Explicit Elimination of Similarity Blockers for
Session-based Recommendation

Mattia Brusamento®, Roberto Pagano', Martha Larson®, and Paolo Cremonesi®

'DEIB, Politecnico di Milano, Milan, Italy, <name.surname>@polimi.it

2 Delft University of Technology, Delft & Radboud University, Nijmegen, Netherlands, m.a.larson@tudelft.nl

ABSTRACT

A single ‘odd’ interaction can cause two user interaction ses-
sions to diverge in similarity, and stand in the way of gen-
eralization. The sensitivity of session-based recommenders
to session similarity motivates us to explicitly identify and
remove such ‘similarity blockers’. Specifically, we leverage
huge amounts of data, which allow us to identify blockers in
the form of non-co-occurring items. Other blockers can be
identified using content-based similarity. Our experiments
reveal that explicitly eliminating relatively few blockers im-
proves performance.

Keywords

Near-duplicates; Session-based; Large-scale; 30Music dataset

1. INTRODUCTION

Session-based recommender systems leverage information
about the current user session to predict how it will con-
tinue. Session-based methods often rely heavily on similar-
ity between sessions. A single aberrant user interaction in a
session has the power to cause two otherwise highly similar
sessions to suddenly become dissimilar. We refer to such an
interaction as a ‘session blocker’, since it causes two sessions
to be different without reflecting a real underlying difference
of user preference.

Session blockers can arise in two ways. First, a user may
interacts with an item only once, incidentally and unrelated
to preference. Second, the user may click on a preference-
related item, but it is a near-duplicate, and has an unex-
pected item ID.

The current era of big data opens the ability to search
for individual interactions that may have been incidental
clicks. In the past, non-occurrence, or non-co-occurrence of
items could be attributed to lack of data. Now, however, it
makes sense to investigate whether this non-co-occurrence is
truly incidental or whether it could be considered the source
of additional information that can be exploited for further
improve recommendations. For completeness we also look at
conventional near-duplicates identified on the basis of their
metadata. We are inspired by our previous work on near-
duplicates in large collections [3].

In this paper, we show that considering items similar due
to non-co-occurrence, and, more conventionally, on the ba-
sis of metadata will improve recommendation effectiveness.

Copyright is held by the authors.
RecSys 2016 Poster Proceedings, September 15-19, 2016, Boston, USA .

The effect may be subtle, but a larger implication is that we
should not assume that items occurring in similar sessions
contribute positively to recommendations.

2. REDUNDANCY AND RECSYS

We identify items (pairs or small clusters) that have dif-
ferent item IDs, but should be treated as the same item,
since they will otherwise introduce a non-negligible ‘similar-
ity blocking’ effect. We demonstrate two points: (1) these
items should not be recommended together (since they are
redundant) and (2) collapsing them before training a model
could enhance performance (by eliminating ‘blocking’).

We adopted two different approaches to find similarity-
blocker items. The first and more straightforward approach,
called technical duplicates, is based on the idea of detecting
near-duplicates in the collection of songs. In our case, the
available metadata, is a Last.fm' URL, consisting of a string
containing artist and title. We apply some basic NLP tech-
niques to compute the similarity between two items: after
properly parsing the URL, we compute the Jaccard simi-
larity among the resulting words. Since we are looking for
near-duplicates, we apply a threshold to decide which items
should be considered equal.

The second and more sophisticated approach, called col-
laborative duplicates, leverages the fact that two items fail
to ever co-occur despite their occurrence in similar (but sep-
arate) contexts. The idea finds support in our observation
that, for a given user, the similarity between sessions con-
taining technical duplicates is significantly higher than the
average pairwise session similarity: this suggests that we can
expect near-duplicates to appear in similar sessions from the
same user. Moreover, we expect two near-duplicates never
to co-occur in the same session, based on the rationale that
the user would not listen to both of them together.

Next, we describe our technique. During training, we con-
sider the set of sessions from each user in turn, and compute
the pairwise Jaccard similarity on this set. We retain the
pairs above a certain threshold. From these pairs of ses-
sions, we extract pairs of items, such that one belongs to
one session and one to the other, with the constraint that
they must not co-occur in a session the training set for any
user. The score given to the pairs of items is calculated
as the average similarity between the pairs of similar ses-
sions from which they come from, with a shrinkage factor.
Finally, we keep the pairs of items with a score above the
average, thus creating a cluster for each of these items. In

"http:/ /www.last.fm

this way, many cluster overlap each other, and creating the
transitive closure of the clusters will result in a unique single
big cluster containing all the clustered songs. Since we are
instead interested in micro-clusters we kept only the disjoint
clusters, which usually contain 2 or 3 items.

