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Abstract. Space fractional derivatives have been used instead of integer
operators with success in a variety of practical applications to study and
describe transport processes in media characterized by spatial connectiv-
ity properties and high structural heterogeneity altering the classical laws
of diffusion. This study provides an implementation of space fractional
FitzHugh-Nagumo model of excitable medium in two-dimensional space.
This implementation is based on shifted Grunwald-Letnikov computa-
tional scheme which transforms the space fractional diffusion equations
to a system of algebraic equations. After that, the conjugated gradient
method is used to solve the sparse matrix system. MPI and PETSc li-
brary is used for implementation. We investigate the influence of some
factors to our implementation performance and scalability such as core
numbers, size of computation mesh, and fractional derivative orders. All
tests are done on ccNUMA architecture with two CPUs.
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1 Introduction

Living system simulations make great impact on the understanding of biological
processes. They help in checking the side effects of drugs and allow to create
a personalized model of human organs which help in planning of surgery and
medication. Recently, some researchers have been looking for a way to apply
fractional derivatives [1] to living system models. The main advantage of these
approaches is to describe sub-diffusion processes. The sub-diffusion is a diffusion
process which gives a squared displacement of particles which are non-linearly
dependent on time. Especially, this variant of diffusion exists in tissue and sub-
cellular space. The model of visco-elastic property of soft tissue which can explain
oscillation damping more precisely is one of models which contains fractional
derivatives. The review of these sorts of models are described in the introduction
of Ph.D. thesis [2]. In addition, there are several other applications of models
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with fractional derivatives to life science: cancer growth [3], initial stage of HIV
[4], and population growth [5].

Individual attention is required for the excitable medium models. These mod-
els describe neurons and muscle tissue (myocardium). The special problem is a
more realistic description of diffusion in consideration of subdiffusion transport
in subcellural space and tissue structure. In [6], the authors proposed a replac-
ment of integer Laplacian in excitable medium model by fractional Laplacian.
This replacement gives a precise reproduction of several physiological experi-
ments in computer simulations. An important feature of fractional derivative
in a new model behavior, which can not be repeated with changing diffusion
coefficient or introduction of nonlinear parts.

Unfortunately, the replacement of integer derivatives by fractional ones leads
to a significant increase in the computational time. This fact motivates us to
introduce a high performance implementation for fractional FitzHugh-Nagumo
model [7] based on some computational methods [8]. A fractional FitzHughNagu-
mo model is a generalizing of the standard model that describes the propagation
of the electrical potential in heterogeneous cardiac tissue. The fractional model
consists of a couple fractional Riesz space nonlinear reaction-diffusion model and
a system of ordinary differential equations. This implementation is required for
physiological experiments in the future.

We use PETSc library [9–11], which provides iterative solvers for sparse ma-
trix. This library is used in more than 14 software packages for scientific com-
puting [9] and support multicore architectures, computation accelerators and
systems with distributed memory. The implementation based on this popular
and well-known library is more suitable for our goals.

Besides that, we investigate the influence of some factors in our implemen-
tation performance and scalability such as core numbers, size of computation
mesh, and fractional derivative orders. All tests were conducted on Cache co-
herent non-uniform memory access (ccNUMA) architecture with two six core
central processing unit (CPU). The rest of this paper is as follows: the next sec-
tion is devoted to describe FitzHugh-Nagumo model and fractional Laplalacian
operator, then we proceed to describe conducted experiments.

2 Numerical Implementation of FitzHugh-Nagumo
Model

The FitzHugh-Nagumo model is a reaction-diffusion equation which describes
waves propagation in an excitable medium. Initially, it was created as a mathe-
matical description of the action potential propagation on an axon membrane.

∂u

∂t
= ∇ · (K∇u) + u(1− u)(u− a)− v, (1)

∂v

∂t
= ε(βu− γv − σ), (2)

where u is a “fast” variable which describes membrane potential of a cell; v is a
“slow” variable which connects with the medium conductivity by inverse ratio;
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K is a diffusion tensor; ε, β, γ, σ are the constants which describe the model
behavior.

