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Abstract. Reversible computation deals with mechanisms for undoing
the effects of actions executed by a dynamic system. This paper is con-
cerned with reversibility in the context of Petri nets which are a general
formal model of concurrent systems. A key construction we investigate
amounts to adding ‘reverse’ versions of selected net transitions. Such
a static modification can severely impact on the behaviour of the sys-
tem, e.g., the problem of establishing whether the modified net has the
same states as the original one is undecidable. We therefore concentrate
on nets with finite state spaces and show, in particular, that every tran-
sition in such nets can be reversed using a suitable set of new transitions.
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1 Introduction

Reversible computation deals with (typically local) mechanisms for undoing the
effects of actions executed by a dynamic system. Such an approach has been
applied, in particular, to various kinds of process calculi and event structures
(see, e.g., [3–6, 8, 11, 12, 10]), and to a category theory based setting [7].
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This paper is concerned with reversibility in the context of Petri nets which are
a general formal model of concurrent systems. A key construction we investigate
amounts to adding ‘reverse’ versions of selected net transitions, e.g., a ‘straight-
forward’ reverse simply changes the directions of arcs adjacent to a transition
being reversed. As shown in [2], such a static modification can severely impact
on the behaviour of the system, e.g., the problem of establishing whether the
modified net has the same states as the original one is undecidable.

We therefore concentrate in this paper on Petri nets with finite state spaces,
more precisely bounded Place/Transition-nets (PT-nets). The state spaces of
such nets can be represented by finite labelled transition systems (flts’s) which
are a convenient tool for specifying different variants of reversibility. One can
therefore aim at synthesising a PT-net with ‘reversed’ behaviour given by an
flts.

In this paper we show that it is, in general, impossible to reverse a transition
using its straightforward reverse. What is more, the situation does not change if
we relax the notion of a reverse by only requiring that the effect of its execution
is opposite to that of the original transition. We therefore relax the requirement
further, by allowing several reverses for a single transition. This leads to our
main result that every transition in a bounded PT-net can be reversed using
a suitable set of new transitions.

2 Preliminaries

Transition systems
A finite labelled transition system (or, simply, flts) is a tuple TS = (S, T,→, s0)
with a finite set of states S, a finite set of labels T , a finite set of arcs →⊆
(S × T × S), and an initial state s0 ∈ S.4 A label t is fireable at s ∈ S, denoted
by s[t〉, if (s, t, s′) ∈→, for some s′ ∈ S. A state s′ is reachable from s through
the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to
s′ whose arcs are labelled consecutively by σ. The set of states reachable from s
is denoted by [s〉. A sequence σ ∈ T ∗ is fireable, from a state s, denoted by s[σ〉,
if there is some state s′ such that s[σ〉s′.
Let t•TS = {s ∈ S | (s′, t, s) ∈→, for some s′ ∈ S} and •tTS = {s ∈ S |
(s, t, s′) ∈→, for some s′ ∈ S} be respectively the sets of all states having an
incoming arc labeled with t, and an outgoing arc labeled with t. The set of all
arcs labelled by t is denoted by −→t . We assume that each −→t is nonempty.

Two flts’s, TS1 = (S1, T,→1, s01) and TS2 = (S2, T,→2, s02), are isomorphic
if there is a bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1⇔
(ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

Petri nets
A Place/Transition Petri net (or, simply, net) is a tuple N = (P, T, F,M0),

