
TripICS - a Web Service Composition System
for Planning Trips and Travels

(Extended Abstract)

Artur Niewiadomski1, Wojciech Penczek2

1 Institute of Computer Science, Siedlce University, Poland
artur.niewiadomski@uph.edu.pl

2 Institute of Computer Science PAS, Warsaw and Siedlce University, Poland
wpenczek@gmail.com

1 Introduction

Automatic composition of Web services is a very active area of research which has pro-
vided a lot of important results [10, 1, 15, 6] as well as many implemented approaches
[11, 12, 2, 3, 13]. In this paper we present the system TripICS - a real-life application
of our Web service composition system PlanICS [8, 9, 13] to planning trips and travels
around the world. While there are systems offering some support for planning excur-
sions and travels [4, 5], our system uses advanced automated concrete planning methods
[13, 16, 14]. TripICS is a specialization of the concrete planning viewed as a constrained
optimization problem to the ontology containing services provided by hotels, airlines,
railways, museums etc. The system finds an optimal plan (solution) satisfying the re-
quirements of the user by applying the most efficient concrete planners of PlanICS based
on a combination of an SMT-solver [7] with the nature inspired algorithm: GA, SA,
and GEO [16, 14]. Contrary to PlanICS, the first phase of planning, called abstract plan-
ning, is realized by TripICS in a semi-automatic way by giving the user a possibility to
choose the elements of an abstract plan using a Graphical User Interface (GUI). In the
remainder we present: the description of the system TripICS, the theory behind it, and
the implementation followed by some experimental results and conclusions.

2 TripICS Description

Our system is to allow the user for an easy and user-friendly planning of visits to in-
teresting cities and places around the world in combination with travels in and out,
arranged in the way satisfying the user’s requirements. The general assumption is that
the user would like to receive an optimal plan of a travel starting and ending in given lo-
cations and offering a possibility of visiting some specified cities within some specified
dates. A plan is optimal if its quality value is the highest according to the given criteria.
Below, we make the above description much more precise by giving three lists of re-
quirements: 1) the user has to set (obligatory requirements), 2) the user can optionally
set (optional requirements), and 3) the predefined quality requirements.



2.1 Obligatory Requirements

1. Trip starts and ends in two given locations (cities),
2. Trip starts from a given date (or a period of time) and lasts for a given number of

days (optionally can be shorter or longer by a specified number of days),
3. Trip involves visiting given cities, each city within a specified minimal/maximal

number of days,
4. Hotels with the free cancellation option are booked (optionally free cancellation is

not required if this reduces the price by a given factor in %),
5. In each city to be visited, the attractions specified in the optional rules, are available

within the period of stay.

2.2 Optional Requirements

1. In each city, attractions (museums, exhibitions, matches, concerts, restaurants etc.)
to attend are specified,

2. Quality of hotels is specified by giving a minimal number of stars (0 - 5) and a
minimal score (0 - 10),

3. Travels do not last longer than a given number of hours.

Clearly, a plan should be optimal in the sense that the travels should conveniently fit to
the stays and the prices should be as low as possible for a required quality of hotels. The
aim of TripICS is to return such plans if they exist. Formally, these plans need to satisfy
the user requirements as well as the quality requirements specified below.

2.3 Quality Requirements

1. A travel connection between two cities is always direct if it exists,
2. Costs, durations, and the numbers of breaks of the travels are minimized,
3. Costs of the visits are minimized while their standards and durations are maxi-

mized.

3 Theory behind TripICS

Typically, PlanICS realizes planning in three well defined phases called: abstract plan-
ning, offer collecting, and concrete planing, after receiving a user query specifying the
requirements. In TripICS we depart from using an abstract planner, which does free
the user from formulating a user query in the specification language. Instead, the user
is given a possibility to set the obligatory and optional requirements about expected
plans using GUI, described briefly in Section 3.2. All the user’s choices, as well as the
quality requirements, are automatically encoded as a user query and passed to the offer
collector and the concrete planners. The available options result from the underlying
ontology.



