=Paper= {{Paper |id=Vol-1732/paper9 |storemode=property |title= Компьютерное моделирование модели Изинга с дальнодействующим взаимодействием (Computer Simulation of Ising Model with Long-Range Interaction) |pdfUrl=https://ceur-ws.org/Vol-1732/paper9.pdf |volume=Vol-1732 |authors=Sergey Belim,Igor Larionov }} == Компьютерное моделирование модели Изинга с дальнодействующим взаимодействием (Computer Simulation of Ising Model with Long-Range Interaction) == https://ceur-ws.org/Vol-1732/paper9.pdf
                Êîìïüþòåðíîå ìîäåëèðîâàíèå ìîäåëè Èçèíãà
                  ñ äàëüíîäåéñòâóþùèì âçàèìîäåéñòâèåì
                                         Ñ.Â. Áåëèì                      È.Á. Ëàðèîíîâ

                                      belimsv@omsu.ru                       me@g0gi.ch


                    Îìñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ô.Ì. Äîñòîåâñêîãî, Îìñê, Ðîññèÿ




                                                         Àííîòàöèÿ

                           ñòàòüå ìîäåëèðóåòñÿ êðèòè÷åñêîå ïîâåäåíèå òðåõìåðíîé ìîäåëè
                          Èçèíãà ñ äàëüíîäåéñòâóþùèì âçàèìîäåéñòâèåì. Ðàññìîòðåí ñëó-
                          ÷àé äàëüíîäåéñòâóþùèõ ñèë, óáûâàþùèõ ïî ñòåïåííîìó çàêîíó.
                          Âû÷èñëåíû çàâèñèìîñòè êðèòè÷åñêîé òåìïåðàòóðû è êðèòè÷åñêèõ
                          èíäåêñîâ îò ïàðàìåòðîâ äàëüíîäåéñòâèÿ. Êðèòè÷åñêàÿ òåìïåðàòóðà
                          ïîä÷èíÿåòñÿ ëèíåéíîìó çàêîíó. Ïîêàçàíî, ÷òî äàëüíîäåéñòâóþùèå
                          ýôôåêòû äîìèíèðóþò äëÿ áîëüøèõ ñèñòåì.




Ââåäåíèå

Ïðè èññëåäîâàíèè êëàññè÷åñêîé òðåõìåðíîé ìîäåëè Èçèíãà ó÷èòûâàåòñÿ âçàèìîäåéñòâèå òîëüêî ìåæäó
áëèæàéøèìè ñîñåäÿìè, ïðè ýòîì îáìåííûé èíòåãðàë ñ÷èòàåòñÿ ïîñòîÿííîé âåëè÷èíîé. Äàííîå ïðèáëè-
æåíèå îïðàâäàíî â ñèëó òîãî, ÷òî â ðåàëüíûõ ôåððîìàãíèòíûõ ñèñòåìàõ îáìåííûé èíòåãðàë óáûâàåò ïî
ýêñïîíåíöèàëüíîìó çàêîíó. Îäíàêî â ðÿäå âåùåñòâ âáëèçè ëèíèè ôàçîâîãî ïåðåõîäà ýêñïåðèìåíòàëüíî
îáíàðóæåíî ïîâåäåíèå òåðìîäèíàìè÷åñêèõ ôóíêöèé, ñóùåñòâåííî îòêëîíÿþùååñÿ îò ïðåäñêàçûâàåìîãî
íà îñíîâå ìîäåëè Èçèíãà. Ýòî îòêëîíåíèå ìîæåò áûòü îáúÿñíåíî áîëåå ìåäëåííûì óáûâàíèåì îáìåííîãî
èíòåãðàëà ñ ðàññòîÿíèåì [1, 2, 3, 4, 5]. Ïðè ýòîì íåîáõîäèìî ó÷èòûâàòü íå òîëüêî âçàèìîäåéñòâèå ìåæäó
áëèæàéøèìè ñïèíàìè, íî è ñî ñëåäóþùèìè çà áëèæàéøèìè [2, 6]. Âçàèìîäåéñòâèå, ñâÿçàííîå ñ ìåäëåííûì
óáûâàíèåì îáìåííîãî èíòåãðàëà ñ ðàññòîÿíèåì, ïðèíÿòî íàçûâàòü äàëüíîäåéñòâóþùèì. Â ðàìêàõ ìîäåëè
Èçèíãà äàëüíîäåéñòâóþùåå âçàèìîäåéñòâèå ìîæåò áûòü àïïðîêñèìèðîâàíî ñòåïåííîé ôóíêöèåé [7]:

                                                                     1
                                                          J(r) ∼        ,
                                                                   rD+σ
ãäå D  ðàçìåðíîñòü ñèñòåìû, σ  ïàðàìåòð äàëüíîäåéñòâèÿ.
    ñòàòüå [2] èññëåäîâàíî ìàãíèòíîå êðèòè÷åñêîå ïîâåäåíèå EuO. Ýêñïåðèìåíòàëüíî ïîëó÷åíû êðèòè-
÷åñêèå èíäåêñû γ = 1.29 ± 0.01 è β = 0.368 ± 0.005. Òàêæå â äàííîé ñòàòüå âû÷èñëåíî îòíîøåíèå îáìåí-
íîãî èíòåãðàëà ñîñåäåé, ñëåäóþùèõ çà áëèæàéøèìè J2 , ê îáìåííîìó èíòåãðàëó áëèæàéøèõ ñîñåäåé J1 :
J2 = (0.5 ± 0.2)J1 .  ñòàòüå [1] èçìåðåíû êðèòè÷åñêèå èíäåêñû ôåððîìàãíèòíîãî ôàçîâîãî ïåðåõîäà äëÿ
ñïëàâà La0.5 Sr0.5 CoO3 (γ = 1.351±0.009, β = 0.321±0.002). Àíàëîãè÷íûå ýêñïåðèìåíòû äëÿ La1−x Srx CoO3
(0.2 ≤ x ≤ 0.3) [3] ïðèâåëè ê çíà÷åíèÿì êðèòè÷åñêèõ èíäåêñîâ 0.43 ≤ β ≤ 0.46, 1.39 ≤ γ ≤ 1.43. Ýô-
ôåêòû äàëüíîäåéñòâèÿ òàêæå ýêñïåðèìåíòàëüíî áûëè îáíàðóæåíû â La0.1 Ba0.9 V S3 [4] è F e90−x M nx Zr10
(0 ≤ x ≤ 16) [5].  îáîèõ ñëó÷àÿõ êðèòè÷åñêèå èíäåêñû èìåþò èìåþò áëèçêèå çíà÷åíèÿ γ = 1.366, β = 0.501.

Copyright   c   by the paper's authors. Copying permitted for private and academic purposes.

In: Sergey V. Belim, Nadezda F. Bogachenko (eds.): Proceedings of the Workshop on Data Analysis and Modelling (DAM 2016),
Omsk, Russia, October 2016, published at http://ceur-ws.org
   Êðèòè÷åñêîå ïîâåäåíèå òðåõìåðíîé ìîäåëè Èçèíãà ñ ýôôåêòàìè äàëüíîäåéñòâèÿ áûëî èññëåäîâàíî ìå-
òîäàìè ðåíîðì-ãðóïïû â ðàìêàõ ε-ðàçëîæåíèÿ [7, 8, 9]. Òàêæå áûëî îñóùåñòâëåíî êîìïüþòåðíîå ìîäåëè-
ðîâàíèå îäíîìåðíûõ è äâóìåðíûõ ñèñòåì [10, 11, 12]. Âî âñåõ ýòèõ ðàáîòàõ áûëî ïîêàçàíî, ÷òî ýôôåêòû
äàëüíîäåéñòâèÿ îêàçûâàþò ñóùåñòâåííîå âëèÿíèå ïðè çíà÷åíèÿõ ïàðàìåòðà σ < 2.
   Ìîäåëü Èçèíãà ñ ýôôåêòàìè äàëüíîäåéñòâèÿ èññëåäîâàíà íåïîñðåäñòâåííî â òðåõìåðíîì ïðîñòðàíñòâå
â ðàìêàõ òåîðåòèêî-ïîëåâîãî ïîäõîäà â ñòàòüÿõ [13, 14, 15, 16, 17]. Â ðàáîòàõ [18, 19] îñóùåñòâëåíî êîì-
ïüþòåðíîå ìîäåëèðîâàíèå äâóìåðíîé ìîäåëè Èçèíãà ñ ýôôåêòàìè äàëüíîäåéñòâèÿ. Àâòîðû äåëàþò âûâîä
îá ýêâèâàëåíòíîñòè êðèòè÷åñêîãî ïîâåäåíèÿ ðàññìàòðèâàåìîé ñèñòåìû êëàññè÷åñêîé ìîäåëè Èçèíãà ðàç-
ìåðíîñòè d = 4 + D − 2σ . Â ñòàòüå [20] ïðîâåäåíî êîìïüþòåðíîå ìîäåëèðîâàíèå äâóìåðíîé ìîäåëè Èçèíãà
ñî ñëó÷àéíûìè äàëüíîäåéñòâóþùèìè ñâÿçÿìè.
   Öåëüþ äàííîé ðàáîòû ñòàâèòñÿ êîìïüþòåðíîå ìîäåëèðîâàíèå êðèòè÷åñêîãî ïîâåäåíèÿ âáëèçè ëèíèè
ôàçîâîãî ïåðåõîäà âòîðîãî ðîäà òðåõìåðíîé ìîäåëè Èçèíãà ñ äàëüíîäåéñòâóþùèì âçàèìîäåéñòâèåì.