4 An flts may be considered as a finite automaton with no accepting states.



where P is a finite set of places, T is a finite set of transitions (or actions), F is
the flow function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and
M0 is the initial marking (where a marking is a mapping M : P → N, indicating
the number of tokens in each place). A transition t ∈ T is enabled at a marking
M , denoted byM [t〉, ifM(p) ≥ F (p, t), for all p ∈ P . The effect of a transition t
on a place p is eff p(t) = F (t, p) − F (p, t). The firing of t at marking M leads
toM ′, denoted byM [t〉M ′, ifM [t〉 andM ′(p) =M(p)+eff p(t) for every p ∈ P .
The notions of enabledness and firing, M [σ〉 and M [σ〉M ′, are extended in the
usual way to sequences σ ∈ T ∗, and [M〉 denotes the set of all markings reachable
from M . We assume that each transition is enabled in at least one reachable
marking. There is a partial order relation< on the markings of a Petri net defined
so that M ≤ M ′ if M(p) ≤ M ′(p), for every place p ∈ P . It is easy to observe
that transition enabledness is monotonic, which means that if a transition t is
enabled at a marking M and M ≤M ′, then t is also enabled at M ′.

A Petri net N = (P, T, F,M0) net is bounded if [M0〉 is finite, and its reachability
graph is then defined as an flts

RG(N) = ([M0〉, T, {(M, t,M ′) |M,M ′ ∈ [M0〉 ∧M [t〉M ′},M0).

If a labelled transition system TS is isomorphic to the reachability graph of
a Petri net N , then we say that N solves TS, and TS is synthesisable to N .

Definition 1 (transition reverse). A (strict) reverse of a transition t ∈ T in
a net N = (P, T, F,M0) is a new transition t such that F (p, t) = F (t, p) and
F (t, p) = F (p, t). An effect-reverse of a transition t ∈ T is a new transition t
such that eff p(t) = −eff p(t), for all places p ∈ P .

To improve readability, we depict newly created reverses and adjacent arcs by
dashed (or dotted) lines. Clearly, for a given transition t, its strict reverse t is
unique and, at the same time, it is an effect-reverse of t. However, an effect-
reverse t is not necessarily a strict reverse (see Figure 1).

•
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•
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Fig. 1. A transition a and its (strict) reverse a (lhs), and an effect-reverse a, which is
not a strict reverse (rhs).

(Un)solvable words
A word w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a labelled
transition system TS(w) = ({0, . . . , n}, T, {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, 0).



We say that a net N solves a word w if it solves TS(w). A word w is then called
solvable, and otherwise unsolvable.

If a word w is solvable, then so are all its factors (where a factor w′ satisfies
w = vw′u, for some v and u). Thus, the unsolvability of any proper factor of w
entails the unsolvability of w. For this reason, the notion of a minimal unsolvable
word, defined as an unsolvable word with all proper factors being solvable, is
well-defined (see [1] for details).

The mirror image wR of a word w is w written from right to left.

3 Solvability of flts’s with reverses

We now define reverses for labelled transition systems, and investigate how they
affect the solvability of the resulting flts’s. We first introduce the notions of
reduction and extension of an flts.

Definition 2 (flts reduction and extension). Let TS = (S, T,→, s0) be
a solvable flts.

– The reduction of TS by deleting t ∈ T is an flts TS[−t] = (S′, T \ {t},→′, s0)
such that:
• S′ ⊆ S are all the states reachable in TS without using −→t ;
• (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for all a 6= t and s1, s2 ∈ S′.

– The extension of TS by reversing t ∈ T is an flts TS[+t] = (S, T∪{t},→′, s0)
such that, for all s1, s2 ∈ S:
• (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for all a ∈ T ;
• (s1, t, s2) ∈→′ if (s2, t, s1) ∈→.

These above notions can be extended to finite sets of transitions, by setting
TS[−t1,t2...tn] = TS[−t1][−t2]...[−tn] and TS[+t1,t2...tn] = TS[+t1][+t2]...[+tn].
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Fig. 2. TS0 and TS2 = TS
[+a]
0 are solvable by net N1 (respectively without and with

the dashed part), while TS1 = TS
[+b]
0 is unsolvable.



Consider a word w = bbbabab which, in Figure 2, corresponds to a solvable flts
TS0. If we add a reverse of transition a, we obtain TS2 which is solvable by N1.
We will later show that reversing transition b leads to an unsolvable flts TS1.

