
Discovering and Using Functions
via Content Negotiation

Ben De Meester, Anastasia Dimou, Ruben Verborgh, and Erik Mannens

Ghent University – iMinds – Data Science Lab, Belgium
{firstname.lastname}@ugent.be

Abstract. Data has been made reusable and machine-interpretable by
publishing it as Linked Data. However, automatically processing Linked
Data is not fully achieved yet, as manual effort is still needed to inte-
grate existing tools and libraries within a certain technology stack. To
enable automatic processing, we propose exposing functions and methods
as Linked Data, and publishing it in different programming languages.
Content negotiation can be used to cater to different technology stacks,
and common, technology-independent identifiers make them discover-
able. As such, we can enable automatic processing of Linked Data across
formats and technology stacks. By using discovery endpoints, similar to
those used to discover vocabularies and ontologies, the publication of
these functions can remain decentralized.

Keywords: Content Negotiation, Function, Linked Data

1 Introduction

By publishing data as Linked Data, we are moving to a Web of integrated,
reusable, and machine-interpretable data. However, to process that data, we need
processing instructions. E.g., calculating a distance between two points [x1, y1]

and [x2, y2] can be done using the Euclidean distance. This, in JavaScript,
could be calculated as Math.sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) ).

Libraries and repositories of common functions and methods exist1, but inte-
grating them still requires manual effort to ’glue’ the different libraries together.
Human intervention is needed, as functions are implemented in different tech-
nologies, and the way of executing these functions is not declared semantically,
thus ruling out machine-interpretability.

At the same time, there are many ongoing efforts to integrate processing
instructions and (Linked Data) applications. For example, integrating process-
ing functions when mapping from non-RDF data to RDF data [2], adding cus-
tom functions in SPARQL queries [5], or creating compositions of hypermedia
APIs [7]. Also, a lot of ongoing work is focussed on specifying implementation-
independent processing instructions using Web services (such as Hydra [4]). How-
ever, relying on Web services means that (1) the applications using them and the

1 See, e.g., https://www.npmjs.com/package/euclidean-distance

 {firstname.lastname}@ugent.be
https://www.npmjs.com/package/euclidean-distance


2 Ben De Meester et al.

services themselves must always be online, which is not feasible in every context,
and (2) all input and output needs to be transferred over HTTP, which hurts
performance. This to be transferred data might be too trivial (e.g., calculating a
geographic distance between two data points), or too large to be easily handled
in practice (e.g., calculating aggregates over billion-triple local data).

In this paper, we propose publishing technology-independent function de-
scriptions as Linked Data. These descriptions provide a common reference for
processing instructions across technology stacks (e.g., JavaScript snippets vs.
Web services). To integrate the processing instructions in different technology
stacks, content negotiation can be used to publish the same functions in different
implementations [3], either accessed remotely as a Web service or downloaded
locally to be automatically integrated in the local technology stack. This way,
we make similar methods in different programming languages available, just as
websites are made available in different human (natural) languages, or as con-
tent is made available both for humans as for machines. This allows for more
automatic composition of processing instructions, thus building towards the in-
telligent agents as initially envisioned when first proposing the Semantic Web.

2 Methodology

The proposed methodology consists of the following parts (Figure 1):

1. provide technology-independent semantic descriptions of functions,
2. publish these functions, both their semantic description and the specific im-

plementations (not necessarily all at the same place),
3. make the semantic descriptions discoverable and queryable, and
4. provide content negotiation to allow uniform access to different implemen-

tations.

We achieve the first part of this methodology using for instance the Func-
tion Ontology [1]. The Function Ontology is a technology-independent way of
describing functions of various complexity, without any assumptions on pro-
gramming paradigms. It consists of only six base classes and five relations. It
is used to describe a Function that possibly solves a certain Problem, and
possibly implements some Algorithms. The Function expects zero or more
Parameters and returns zero or more Outputs. An Execution executes a
certain Function by binding values to the Parameters. The Euclidean distance
function could thus be described as follows:

ex:euclidDistanceFn a fno:Function ;

fno:solves ex:EuclideanDistanceProblem ;

fno:expects ( ex:dataPoint1 ex:dataPoint2 ) ;

fno:returns ( xsd:double ) .

We consider the Function Ontology as it is small and technology/problem-
domain independent, and thus allows for easier reuse2. Such a function descrip-
tion serves as a common reference across technology stacks.

2 http://w3id.org/function/spec

http://w3id.org/function/spec


Discovering and Using Functions via Content Negotiation 3

Web service 

JAVA function 

JavaScript function 

POST /_query 
 
Accept: application/x-javascript 
 
_:a  
  fno:solves 
  ex:EuclideanDistanceProblem . 

