainability beyond natural/environmental
(green) sustainability [13]. However much of this knowledge is
not widely disseminated within the research software commu-
nity, either because it is not openly licensed, or it is perceived
to only be relevant to large commercial software projects with
large resources.

Certain aspects of the software source code can be defined
and automatically measured, for instance McCabe’s (cyclomat-
ic) complexity, code metrics (including source lines of code
(SLOC), number of comment lines), and Halstead’s complexity
metrics (based on numbers of operators and operands) all of
which look at measures of size and complexity which may
make a program harder to understand, more difficult to main-
tain, and increase the likelihood of errors. Visual Studio, a
common development tool, calculates its own Maintainability
Index [14] that represents the relative ease of maintaining the
code based on a combination of these measures and this has
been implemented in other tools for popular languages like
Python (Radon) and JavaScript (JSComplexity). However a
significant issue with these types of metrics is that they are
based on work from the 1990s using data from very different
types of programming languages and software from modern
systems, which means they may not have relevance for con-
temporary codes [15].

Other work focuses specifically on research software. Dep-
sy2 is a tool which mines papers to find fulltext mentions of
software (currently only those written in Python and R) and
analyses GitHub repositories to see where software is being
used, thus giving a measure of the impact of a piece of research
software or library. Ontosoft [16] defines an ontology for soft-
ware which categorises many of the aspects that intuitively are
part of understanding its quality. The Software Discovery

2 Depsy: http://depsy.org/

Dashboard3 aims to search multiple code hosting services, such
as Zenodo, Figshare, and GitHub, for scientific software and
undertake analysis of it, utilising the Codemeta4 metadata
standards for describing scientific software and building on
previous work by Mozilla Science Lab, Github and Figshare on
Code as a Research Object5.

Another set of work looks at certifying the process of pro-
duction. For instance, the Data Archiving and Networked Ser-
vices (DANS) Data Seal of Approval6 enables self-certification
and peer review of data repositories to ensure they are storing
research data in a reliable manner such that the data can be
accessed and reused, and are seeking to create a Software Seal
of Approval, focussed on software projects. The Open Data
Institute’s Open Data Certificates7 uses a similar questionnaire-
style assessment to recognise open data that has been published
in a sustainable and reusable way. The Software Sustainability
Institute’s online sustainability evaluation tool8 enables devel-
opers to self-evaluate the reusability and maintainability of
their research software.

Finally, there is a body of work looking at the indicators of
success for open source projects, which in some ways are simi-
lar to research software projects due to the nature of the teams,
but differ because of their differing goals. Research has exam-
ined projects in major public repositories to identify potential
indicators [17][18] and categorise different levels of success in
initiating and growing projects [18][20]. The identification of
time-invariant vs time-variant variables and the application of
machine learning techniques has been used to identify potential
indicators for open source project success [21].

III. DEFINING A FRAMEWORK
As mentioned above, the success of nutritional information

comparison has relied on defining a relatively small number of
“headline measures”. For research software, we wish to define
a similar small set of measures which enable the key character-
istics of:

• Availability: ability for the software to be found and
obtained by a potential user

• Usability: ability for the software to be used, integrat-
ed and extended by a potential user

• Maintainability: ability for the software to be sus-
tained by developers

• Portability: ability for the software to be used in areas
outside its original user base, for instance subject area,
operating system, hardware architecture or different
type of user.

These terms are used more loosely than the definitions
commonly used in software engineering, to reflect the differing
perceptions of software by typical research users.

3 Software Discovery Dashboard: https://github.com/mozillascience/software-
discovery-dashboard
4 CodeMeta: https://github.com/codemeta/codemeta
5 Code as a Research Object: https://science.mozilla.org/projects/codemeta
6 Data Seal of Approval: http://www.datasealofapproval.org/en/
7 Open Data Certificates: https://certificates.theodi.org/
8 Online sustainability evaluation: http://www.software.ac.uk/online-
sustainability-evaluation

In defining these characteristics, the author has drawn on
their experience, and that of their colleagues in working in over
100 research software projects of different sizes and in differ-
ent domains. This paper documents a synthesis of previous
ideas, aiming to narrow it down to a useful subset of all poten-
tial measures of research software in an attempt to create a set
which can be used for further study and checking, by assessing
existing software in a follow-up study.

A. Availablity
There are two key parts to availability: can a user find the

software (discovery), and can they obtain the software (ac-
cess)?