3.1 Ontology

This section discusses the ontology exploited by TripICS. Fig. 1 shows a part of the ontol-
ogy corresponding to a travel domain. The ontology defines three service types Travel,
Stay, and Entertainment aimed at providing instances of the Ticket, Attraction,
and Accommodation object types (and operating also on objects of type Person and
Location) which are the trip elements constituting (among others) the abstract plan.

A ticket represents a journey from one location to another, for a certain price. An
accommodation corresponds to a stay in some location, for a certain price as well. An
attraction represents an admission ticket for an event, a reservation, or a confirmation
that the attraction is available at the specified time. All these objects contain attributes
describing contexts and details of the particular trip elements. We introduce also two
auxiliary object types: ABlock and V Block. This is to avoid duplication of common
attributes using the inheritance mechanism.

Thing

ServiceStamp

Accommodation

Ticket
Person

Travel StayLocation

Attraction

Entertainment

Artifact

ABlock

VBlock

Object type Attributes’ names and types
Location continent, country, city: String
Person name: String; loc: Location
ABlock begin, end: Date; price: Real; type: String
T icket from, to: Location; breaks: int
V Block reviews: Real; loc: Location
Accommodation stars: Int; freeCancel: Bool
Attraction reserved: Bool

Fig. 1. The TripICS ontology. The rectangles stand for object types while the rounded rectangles
correspond to the service types. The types irrelevant for the working example are marked grey.
The table describes the object types and their attributes.

For example, all the mentioned trip elements are described by the attributes begin,
end, price, and type, and therefore they are inherited from the object type ABlock. The
type attribute defines the transportation type (bus, train, plane, ship, etc.), the accommo-
dation type (hotel, guest house, hostel, apartment, etc.), or the attraction type (museum,
exhibition, match, concert, restaurant etc.), when used in the Ticket, Accommodation,
or Attraction object, respectively. On the other hand, the number of breaks is specific
to travels only, and thus the attribute breaks is introduced in the object type Ticket.
Each accommodation (and attraction) has been assigned a number stored in the attribute
reviews corresponding to the average score given by people who stayed there (or en-
joyed the attraction) before. Similarly, since a fixed location is a common feature of
accommodations and attractions, the attribute loc of type Location is introduced in the
class V Block and inherited by Attraction and Accommodation object types. The at-
tributes are summarized in Fig. 1. Note that their meanings follow intuitively from their
names.



3.2 Specifying requirements

First, using an intuitive GUI, the user inputs information about the dates and trip dura-
tion. The next step is to select the cities to be visited by clicking on the map or searching
them by name. The cities are added to the list at the left hand side (see Fig. 2). Then, the
user adds accommodations and attractions to enjoy in the particular cities, and inputs
his preferences in the forms attached to the list.

Fig. 2. TripICS GUI

Finally, the user starts the planning process using the dedicated button, and option-
ally sets some planner options, such as a planning algorithm (SMT, GA, IPH, SCGEO,
SCSA3 [16, 14]), timeout, maximal number of offers etc., as well as some parameters
specific to the particular planning method, e.g., a population size of GA and IPH.

3.3 Collecting Offers and Planning

Basing on the city list and other data provided in the previous step, an abstract plan, i.e.,
a sequence of service types, is built. Next, this abstract plan is used by the offer collector
(OC), i.e., the tool which in cooperation with the service registry queries real-world
services. The service registry keeps an evidence of web services, registered accordingly
to the service type system. Usually, each service type of the ontology represents a set
of real-world services of similar functionality. For example, using the service type Stay
one could register Booking.com as well as Hilton service.