During a long period of time, the FitzHugh-Nagumo model was being used
for research of auto-oscillatory process in the excitable media. For example,
the spiral waves in a two dimensional domain and scroll waves in a three dimen-
sional domain. These structures are models of arrhythmic activity in mammalian
hearts.

The model is suitable for this study, because it is simple, contains only two
phase variables and converges on big time steps. In addition, spiral waves provide
test example for a performance analysis which is close to realistic problems.

2.1 Space Fractional Laplacian Operators

Usually, researchers and engineers use derivatives and integrals with integer or-
der of degree in applications. However, there are several definitions of derivatives
and integrals with real and complex numbers of degree. They are named frac-
tional derivatives and fractional integrals. Some of these definitions are given
by Grunwald-Letnikov, Riemann-Liouville, Caputo, Marchaud, Hadamard, and
more [12]. In some cases, many of these definitions are equivalent to each other.

In this paper we use a fractional derivative with order α1 (1 < α1 ≤ 2) which
is defined by Riesz [12].

∂α1v

∂|x|α1
= − 1

2 cos(πα1/2)

(∂α1v

∂xα1
+

∂α1v

∂(−x)α1

)
, (3)

where

∂α1v(x, y, t)

∂xα1
=

1

Γ (2− α1)

∂2

∂x2

∫ x

−∞

v(ζ, y, t)

(x− ζ)α1−1
dζ, (4)

∂α1v(x, y, t)

∂(−x)α1
=

1

Γ (2− α1)

∂2

∂x2

∫ ∞
x

v(ζ, y, t)

(ζ − x)α1−1
dζ. (5)

Similar expressions are defined for the space Riesz fractional derivative of
order α2 (1 < α2 ≤ 2) with respect to y.

After that, we can introduce a fractional Laplacian operator.

∇β =
( ∂β

∂|x|β
,
∂β

∂|y|β
,
∂β

∂|z|β
)T

(6)

In [1, 13, 12], the authors describe the theory of fractional derivatives in detail.
After the replacement of integer Laplacian operator with the fractional one,

the fractional FitzHugh-Nagumo model appears:

∂u

∂t
= Kx

∂α1u

∂|x|α1
+Ky

∂α2u

∂|y|α2
+ u(1− u)(u− a)− v, (7)

∂v

∂t
= ε(βu− γv − σ), (8)

where Kx and Ky are conductivity coefficients along axes. For further explana-
tion, we denote non-linear part of first equation as f = u(1− u)(u− a)− v, and
left side of second equations as s = ε(βu− γv − σ).



Performance Evaluation of Space Fractional FitzHugh-Nagumo Model 69

2.2 Numerical Method

In our research, we use the numerical method which is described in [14, 8]. This
numerical method transforms (7) to a system of linear algebraic equations which
can be solved by conjugated gradient (CG) method.

The numerical simulation is formulated by considering positive integers m1,
m2 and N such that hx = Dx/m1, hy = Dy/m2, τ = T/N be characteristics
of space and time grids. The orthogonal uniform computation mesh includes
m × m nodes with step by space h. τ is a time step and n is a number of
conducted time steps. uni,j is the value of unknown function u(xi, yj , tn).

The GrunwaldLetnikov approximations for l.h.s and r.h.s fractional deriva-
tives are given by:

∂αu

∂xα

∣∣∣
(xi,yi,tn)

=
1

(hx)a

i+1∑
l=0

g(l)α u(xi−l+1, yj , tn) +O(hx), (9)

∂αu

∂(−x)α

∣∣∣
(xi,yi,tn)

=
1

(hx)a

m−i+1∑
l=0

g(l)α u(xi+l−1, yj , tn) +O(hx), (10)

where coefficients glα are defined by recurrent formula:

g(0)α = 1, g(l)α = (−1)l
(
α
l

)
= −gl−1α

α− l + 1

l
. (11)

Similar expressions are defined for y axis direction. The Order of fractional
derivative for y direction is denoted as α2.