The important metadata associated with this category in-
clude:

• Discovery and Choice
o Software Name: as this is often used as a

search term
o Software Description: which can be matched

in searches and read by users
o Categories: such as operating system sup-

port, type of software
o Keywords: again used for search terms
o Features

• Access
o Website: as this is often where scientific

software is distributed
o Repository: for source code and possibly bi-

nary distribution
o License: governing the terms of use and re-

use
The proposed measures for this category are:
• Is the software easy to find, if a user attempted to

search for it based on name or keywords?
• Can the software be downloaded from the website or

repository addresses provided?
• Is the license obvious, and is it commercial, copyleft,

permissive, academic, or public domain?
• Is the software widely used by other members the us-

ers’ community? Does it have a high market share of
the potential market (which may be small for niche
products)?

B. Usability
This category takes into account the ability of a user or de-

veloper to obtain information that enables them to understand
the operation of the software, such that they can use it, inte-
grate it with other software, and extend or modify it.

The important metadata associated with this category in-
clude:

• Execution
o Documentation / Installation Instructions
o Operating System
o Dependencies
o Development Status
o Performance benchmarks

• Integration

o Input data formats
o Output data formats
o Programming Language

• Extension
o API documentation
o Contribution Policy

The proposed measures for this category are:
• What is the Development Status of the software?
• What is the quality of the user documentation? Is a re-

adme file included which demonstrates the basic us-
age of the software?

• Is test data made available?
• Is the software benchmarked against alternatives? Is it

faster or slower?
• What is the quality of the developer documentation?

Does the software provide API-level documentation?
There is an open question about whether a measure for ease

of use should include something about whether cloud / one-
click / containerised / bundled versions of a piece of software
exist.

C. Maintainability
This category assesses the likelihood that the software can

be maintained and developed over a period of time by measur-
ing the effort associated of the project, the code quality.

The important metadata associated with this category in-
clude:

• Effort
o Vitality: What is the average time between

release cycles?
o Activity: number of commits. discussions
o Number of Contributors: including the trend

(rising/stable/falling)
o Number of Key Contributors: including bus

factor9 on each part of the software
o Average time to fix bugs

• Code Quality
o Code complexity
o Unit test coverage
o System tests

The proposed measures for this category are:
• What is the average time between major releases?
• Is the contributor community growing, staying stable

or falling?
• What is the test coverage?

D. Portability
This category assesses the ability of the software to be used

in a different area, particularly a different area of research, or to
be commercialised.

Because this category is of higher perceived importance to
research software than other types of software, there is less in
the existing literature looking at potential measures and indica-
tors of success.

9 Bus Factor: https://en.wikipedia.org/wiki/Bus_factor

Intuitively, it would appear that measures for this category
would be split between those giving an indication of whether
the functionality of the software is useful to other areas / types
of users, and those giving an indication of how easy it is for the
software to be adapted and integrated. Therefore it is likely that
this category is actually a superset of other indicators, and fu-
ture work is necessary to identify if a combination of other
measures can be used to predict the portability of a piece of
software outside of the more common definitions of portability
with respect to operating system or hardware architecture.

IV. DISCUSSION
The previous section has set out a range of proposed

measures which this author has identified as being of potential
importance in enabling different stakeholders to assess research
software. An emphasis has been placed on choosing measures
where it can easily be identified if the software does not pro-
vide measurable information at all (i.e. no license, no documen-
tation provided) as well as being relatively easy to measure
where it does. As noted at the start, the aim is to make this
something that developers of software will be happy to submit
their software to for assessment, without fear of inappropriate
comparison.

One way of addressing this is by designing the framework
in such a way that it allows different communities to decide
which indicators to use that best represent their requirements
for comparing software. This also encourages more “bottom-
up” adoption of the practice.

On the other hand, adoption could be driven by funders ask-
ing applicants to ensure that they have either chosen the soft-
ware they propose to use based on some set of agreed measures
(for instance license) or for software development projects ask-
ing them to reach a particular target measure before a second
stage of funding will be released.

A challenge is that it is not obvious which of these
measures can actually be used to provide an indication of soft-
ware quality and longevity. This is because the “success” of a
research software project is somewhat subjective: a piece of
software which is no longer maintained may still be the main
software used by a small niche of a research community to
publish world-leading research.

Nevertheless, the only sensible approach is to attempt to
categorise and assess current research software projects, in
consultation with the community, to determine the correct cat-
egories that would help benchmark best practice in scientific
software. This is being taken forward by a pilot study com-
bined with development of tooling to help with the assessment
by the Software Sustainability Institute in the second half of
2016.

A final question relates to the frequency of assessment.
What are the right times to perform an assessment? In general,
assessment would take place at least at the release of every
major version of a piece of software. For some measures (for
instance test coverage), which can be automatically generated,
they can be incorporated into continuous integration systems.
For research software, there are some points which may also
have significance: the submission of a research paper; when

applying for new funding; when reproducing an existing study
or method.