OC queries web services of types present in the abstract plan and retrieves data
called offers. An offer is a tuple of values representing a possible realization of one

3 SMT - the SMT-based planner, GA- the GA-based planner, IPH - the initial population hybrid
planner (SMT + GA), SCGEO - the SMT combined with GEO planner, SCSA - the SMT com-
bined with SA planner, where SMT (Satisfiability Modulo Theories), GA (Genetic Algorithm),
SA (Simulated Annealing), GEO (Generalised Extremal Optimization)



service type of the plan. Each value corresponds to an attribute of some object processed
by the service type. The offers collected from a single service type of the plan constitute
so called offer sets. The offers are searched by a concrete planner in order to find the
best solution satisfying all constraints and maximizing the quality function. Thus, the
concrete planning problem can be formulated as a constrained optimization problem
(see [13]). Its solution consists in selecting one offer from each offer set such that all
constraints are satisfied and the value of the quality function is maximized.

The constraints and the quality function result from the user requirements and pref-
erences what is shown in the next subsection.

3.4 Constraints and Quality Function

The constraints and the quality function play a crucial role in the planning process. In
this section, using a simple example, we show how the user requirements and prefer-
ences in combination with several general rules (described in Sec. 2) result in a set of
constraints and a quality function.

Example 1. Assume that the user wants to make a trip on the 15th of August from War-
saw (W) to Berlin (B) and then back in a few days. In Berlin, he prefers to stay in a
3-star hotel for 3 days and during the visit he plans to take a city tour and attend a con-
cert. The specified requirements result in an abstract plan consisting of the following
5 service types: (Travel, Stay, Entertainment, Entertainment, Travel). Then,
OC searches for the matching offers, and retrieves the following example five offer sets
(O1, . . . , O5).

O1(Travel)
id begin end price type from to breaks
1 15.08, 10:40 15.08, 12:05 565 plane W B 0
2 15.08, 06:20 15.08, 07:45 565 plane W B 0
3 15.08, 07:20 15.08, 12:05 533 plane W B 1
4 15.08, 14:05 15.08, 19:18 170 train W B 0
5 15.08, 18:05 15.08, 22:58 276 train W B 0

O2(Stay)
id begin end price type score loc stars freeCanc
1 15.08, 14 18.08, 11 1044 hotel 9.1 B 3 yes
2 15.08, 15 18.08, 11 1211 hotel 9.1 B 3 yes
3 15.08, 15 18.08, 12 1729 hotel 9.0 B 3 yes
4 15.08, 15 18.08, 11 1032 hotel 7.0 B 3 yes
5 15.08, 15 18.08, 12 1259 hotel 8.9 B 3 yes

O3(Entertainment)
id begin end price type score loc reserv.
1 15.08, 18 15.08, 21 84 tour 8.5 B yes
2 16.08, 12 16.08, 15 84 tour 8.5 B yes
3 16.08, 15 16.08, 18 84 tour 8.5 B yes
4 17.08, 12 17.08, 15 79 tour 7.2 B yes
5 17.08, 15 17.08, 18 79 tour 7.2 B yes

O4(Entertainment)
id begin end price type score loc reserv.
1 16.08, 20 16.08, 23 280 concert 7.2 B yes
2 16.08, 21 17.08, 1 130 concert 8.1 B yes
3 17.08, 21 18.08, 1 110 concert 3.0 B yes
4 17.08, 18 17.08, 22 580 concert 9.3 B yes
5 16.08, 20 16.08, 23 164 concert 7.9 B yes

O5(Travel)
id begin end price type from to breaks
1 18.08, 11:50 18.08, 16:30 429 plane B W 1
2 18.08, 15:10 18.08, 19:30 524 plane B W 1
3 18.08, 08:50 18.08, 10:10 561 plane B W 0
4 18.08, 09:37 18.08, 15:19 170 train B W 0
5 18.08, 14:37 18.08, 20:36 276 train B W 0

This example deals with a plan of length 5 where every service of the plan has 5
possible realizations. Thus, the search space is of size 55 = 3125 as there is so many
possible offer combinations. However, the number of plans (solutions) is much lower if
we take constraints into account.