The a in Figure 2 is an effect-reverse but not a strict reverse of a. We will now
show that if a label a can be effect-reversed, i.e., TS[+a] is solvable, then there
exists a solution in which transition a is a strict reverse of a.

Proposition 1. Let TS = (S, T,→, s0) be a solvable flts and a ∈ T . If TS[+a]

is solvable then there exists its solution such that a is a strict reverse of a.
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Fig. 3. Adding a reverse b in TS4 = TS
[+b]
3 does not violate solvability.

Consider N2 of Figure 3 without the dashed part. It solves the word bbabab, and
so its reachability graph is isomorphic to TS3. Unlike the case with the reverse of
b in TS1, TS4 obtained from TS3 by adding a reverse for transition b is solvable
by N2 with dashed part. Note that, in N2, b is a strict reverse of b.
Similarly, we may reverse a in TS3, obtaining TS5 of Figure 4. This flts is solvable
by the net N3 with the dashed part.
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Fig. 4. TS5 = TS
[+a]
3 is solvable (e.g. by N3).



The next result states that for a given flts and two of its transitions, if adding
a reverse for each of them separately yields solvable flts’s, then the flts with both
reverses is also solvable.

Proposition 2. Let TS = (S, T,→, s0) be a solvable flts and a 6= b ∈ T . If both
TS[+a] and TS[+b] are solvable, then so is TS[+a,b].

For TS = TS3 of Figure 3, by Proposition 2, starting from the solutions for
TS4 = TS[+a] and TS5 = TS[+b], we can construct a solution N4 for TS6 =

TS[+a,b] depicted in Figure 5.
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Fig. 5. N4 solving TS6 = TS
[+a,b]
3 derived by synchronising the transitions

of N2 and N3.

We end this section looking at the solvability of words over a two-letter alphabet.

Proposition 3. Let w ∈ {a, b}∗ be a minimal unsolvable word. Then TS(wR)
is solvable.

Due to Propositions 2 and 3, reversing of both transitions in the mirror image
wR of some minimal unsolvable word w over {a, b} yields solvability of w, which
is a contradiction. Hence, the following corollary holds

Corollary 1. Let w ∈ {a, b}∗ be a minimal unsolvable word and TS = TS(wR).
Then TS[+a] or TS[+b] is unsolvable.

The above result explains why b in TS1 of Figure 2 cannot be reversed. All we
need to observe is that w = bbbabab is the mirror image of a minimal unsolvable
word bababbb, and then recall that a can be reversed in TS1.



4 Splitting reverses

In this section we discuss the possibility of "splitting" reverses. More specifically,
we investigate flts’s in which more than one reverse to a given transition can exist.

Consider N5 of Figure 6, together with its reachability graph TS7. First, we
observe that eff b1

(p) = eff b2
(p) = −eff b(p), for every place p. Hence, transitions

b1 and b2 are both effect-reverses for b. We have already seen that it is impossible
to synthesise an flts with just one reverse of b (i.e., TS1 of Figure 2), but the
behaviour of N5 is exactly what one might indeed want to obtain. The only
difference is that N5 has more than one reverse for b. In what follows, we show
that every action of a bounded net can be reversed using finitely many effect-
reverses.
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Fig. 6. Splitting reverses in TS7 results in solvability.

Definition 3 (splitting reverse). Let TS = (S, T,→, s0) be a solvable flts.
The extension of TS by a set T of reverses of t ∈ T is an flts TS[+tφ] =
(S, T ′,→′, s0) such that:

– φ :
−→
t → 2T \ {∅} is a mapping specifying all possible ways in which each of

t-labelled arcs can be reversed;
– T ′ = T ∪ T ;
– (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for any a ∈ T ;
– (s1, t

′, s2) ∈→′ if (s2, t, s1) ∈→ and t′ ∈ φ((s1, t, s2)).