Comments on and contributions towards the measures pro-

posed in this paper are welcomed by the author.

ACKNOWLEDGMENT
The Software Sustainability Institute is supported by the

EPSRC, ESRC and BBSRC through grant EP/N006410/1.
This paper is based on input from many members of the
Software Sustainability Institute team, Fellows, and
collaborators including the participants of the CodeMeta
workshop10, Catherine Jones, and Patrick Aerts and Peter
Doorn.

REFERENCES
[1] EPSRC. 2012. Software as an Infrastructure. Accessed on 8th

July 2016 from: http://www.epsrc.ac.uk/newsevents/pubs/software-as-
an-infrastructure/

[2] Hettrick, S. 2014. £840 million: the UK's investment in
software-reliant research in 2013. Accessed on 8th July f2016
from: http://www.software.ac.uk/blog/2014-10-22-840-million-
uks-investment-software-reliant-research-2013

[3] UK Department of Health. 2013. Guide to creating a front of
pack (FoP) nutrition label for pre-packed products sold through
retail outlets.

[4] Holibaugh, R et al. 1989. Reuse: where to begin and why.
Proceedings of the conference on Tri-Ada '89: Ada technology
in context: application, development, and deployment. p266-
277. DOI: 10.1145/74261.74280.

[5] Frazier, T.P., and Bailey, J.W. 1996. The Costs and Benefits of
Domain-Oriented Software Reuse: Evidence from the STARS
Demonstration Projects. Accessed on 21st July 2014 from:
http://www.dtic.mil/dtic/tr/fulltext/u2/a312063.pdf

[6] CMMI Product Team, 2006. CMMI for Development, Version
1.2. SEI Identifier: CMU/SEI-2006-TR-008.

[7] Gardler, R. 2013. Software Sustainability Maturity Model.
Accessed on 21st July 2014 from: http://oss-
watch.ac.uk/resources/ssmm

[8] NASA Earth Science Data Systems Software Reuse Working
Group (2010). Reuse Readiness Levels (RRLs), Version 1.0.
April 30, 2010. Accessed from:
http://www.esdswg.org/softwarereuse/Resources/rrls/

[9] Marshall, J.J., and Downs, R.R. 2008. Reuse Readiness Levels
as a Measure of Software Reusability. In proceedings of
Geoscience and Remote Sensing Symposium. Volume 3. P1414-
1417. DOI: 10.1109/IGARSS.2008.4779626

[10] Chue Hong, N. 2013. Five stars of research software. Accessed
on 8th July 2016 from: http://www.software.ac.uk/blog/2013-04-09-
five-stars-research-software

[11] Bourque, P. and Fairley, R.E. eds., (2014) Guide to the Software
Engineering Body of Knowledge, Version 3.0, IEEE Computer
Society http://www.swebok.org

[12] ISO/IEC 25010:2011(en) (2011) Systems and software
engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models

10 CodeMeta Participants: http://codemeta.github.io/

[13] Penzenstadler, B. and Femmer H. (2013) A Generic Model for
Sustainability with Process and Product-specific Instances. In
First Intl. Workshop on Green In Software Engineering and
Green By Software Engineering.

[14] Microsoft Code Analysis Team Blog. 2007. Maintainability
Index Range and Meaning. Accessed on 8th July 2016 from:
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainabili
ty-index-range-and-meaning/

[15] Sjoberg, D.I.K et. al. 2012. Questioning Software Maintenance
Metrics: A Comparative Case Study. In proceedings of
ESEM’12. P107-110. DOI: 10.1145/2372251.2372269

[16] Ratnakar, V., and Gil, Y. 2015. Ontosoft. Accessed on 8th July
2016 from http://ontosoft.org/ontology/software/

[17] Crowston, K. et Al, 2006. Information systems success in free
and open source software development: Theory and measures,

Software Process Improvement and Practice, vol. 11, pp. 123-
148.

[18] Subramaniam, C. et al. 2009. Determinants of open source
software project success: A longitudinal study. Decision Support
Systems, vol. 46, pp. 576-585.

[19] English, R., and Schweik, C. 2007. Identifying success and
abandonment of FLOSS commons: A classification of
Sourceforge. net projects, Upgrade: The European Journal for
the Informatics Professional VIII, vol. 6.

[20] Wiggins, A. and Crowston, K. 2010. Reclassifying success and
tragedy in FLOSS projects. Open Source Software: New
Horizons, pp. 294-307.

[21] Piggott, J. and Amrit, C. 2013. How Healthy Is My Project?
Open Source Project Attributes as Indicators of Success. In
Proceedings of the 9th International Conference on Open Source
Systems. DOI: 10.1007/978-3-642-38928-3_3.