3. DATA AND EXPERIMENTS

We carried out our experiments with an already existing
large scale music recommender system: the tmplicit playlist
recommender (IPR) [1]. The algorithm is trained using the
user listening sessions: similar sessions from the same user
are considered as implicit playlists. The recommendations
are performed by matching the current session against the
implicit playlists, the songs from the best matching playlists
are then recommended. Our goal is to improve the perfor-
mance of this algorithm by conflating redundant items. The
data we used come from the 30Music dataset [2], thus the
size of the catalog is quite big (about 4M songs). We adopted
Apache Spark to deal with the large-scale of the data. In
particular, we used a cluster composed by 200 nodes.

To compute technical duplicates, we applied some heuris-
tic optimization, such as the assumption that two near-
duplicates should have at least one bigram in common. In
this way, we avoid comparing each item with all the others.
By leveraging the map-reduce paradigm, our algorithm took
about 4 hours to identify near-duplicates. As one could ex-
pect, using this technique we find redundant items as: ’Chris
James feat. Ria Moran - Song For Her’ and ’Chris James -
Song for Her (feat. Ria Moran)’. In this way, we reduced
the number of items by 6.09%.

As for the collaborative duplicates, the number of items
we were able to find was much lower (around 600). All of
them belong to the long tail, but come from the most active
users, who have a higher probability of contributing.

Table 1: Collaborative Duplicates Examples
Brutal Truth - Swift and Violent (Swift Version)
Brutal Truth - Swift and Violent - Swift Version
Luis Miguel - La Incondicional
Luis Miguel - Cuando,vuelva a tu lado
Underoath - Moving for the Sake of Motion
Demon Hunter - Less Than Nothing

Table 1 contains three characteristic examples of collab-
orative duplicates: the first illustrates two songs that are
technically equivalent and are detected also by the first tech-
nique. The second example shows two songs from the same
artist. Note we do not claim that two songs from the same
artist should be automatically considered redundant. The
last example is the hardest to classify: these two songs have
a similar content, in the sense that they have the same acous-
tic features. In this case, our mining technique shows the
ability to spot also pairs of songs that are not straightfor-
ward to classify even by a human.

4. RESULTS AND DISCUSSION

We adopted the original experimental settings of the IPR?
used in [1]. We ensure score comparability by projecting the
recommendations generated by IPR into the cluster space of
the experimental conditions. Note that this process advan-
tages the baseline, meaning that smaller differences in score

Zhttps://github.com/mquad/playlistrec

can be considered more important. Figure 1 shows the dif-
ferences between the performance obtained by applying the
clustering and the original IPR. We see that applying the
combination of the collaborative and technical redundancy
detection (Coll&J75 and Coll&J9), leads to a positive differ-
ence in the performance for all N, and has positive effects in
the training of the model. Precision, omitted here for space
reasons, shows similar behavior.

0.0015

oo |75
A4)9
22} = Coll
Bt 00010} & A Coll&jo _—
- © @ Coll&J75 o
4 -
5 @
Z 0.0005
g) } o-° hdmmssssmsssssmsmssssEemmasEEEa" P
8 ?"' R
o
N PN ST TEEEPER-----)-1-/--‘
S 0.0000 5w
) Ta\ o*
o
g //
9]
) /
?‘5—0.0005 \/A\‘(
a
-0.0010

20 40 60 80 100

N

Figure 1: Impact of clustering on recommendation

The difference in performance can be explained by the fact
that merging redundant items allows the creation of more
playlists. In all the cases, our techniques improve the per-
formance for big N. This is because the original algorithm
poses an hard threshold on a soft similarity (shrunk Jac-
card) and, by merging duplicates, a larger number of useful
implicit playlists are above the similarity threshold. In the
future, we plan to analyze the effects with different recom-
mendation algorithms and also to evaluate online.

Finally, we double-checked our assumptions by mapping
our new recommendations into the original space, which we
did by flattening the clusters. As one would expect, this de-
grades the performance. This result confirms our conclusion
that the groups of items we identified as redundant should
not be recommended together.

The findings in this paper are interesting in light of the
currently growing importance of session-based recommen-
dation. Effectively, we have shown that not all similarity
is good: instead, items can potentially be too similar. The
approach of eliminating such similarity-blocker items explic-
itly, is greater than might be otherwise assumed, given their
relative limited numbers. Merging items before training a
model can boost performance, and, moving forward, may
also have important implications for diversity: by removing
too-similar items, more slots open for other items.

5. REFERENCES

[1] R. Turrin, A. Condorelli, P. Cremonesi, R. Pagano, and
M. Quadrana. Large scale music recommendation.
Workshop on Large-Scale Recommender Systems
(LSRS 2015) at ACM RecSys, 2015.

[2] R. Turrin, M. Quadrana, A. Condorelli, R. Pagano, and
P. Cremonesi. 30Music listening and playlists dataset.
ACM RecSys poster 2015
CEUR-WS.org/Vol-1441/recsys2015_poster13.pdyf.

[3] R. Vliegendhart, M. Larson, and J. A. Pouwelse.
Discovering user perceptions of semantic similarity in
near-duplicate multimedia files. CrowdSearch 2012
CEUR-WS.org/Vol-842/crowdsearch-vliegendhart. pdf.