Substitution of expressions (9), (10) in (7) leads to the following numerical
scheme [14]:

uni,j + r(1)
[ i+1∑
l=0

g(l)α1
uni−l+1,j +

m−i+1∑
l=0

g(l)α1
un1+l−1,j

]

+ r(2)
[ j+1∑
l=0

g(l)α2
uni,j−l+1 +

m−j+1∑
l=0

g(l)α2
uni,j+l−1

]
= un−1i,j + τfn−1i,j , (12)

vni,j = vn−1i,j + τsn−1i,j , (13)

r(1) =
τKx

2 cos(πα1

2 )hα1
, r(2) =

τKy

2 cos(πα2

2 )hα2
, (14)

where fni,j = uni,j(1 − uni,j)(uni,j − a) − vni,j is nonlinear part in the first model
equation, and sni,j = ε(βuni,j − γvni,j − σ) is right hand part of second equations.

Boundary conditions in Dirichlet form are described in the following form:

un0,j = unm,j = uni,0 = uni,m = 0. (15)

The linear system Au(n) = b(n−1) is constructed based on these expressions.
A is matrix of the system with size (m−1)(m−1)× (m−1)(m−1) in left hand
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(a) α1 = α2 = 1.9 (b) α1 = α2 = 2.0

Fig. 1: Structure of the matrix A for different values α1, α2

side of equations (12). un = (un1,1, u
n
1,2, ..., u

n
1,m−1, u

n
2,1, ..., u

n
m−1,m−1). b(n−1) is a

right hand side vector of system (12) with length (m− 1)(m− 1).
Figure 1 presents matrix A with different values of α1 = α2. The problem

became identical to usual FitzHugh-Nagumo model if α1 = α2 = 2.0.
In work [14] authors use Gauss-Seidel method to solve the equations. In our

research we use conjugated gradient method without precondition.

2.3 Spiral Wave Initiation Protocol

In this research, we use initial conditions which lead to a stable spiral wave in
excitable medium. These structures are models of arrhythmic activity in mam-
malian hearts. Spiral waves are auto oscilatory process. This allows to use them
for long time simulations without additional activation of excitable medium.

Initial conditions correspond to ones in [14]. These are square with u0i,j = 1

and rectangle with v0i,j = 0.1 which are not intersect with each other.
For better understanding, we rewrite expressions from [14] in terms of percent

from square side:

u(x, y, 0) =

{
1.0, if 0% < x ≤ 50%, 0% < y < 50%,

0.0, otherwise
(16)

v(x, y, 0) =

{
0.1, if 0% < x ≤ 50%, 50% < y < 100%,

0.0, otherwise
(17)

Spiral waves for different fractional derivative orders are shown in Figure 2.

2.4 Implementation

At the first stage of the algorithm, arrays and the matrix are initialized by PETSc
library. PETSc library does a partition of arrays and the matrix across different
processes. The matrix and arrays are constructed in a parallel way. Each process
keeps in memory a single part of every structure. The formulas of matrix values
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(a) α1 = 1.3, α2 = 1.7 (b) α1 = α2 = 1.5 (c) α1 = α2 = 1.75

(d) α1 = α2 = 1.8 (e) α1 = α2 = 1.9 (f) α1 = α2 = 2.0

Fig. 2: Spiral waves for different values of α1, α2 (curvature of the waves is due
to boundary conditions)

are described in numerical scheme (12). After initialization and construction of
the matrix, the program sets u0 and v0 in order to initiate the spiral wave in the
simulation (16)-(17). It should be noted that in the main computational cycle
each operation is conducted in a parallel way and the linear system is solved by
conjugate gradient method.

3 Numerical Experiments and Results

We consider three series of experiments to study performance of the simulation.
In the first series, we establish the effect of order of fractional derivative to the
performance. We take different values for α1, α2 and fix the number of cores
to one. The second series is concerned with the establishment of scalability for
different numbers of threads (from 1 to 12). The fractional orders α1 = α2 are
fixed. The third series discusses the relation between number of mesh nodes and
scalability. The order of fractional derivatives α1 = α2 chosen to be 1.9 and 2.0.
All experiments were conducted on one node of Ural Federal University’s cluster
with two CPU Intel Xeon E5-2620 v2 @ 2.10GHz, which are joined in ccNUMA
architecture.