We also extend the above notion in the usual way to TS[+t1φ1,t2φ2,...,tnφn].

Lemma 1. Let N = (P, T, F,M0) be a bounded net, TS = ([M0〉, T,→,M0)
be its reachability graph, and t /∈ T be a new transition symbol. If a reachable
marking M is ≤-maximal in [M0〉 and M ′ ∈ [M0〉, then

TS′ = ([M0〉, T ∪ {t},→ ∪{(M, t,M ′)},M0)

is a solvable flts.



Proof. Let N ′ = (P, T ∪ {t}, F ′,M0), where:

F ′(p, a) = F (p, a) for all p ∈ P and a ∈ T
F ′(a, p) = F (a, p) for all p ∈ P and a ∈ T
F ′(p, t) =M(p) for every p ∈ P
F ′(t, p) =M ′(p) for every p ∈ P .

We then obtain that:

(1) t is not enabled at any marking M ′′ 6= M reachable in N . Indeed, suppose
that there exists such a marking M ′′. Then, by the definition of enabled-
ness, M ′′(p) ≥ F ′(p, t) = M(p), for every p ∈ P . Hence M ′′ ≥ M , which
contradicts the ≤-maximality of M .

(2) M [t〉M ′. This follows directly from the definition of F ′.

We then observe that, by (1) and (2), the sets of reachable markings of the nets
N and N ′ are equal, and RG(N ′) = TS′. ut

Lemma 1 states that to a given solvable flts (with a solution N = (P, T, F,M0))
one can always add a new edge (s, t(s,s′), s

′), obtaining another solvable flts,
provided that s is a state corresponding to some markingM , which is ≤-maximal
in [M0〉, and t(s,s′) denotes the label of the edge from s to s′, such that t(s,s′) /∈ T .
We will use this fact to prove the following theorem

Theorem 1. Let TS = (S, T,→, s0) be a solvable flts. Then, for every t ∈ T ,
there exists a finite set T and a function φ :

−→
t → 2T \ {∅} such that TS[+tφ] is

solvable.

Proof. Let N = (P, T, F,M0) be a net solving TS. As TS is finite, N is bounded,
and so we can calculate a common bound n on the tokens in the reachable
markings for all the places, n = max(M(p) |M ∈ [M0〉, p ∈ P ).
We extend N to N ′ = (P ∪ P ′, T, F ′,M ′0) by adding complement places [9]
P ′ = {p′ | p ∈ P} in such a way that, for all M ∈ [M0〉 and p ∈ P , we define
M ′, such that M ′(p) = M(p) and M ′(p′) = n −M(p). This can be done by
inserting in the initial marking n−M0(p) tokens into each p′ ∈ P ′, and setting
F ′(p′, a) = F (a, p) as well as F ′(a, p′) = F (p, a), for all p′ ∈ P ′ and a ∈ T .
Since, for distict markings M1,M2 ∈ [M ′0〉, there exists a place p ∈ P (in which
they differ) such that M1(p) > M2(p) and M1(p

′) < M2(p
′), or M2(p) > M1(p)

andM2(p
′) < M1(p

′), all distinct markings reachable in N ′ are ≤-incomparable.
Hence all markings reachable in N ′ are ≤-maximal in [M ′0〉. By the construction,
the reachability graph of N ′ is isomorphic to TS.

We then construct TS′ by adding to TS a set T of |−→t | new transitions in such
a way that, for every (p, t, q) ∈→, we also add (q, t(q,p), p) ∈→. We then define
a function φ :

−→
t → 2T \ {∅} in such a way that φ((p, t, q)) = {t(q,p)}.

Finally, by repeatedly using Lemma 1 for the net N ′, we obtain that TS′ =
TS[+tφ] is solvable. ut



The construction described in the proof of Theorem 1 will in most cases lead to
a substantial enlargement of the net, as the size of places is doubled, and the
number of newly created transitions is bounded by the size of the reachability
graph of the initial net. However, as illustrated by the example depicted in
Figure 6, there may also exist solutions that are much smaller. Hence, there is a
room for improvement of the suggested constructive technique.