For example, assume that the user wants to synchronise travels and hotel in such
a way that the time between arrival and hotel check-in is not longer than 3 hours.
Similarly, the return travel should be not later than 3 hours after the hotel check-
out time. After adding these two constraints the number of the possible solutions de-
creases to 2200. Another constraint could be to have at least a three-hour break be-
tween attractions. When this constraint is taken into account, there are only 1408 pos-
sible solutions. The underlying constraints are encoded by the following expressions:
(o2.begin− o1.end ≤ 3), (o5.begin− o2.end ≤ 3), (o4.begin− o3.end ≥ 3), where
oi represents an offer from the i-th offer set.

As to the quality function, the user can choose between several schemes, but he
can also enable/disable some of the function components. For example, if the user
prefers only to minimize the total price, the quality function is expressed by Wprice ∗∑

i=1..5 oi.price, and the optimal solution is (4, 4, 5, 3, 4) with the price 1561, where
Wprice is some negative constant (a weight). The numbers in the sequence correspond
to the numbers of the offers in the corresponding offer sets. That is, both the travels are
by train for the price of 170 each, the stay is in the cheapest hotel, and the cheapest tour
and concert are chosen. However, if the user also wants to maximize the reviews of the
stay and attractions, the quality function is then as follows: Wprice ∗

∑
i=1..5 oi.price+

Wscore ∗
∑

i=2..4 oi.score. Assuming Wprice = −1 and Wscore = 10, we obtain
the optimal solution (4, 1, 3, 2, 4) where the accommodation and attractions with a low
price and a high score are chosen. Fig. 3 presents the resulting plan.

Fig. 3. The example plan

4 TripICS Implementation and Experiments

The TripICS application is implemented in Java. It consists of several planning engines,
Offer Collector, and the GUI module. GUI exploits GMapsFX [17] project which pro-
vides a wrapper to the Google Map’s Javascript API, allowing to exploit and interact
with maps using a pure Java. The map is the central component in GUI. It is used to



Table 1. The experimental results for the travel benchmarks. In each entry of the table having
three rows of values, the first row contains the average values (bold), the second row contains the
best values (normal font), the third row contains the standard deviation (italic).

SMT SCSA SCGEO GA IPH1 IPH500

Instance t[s] / Q t[s] / Q t[s] / Q t[s] / Q P [%] t[s] / Q t[s] / Q
T1 52.4 / 228.3 0.9 / 222.0 0.8 / 221.4 1.7 / 201.5 80 1.8 / 202.5 1.9 / 222.8

47 / 228.3 0.8 / 222.0 0.7 / 222.0 1.5 / 222.0 1.6 / 222.0 1.6 / 228.3
3.6 / 0 0.1 / 0.0 0.0 / 4.1 0.1 / 13 0.1 / 18.5 0.1 / 6.3

T2 400.6 276.2 1.2 / 268.9 1.0 / 268.4 1.8 / 222.7 92 1.9 / 223.6 1.7 / 277.1
400.3 / 276.2 1.0 / 276.2 0.9 / 276.2 1.7 / 284.2 1.8 / 284.2 1.6 / 284.2

0.3 / 0 0.1 / 13.8 0.1 / 10.9 0 / 37.3 0.1 / 38.5 0.1 / 7.6
T3 400.3 / 79.3 1.5 / 270.3 1.2 / 249.7 1.8 / 235.7 72 2.1 / 209.7 2.8 / 266.2

400.3 / 79.3 1.3 / 290.4 1.0 / 290.4 1.6 / 306.1 2 / 269.3 2.5 / 290.3
0 / 0 0.1 / 16.8 0.1 / 26.0 0.1 / 33.8 0.1 / 39.6 0.2 / 4.9