Redirect 303 
  s2.example.com/euclidean.js 

s2.example.com 

s1.example.com 

function euclidean (points) { […] } 

(0) 

(1) 

(2) 

(3) 

Fig. 1: General overview of content negotiation over functions. Function descrip-
tions can be published to discovery endpoints (0). When a user queries such an
endpoint (1), the response can redirect (2) to the actual implementation (3).

Just as Linked Open Vocabularies [6] provides for a discovery endpoint to
vocabularies and ontologies, functions can be submitted to similar discovery end-
points (Figure 1 (0))3. No actual implementations are hosted on these endpoints,
but the semantic descriptions can be aggregated, and content negotiation can
be set up to direct the user to the different implementations across servers. For
example, when a user needs a certain functionality in a certain technology, she
can query discovery endpoints for functions that solve a given problem, and are
available in a specific format (in the case of Figure 1 (1), a JavaScript snippet).
The discovery endpoint can then redirect (2) the user to a server hosting the
actual code (3).

3 Discussion

The proposed methodology uses widespread methods to publish and discover
functions, catered to different needs. However, they also inherit the same risks
as there are in the current Web: just as websites are not always accessible in
the language you prefer, functions might not be implemented in the technology
needed. Fortunately, similar workarounds can be used: as best-effort automatic
translation systems can provide for translations of websites to your preferred
language, there exist engines that use emulation or code translation to allow
incorporating code snippets from a different programming language4.

3 This compares to a technology-independent https://www.haskell.org/hoogle/

(that helps users discover Haskell functions by type signature), but where the se-
mantics of a function is also taken into account.

4 See, e.g. the Nashorn engine to use JavaScript procedures within the Java Virtual
Machine (https://blogs.oracle.com/nashorn/).

https://www.haskell.org/hoogle/
https://blogs.oracle.com/nashorn/


4 Ben De Meester et al.

Furthermore, the proposed methodology allows for choosing between remote
web services and locally downloaded methods. Depending on the context (on-
line/offline, execution rate and/or data throughput) a user can decide whether
to use the online service, or download the method locally (given that both exist).
The latter would involve (automatically) integrating the downloaded code in the
parent application. Depending on the technology used, the client will need to
interpret the semantic description of a function, to know how to actually exe-
cute a function. For Web services, many declarative description formats exist
to automatically derive this (e.g., Hydra [4]). For other technologies, additional
descriptions might be necessary.

4 Conclusion

Functions can be described semantically and technology-independent using the
Function Ontology. By publishing these descriptions alongside their implementa-
tions, we provide a uniform access to similar functions for different technologies,
both accessible remotely and downloadable locally. These implementations can
exist distributed, but are made discoverable using centralized endpoints, similar
to widely adopted portals such as Linked Open Vocabularies. This in turn allows
for machine-interpretable and discoverable libraries of functions.

References

1. De Meester, B., Dimou, A., Verborgh, R., Mannens, E., Van de Walle, R.: An
ontology to semantically declare and describe functions. In: Proceedings of the 13th
ESWC: Satellite Events (2016), accepted for publication

2. Debruyne, C., O’Sullivan, D.: R2RML-F: Towards sharing and executing domain
logic in R2RML mappings. In: Workshop on Linked Data on the Web (2016), http:
//events.linkeddata.org/ldow2016/papers/LDOW2016_paper_14.pdf

3. Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Semantics
and content – content negotiation. Tech. rep., IETF (June 2014), http://tools.
ietf.org/html/rfc7231#section-3.4, accessed January 26th, 2015

4. Lanthaler, M., Gütl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs.
In: LDOW, WWW (2013)

5. Regalia, B., Janowicz, K., Gao, S.: VOLT: A provenance-producing, transparent
SPARQL proxy for the on-demand computation of linked data and its application
to spatiotemporally dependent data. In: The Semantic Web. Latest Advances and
New Domains (2016), http://geog.ucsb.edu/~jano/eswc2016.pdf

6. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the web.
Semantic Web (2015), http://www.semantic-web-journal.net/system/files/

swj1178.pdf, accepted for publication
7. Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T.,

Gabarró Vallés, J.: The pragmatic proof: Hypermedia API composition and ex-
ecution. Theory and Practice of Logic Programming (2016), http://arxiv.org/
pdf/1512.07780v1.pdf, accepted for publication

http://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_14.pdf
http://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_14.pdf
http://tools.ietf.org/html/rfc7231#section-3.4
http://tools.ietf.org/html/rfc7231#section-3.4
http://geog.ucsb.edu/~jano/eswc2016.pdf
http://www.semantic-web-journal.net/system/files/swj1178.pdf
http://www.semantic-web-journal.net/system/files/swj1178.pdf
http://arxiv.org/pdf/1512.07780v1.pdf
http://arxiv.org/pdf/1512.07780v1.pdf

	Discovering and Using Functionsvia Content Negotiation
	Introduction
	Methodology
	Discussion
	Conclusion