5 Infeasibility for reversing

To draw attention to another important issue, which becomes relevant during the
analysis of flts’s from the viewpoint of reversibility of transitions, let us consider
the following example.

Suppose that one attempted to introduce a reverse for a in TS8 of Figure 7,
which can be solved by N6. Although there exists a (strict) reverse a in N6,
depicted in Figure 7, the meaning of a may be confusing. We cannot regard it as
an undoing of the executing of action a, since N6 can fire bca where a does not
occur at all. What is more, we can keep repeating the firing of bca indefinitely,
without executing a even once. To address this situation, we introduce the notion
of infeasibility for reversing.

a

b c

a

• •N6:

b c

a

a
TS8:

Fig. 7. TS[+a] allows execution of a without executing of a.

Definition 4. Let TS = (S, T,→, s0) be an flts. Then a ∈ T is infeasible (for
reversing), if TS[+a] has a path starting from s0 with more occurrences of a
than a. Otherwise, a is feasible (for reversing).

There is a straightforward necessary condition for being feasible for reversing.

Proposition 4. Let TS = (S, T,→, s0) be an flts and t ∈ T . If TS[−t] has
a path from •tTS ∪ {s0} to t•TS then t is infeasible for reversing.

In general, the reversed implication does not hold. Take, for example, TS10 =

TS
[+a]
9 of Figure 8. It has a path labelled acdaa, with more a’s than a’s, implying



the infeasibility for reversing of transition a in TS9. However, the reduction
of TS9 by deleting a, namely TS

[−a]
9 has no path starting from •aTS9 ∪ {s0}

to a•TS . Note that TS10 and TS9 are both solvable (see N7 of Figure 8 with
or without dashed arcs, respectively). We will now show that one can always

a b
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Fig. 8. a is infeasible for reversing in TS9, even though TS
[−a]
9 has no path from

•aTS9 ∪ {s0} to a•
TS9

.

establish whether a label of an flts is (in)feasible for reversing. To this end,
formulate the following decision problem:

Feasibility for Reversing Problem
Instance: An flts TS = (S, T,→, s0) and t ∈ T .
Question: Is t feasible for reversing in TS?

Proposition 5. The Feasibility for Reversing Problem is decidable.

Proof (Sketch of the algorithm.).

The following algorithm reduces the problem of checking the feasibility of a
transition for reversing to the problem of finding shortest paths in a weighted
digraph.

Input: An flts TS = (S, T,→, s0) and t ∈ T .
Output: YES if t is feasible for reversing in TS; otherwise NO.

Procedure:

1. Compute a weighted graph G = (V,E,w) on the basis of the extension
TS[+t] = (S, T ∪{t},→′, s0) of TS, in the following way (for all s, s′ ∈ S,
a ∈ T ∪ {t}):
– V = S;
– (s, s′) ∈ E if (s, a, s′) ∈→′;

– w((s, s′)) =

 1 if (s, t, s′) ∈→′
−1 if (s, t, s′) ∈→′
0 otherwise.



2. Use, e.g., Bellman-Ford algorithm, to search for a state swit, such that
the distance between s0 and swit is negative.

3. If swit exists, return NO and otherwise YES. ut

For a transition system consisting of n states the preprocessing phase (step 1)
can be done in time O(n2). The computation of step 2 can be performed in time
O(n3) (basing on Bellman-Ford algorithm). Therefore the overall complexity of
the algorithm is O(n3).

6 Concluding remarks

In this paper, we have investigated reversibility of transitions in bounded nets. In
particular, we have shown that each transition in such nets can be reversed using
a suitable set of new transitions, but not necessarily a single reverse transition.
In future, we plan to investigate ways in which the generation of sets of reverses
could be optimised.
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