T4 400.2 / 106.9 1.7 / 217.3 1.8 / 216.7 3.3 / 178.5 70 3.2 / 169 3.4 / 173.6
400.2 / 106.9 1.6 / 217.3 1.7 / 217.3 3.1 / 238.8 3.1 / 214.8 2.7 / 210.4

0 / 0 0.1 / 0.0 0.1 / 4.1 0.1 / 27.4 0.1 / 22.5 0.4 / 10.5
T5 400.3 / 73.4 2.1 / 191.5 2.2 / 190.8 3.2 / 211.2 76 3.5 / 193.8 7.1 / 331.3

400.3 / 73.4 1.9 / 191.7 2.0 / 191.7 3 / 281.4 3.4 / 336.9 3.7 / 344.8
0 / 0 0.1 / 0.5 0.1 / 1.6 0.1 / 33.7 0.1 / 39.3 1.9 / 9.2

T6 400.4 / 12.5 2.5 / 277.6 2.7 / 262.0 3.2 / 206.9 80 3.8 / 199.7 8 / 304.1
400.4 / 12.5 2.3 / 320.3 2.4 / 320.3 3.1 / 286.1 3.7 / 264.4 7.8 / 308.5

0 / 0 0.1 / 19.6 0.2 / 16.4 0.1 / 36.7 0.1 / 31.5 0.2 / 3.1
T7 400.3 / 19.6 2.6 / 210.9 3.6 / 210.1 4.7 / 158.8 80 5.6 / 186.2 4.3 / 181.2

400.3 / 19.6 2.5 / 214.2 3.4 / 214.2 4.6 / 258.6 5.1 / 211.1 4.1 / 191.9
0 / 0 0.1 / 5.8 0.1 / 6.2 0.1 / 38.1 0.2 / 14.3 0.1 / 5.8

T8 400.4 / 38.1 3.0 / 162.0 4.0 / 155.4 4.6 / 177.3 60 6.1 / 95.1 9.3 / 226.4
400.3 / 38.1 2.8 / 180.4 3.8 / 180.4 4.3 / 237.0 5.7 / 143.2 9.1 / 242.3

0.1 0 0.1 18.6 0.1 20.9 0.1 38.8 0.2 23.5 0.1 11.2
T9 400.5 / 35 3.6 / 258.5 4.5 / 255.0 4.5 / 180.2 62 6.2 / 187,4 10.8 / 187.1

400.4 / 35 3.4 / 266.2 4.2 / 266.2 4.4 / 285.6 5.4 / 250.3 10.4 / 227.7
0.1 / 0 0.1 / 7.6 0.1 / 10.6 0 / 38.2 0.6 / 33 0.2 / 19.9

specify user requirements as well as to visualize plans. The application is still being
extended and improved.

We have evaluated the efficiency of TripICS focusing on the planning modules. At
the moment our Offer Collector supports only a limited number of services. Thus, we
have used several benchmarks generated by our software Offer Generator. They have
been scaled by the length of a plan and the number of offers. Plans of length 5 have
been found for the benchmarks T1, T2, and T3, of length 9 for T4, T5, and T6, and of
length 13 for the remaining examples. The number of offers equals 28 = 256 for the
benchmarks T1, T4, and T7; 29 = 512 for T2, T5, and T8; and 210 = 1024 for the
other cases. This gives a number of the potential solutions varying from 2565 = 240 for
T1 to 102413 = 2130 for T9. The tested examples involved from 13 to 43 constraints.
We have compared several planning algorithms taking into account the computation
time and the quality of the solutions found. The methods combining SMT with nature-



inspired algorithms appear to be the most efficient. They are able to find solutions of
very high quality within a few seconds only, which makes them acceptable for the user.
The detailed results are given in Table 1 and summarised in Fig. 4.