In [6], the authors compare features of excitation wave behavior when the
order of fractional derivative is equal to 1.9, 1.75, and 1.5. In this research, we
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Algorithm 1 The algorithm of initialization and main computational cycle

1: procedure Compute(t, s, f, T )
2: Initiate(Ai,j , u

n
i,j , v

n
i,j)

3: ConstructTheMatrix(A)
4: SetInitialValues(u0, v0)
5: while t · n < T do
6: b← un−1 + t · f(un−1, vn−1)
7: Solve(Aun = b)
8: vn ← vn−1 + t · b
9: Print(t, un, vn)

10: n← n+ 1
11: end while
12: return un, vn

13: end procedure

Fig. 3: Histogram (a) shows computation time for different α1, α2 ∈
[1.1, 2.0], α1 = α2; plot (b) shows computation time for several possible combi-
nations of α1, α2 ∈ [1.1, 2.0]

use the same parameters. Other variants and combinations are used to complete
the study. If α1 = α2 = 2.0, fractional FitsHugh-Nagumo model is reduced to
standard FitsHugh-Nagumo model with integer order of Laplacian. If α1 = 1.9
or α2 = 1.9, the simulation behavior is similar to the case of ordinary Laplacian,
but performance drops. This happens because the matrix of the linear system is
more complex for fractional derivative, see Fig. 1. This leads to a high number
of steps in iterative CG solver.

The first series of experiments are done on a square area with size 2.5× 2.5
and 256 × 256 mesh nodes, step-by-time τ = 0.1. The parameters α1, α2 are
chosen in range from 1.1 to 2.0 with step 0.1. The simulation takes 1400 time
steps for each parameter combination. A spiral wave initiation protocol (16,17)
is used as initial condition.The computational power is restricted by one core.

When α1 = α2, α1 ∈ [1.1, 2.0], the results are shown in Figure 3(a). For all
possible combinations of parameters α1 ∈ [1.1, 2.0], α2 ∈ [1.1, 2.0], the results
are shown in Figure 3(b). The computational time grows with increasing α1, α2
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Fig. 4: Diagram (a) shows performance for integer Laplacian order α1 = α2 =
2.0. This is a case when fractional derivatives are reduced to ordinary deriva-
tives. Diagram (b) shows performance for other order of fractional Laplacian
when α1 = α2. Please, notice the scale. Diagram (c) shows scalability of the
implementation for different orders of fractional derivatives

and dramatically decreases when α1 = 2.0 or α2 = 2.0. The computational time
for α1 = α2 = 2.0 is 35 times lower than in case of α1 = α2 = 1.9.

We can explain this result by reduction of the fractional problem to the
problem with integer Laplacian when α1 = α2 = 2.0. This reduction leads to
a simplification of the matrix (Fig. 1). The multi-diagonal matrix of fractional
problem is reduced to banded matrix with five diagonals. This simple matrix
structure requires less iterations of CG solvers. The difference in computational
time for different derivative orders can be explained by features of the matrix or
features of spiral wave behavior.

In the second series, we fixed values of α1 = α2; α1, α2 ∈ [1.1, 2.0] and
studied the scalability for number of cores from 1 to 12. Fractional derivative
orders are set to be 1.1, 1.25, 1.5, 1.75, 1.9, 2.0. Simulation takes 1000 time steps
on a 5.0× 5.0 mesh with 512× 512 mesh nodes.
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Fig. 5: A Plot (a) shows the implementation speedup for fractional Laplacian
with integer and not-integer orders on computation mesh with different size. A
chart (b) shows a dependency between scalability and computational mesh size
when number of cores equal to 12 and parameters α1 = α2 are set to 1.9 or 2.0

The time of computations is shown on a Diagrams 4(a), 4(b) and scalability
is shown on a Plot 4(c). The scalability is close to linear for α1 = α2 = 2.0, but
in case α1 = α2 < 2.0 it increases up to a sixth core and stays on plate. Similar
result is shown on two and three nodes of cluster. In our opinion, these results
may be explained by counts of slow non-local memory readings from different
cores in ccNUMA architecture.