SMT 

SCSA SCGEO 

GA 
IPH1 

IPH500 

0 

50 

100 

150 

200 

250 

Concrete planning methods 

A
V

G
(Q

) 

SMT 

SCSA SCGEO 

GA 
IPH1 IPH500 

0 

20 

40 

60 

80 

100 

120 

140 

160 

Concrete planning methods 

A
V

G
(Q

/t
*P

) 

Fig. 4. A comparison of the average quality of solutions produced by the concrete planning meth-
ods (left) and average efficiency comparison of the concrete planning methods (right). By effi-
ciency we mean quality/time ∗ probability.

5 Conclusions

We have presented a preliminary version of our system TripICS, which can be used
for planning trips and travels around the world. Our motivation for developing this
system was twofold. Firstly, we wanted to show that web service composition can be
successfully used in practice for real-life applications, and secondly our aim is to offer
a new useful tool, which could be publicly used.

References

1. S. Ambroszkiewicz. Entish: A language for describing data processing in open distributed
systems. Fundam. Inform., 60(1-4):41–66, 2004.

2. D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi. Automatic service composition via
simulation. Int. J. Found. Comput. Sci., 19(2):429–451, 2008.

3. D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, and F Patrizi. Automatic service
composition and synthesis: the roman model. IEEE Data Eng. Bull., 31(3):18–22, 2008.

4. D. Damljanovic and V. Devedzic. Applying semantic web to e-tourism. In In Ma, Z.,Wang,
H. (Eds.), The Semantic Web for Knowledge and Data Management: Technologies and Prac-
tices, pages 243–265. IGI Global, New York, 2008.

5. D. Damljanovic and V. Devedzic. Applying semantic web to e-tourism. In In Mehdi
Khosrow-Pour (Ed.), Encyclopedia of Information Science and Technology, pages 3426–
3432. IGI Global, Hershey, 2009.

6. G. De Giacomo, M. Mecella, and F. Patrizi. Automated service composition based on be-
haviors: The roman model. In Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel,
editors, Web Services Foundations, pages 189–214. Springer, 2014.

7. L. De Moura and N. Bjorner. Satisfiability modulo theories: Introduction and applications.
Commun. ACM, 54(9):69–77, September 2011.



8. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola, and
J. Skaruz. HarmonICS - a tool for composing medical services. In ZEUS, pages 25–33,
2012.

9. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter,
and A. Zbrzezny. Planics - a web service composition toolset. Fundam. Inform., 112(1):47–
71, 2011.

10. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

11. Z. Li, L. O’Brien, J. Keung, and X. Xu. Effort-oriented classification matrix of web service
composition. In Proc. of the Fifth International Conference on Internet and Web Applications
and Services, pages 357–362, 2010.

12. W. Nam, H. Kil, and D. Lee. Type-aware web service composition using boolean satisfiabil-
ity solver. In Proc. of CEC’08 and EEE’08, pages 331–334, 2008.

13. A. Niewiadomski, W. Penczek, J. Skaruz, M. Szreter, and M. Jarocki. SMT versus Genetic
and OpenOpt Algorithms: Concrete Planning in the PlanICS Framework. Fundamenta In-
formaticae, 135(4):451–466, 2014.

14. A. Niewiadomski, J. Skaruz, P. Switalski, and W. Penczek. Concrete Planning in PlanICS
Framework by Combining SMT with GEO and Simulated Annealing. To appear in Funda-
menta Informaticae, 2016.

15. J. Rao and X. Su. A survey of automated web service composition methods. In Proc. of
SWSWPC’04, volume 3387 of LNCS, pages 43–54. Springer, 2005.

16. J. Skaruz, A. Niewiadomski, and W. Penczek. Hybrid Planning by Combining SMT and
Simulated Annealing. In Z. Suraj and L. Czaja, editors, Proceedings of the 24th International
Workshop on Concurrency, Specification and Programming, Rzeszow, Poland, September 28-
30, 2015., volume 1492 of CEUR Workshop Proceedings, pages 173–176. CEUR-WS.org,
2015.

17. R. Terpilowski. GMapsFX - a JavaFX API for Google Maps, 2016.