In the third series, we study a dependency between scalability and mesh size.
The computation is done on a different square meshes with sizes 1.25 × 1.25,
2.5 × 2.5, 5.0 × 5.0 and 128 × 128 , 256 × 256 , 512 × 512. This formulation
of the problem is important, because the computational scheme 12 establishes
dependency of each value to the values from adjoined row and column way to
the mesh border. Expansion of the computational mesh leads to increasing of
the number of nonzero elements in the matrix. Parameters of experiment are
taken as: h = 0.009767 is step by space, τ = 0.1 is step by time, 1000 time steps
were computed. The order of fractional derivatives α1 = α2 are set to be 1.9 and
2.0.

Figure 5(b) shows scalability of the problem with fractional and ordinary
Laplacians. Scalability is close to linear for a “big” mesh, which employs near
or more than 256 × 256 mesh nodes. For fractional model, linear scalability is
bounded by six cores.

For problem with integer order Laplacian, we may explain the results by
decreasing of the ratio between useful computation and utility operations.

After this experiment, we suppose that our implementation may be used for
various electrophysiological computational study, but the application cases are
restricted by mesh size and one cluster node.

4 Comparison with Related Work

In this section we compare our implementation with some existed works in
literature. In [15], the authors proposed some numerical methods for efficient
computation of a class of matrix functions on GPU. This method allows to
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improve performance of exponential integrator and computation of fractional
Laplacian. The authors describe computationally fractional-by-space reaction-
diffusion equations and fractional-by-space FitzHugh-Nagumo model on CPU
and GPU. Libraries cuBLAS and cuSPARCE are used as parallelization tech-
nology. MATLAB is used for implementation.

In their study, 20000 time steps are computed during 175 369 seconds with
CPU and 14 579 seconds with GPU. Approximately, it is about 8.768 seconds
for one time step on CPU and 0.729 seconds for GPU. Our implementation
computes 1000 time steps in 772 sec. with 12 CPU cores. It is about 0.771
steps in one second. Thus, performance of our implementation is faster than
CPU implementation from the paper [15] and close in performance to GPU
implementation.

In [16], the authors described parallel algorithm for solution fractional-by-
space reaction-diffusion equations in one dimensional case. Finite difference
method is used for fractional partial derivative discretization. Performance study
was achieved with one core, one CPU (Intel Xeon X5540) and 64 cores. In the
last case, MPI technology is used. Programming language was Fortran 90. Re-
markably, computational scheme is based on Grunwald approximations. This is
similar to our study, but we solve the problem in two dimensions.

In their study, performance increased by 3.38-3.58 times with 4 cores and
4.55–5.23 times with 8 cores. We computed minimal and maximal speedup
achieved in our simulation for all variant of parameters excluding case of Lapla-
cian with integer order. In our implementation, performance increased by 2.29
– 3.85 times on 4 cores, 3.5 – 5.0 times on 8 cores and 4.06 – 5.28 times on 12
cores. Based on these metrics, we can say that our implementation scalability is
close to scalability of the implementation [16].

Besides that, the authors in [17] described program to solve Maxwell’s frac-
tional equation which uses PETSc, but performance and scalability tests are not
described. In [18] and [19], a study of performance for several numerical meth-
ods without parallelization was performed. In [2] and [20, 21], a study of effective
parallelization techniques was done. The authors used PETSc. However, these
works are not compatible with our work directly, because the authors solved
the problem with another conditions and other computational methods. In ad-
dition, our study is more detailed. We study performance from hardware and
model parameters together in one research.

5 Conclusion

In this paper, we describe a high performance implementation of the fractional
FitzHugh-Nagumo model. It is based on numerical method [8] to approximate
fractional reaction diffusion equation and conjugate gradient method to solve the
sparse linear system. Our solution is done with the aid of PETSc library which is
used a lot for scientific computing [9]. The simulation with fractional derivatives
shows 17%-65% less performance than ones with integer order derivatives. We
study the dependencies of simulation performance such as size of mesh and
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order of fractional derivative. In addition, we establish simulation scalability
in ccNUMA architecture with two six-core CPU. The proposed implementation
shows a linear scalability when a fractional problem is reduced to a problem with
an ordinary Laplacian (α1 = α2 = 2.0). However, the implementation speedup
reaches plateau from six cores and more with other values α1, α2.

The proposed implementation can be used for research of physiological fea-
tures of excitable medium model with fractional derivative in the future.
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University for this research.
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