1   Îïèñàíèå ñèñòåìû
Äëÿ èññëåäîâàíèÿ ìîäåëè Èçèíãà ñ ýôôåêòàìè äàëüíîäåéñòâèÿ çàïèøåì åå ãàìèëüòîíèàí:
                                        X          bJ X
                                  H=J     Si Sj + D+σ     Si Sj
                                        n
                                                 r     nn

Çäåñü Si  çíà÷åíèå ñïèíà (+1/2 èëè -1/2), J  çíà÷åíèå îáìåííîãî èíòåãðàëà, b  îòíîñèòåëüíàÿ èíòåí-
ñèâíîñòü äàëüíîäåéñòâèÿ, σ  ïàðàìåòð äàëüíîäåéñòâèÿ, õàðàêòåðèçóþùèé áûñòðîòó óáûâàíèÿ ýíåðãèè
âçàèìîäåéñòâèÿ ñ ðàññòîÿíèåì, D  ðàçìåðíîñòü ñèñòåìû, â äàëüíåéøåì D = 3. Â ïåðâîì ñëàãàåìîì ñóì-
ìèðîâàíèå îñóùåñòâëÿåòñÿ òîëüêî ïî áëèæàéøèì ñîñåäÿì (n), âî âòîðîì ñëàãàåìîì, êðîìå áëèæàéøèé
ñîñåäåé, ó÷èòûâàþòñÿ òàêæå ñïèíû, ðàñïîëîæåííûå âíóòðè ñôåðû ðàäèóñîì 2a (nn), ãäå a  ïîñòîÿííàÿ
ðåøåòêè.
   Êîìïüþòåðíîå ìîäåëèðîâàíèå îñóùåñòâëÿëîñü c ïîìîùüþ àëãîðèòìà Ìåòðîïîëèñà. Ðàññìàòðèâàëèñü
ñèñòåìû ñ ïðîñòîé êóáè÷åñêîé ðåøåòêîé ðàçìåðîì L × L × L. Íàêëàäûâàëèñü ñòàíäàðòíûå ïåðèîäè÷åñêèå
ãðàíè÷íûå óñëîâèÿ.
   Äëÿ îïðåäåëåíèÿ òåìïåðàòóðû ôàçîâîãî ïåðåõîäà èñïîëüçîâàëèñü êóìóëÿíòû Áèíäåðà ÷åòâåðòîãî ïî-
ðÿäêà [21]:
                                                     hm4 i
                                          UL = 1 −            .
                                                   (3hm2 i2 )
Óãëîâûå ñêîáêè èñïîëüçîâàíû äëÿ îáîçíà÷åíèÿ ñðåäíåé âåëè÷èíû ïî ðàçëè÷íûì êîíôèãóðàöèÿì ñèñòåìû,
m  ìàãíèòíûé ìîìåíò ñèñòåìû. Ñîãëàñíî òåîðèè êîíå÷íî ðàçìåðíîãî ñêåéëèíãà [17] âñå êóììóëÿíòû
ñèñòåì ñ ðàçëè÷íûìè ëèíåéíûìè ðàçìåðàìè L ïåðåñåêàþòñÿ â îäíîé òî÷êå, ñîîòâåòñòâóþùåé êðèòè÷åñêîé
òåìïåðàòóðå Tc .
   Íàìàãíè÷åííîñòü ñèñòåìû ìîæåò áûòü îïðåäåëåíà êàê ìàãíèòíûé ìîìåíò, ïðèõîäÿùèéñÿ íà îäèí ñïèí
ñèñòåìû:
                                                   hmi
                                              M=       ,
                                                    N
ãäå N = L3  êîëè÷åñòâî ñïèíîâ.
   Äëÿ îïðåäåëåíèÿ âîñïðèèì÷èâîñòè ñèñòåìû èñïîëüçîâàëîñü ñîîòíîøåíèå:
                                         χ = N K(hm2 i − hmi2 ),
ãäå K = |J|/kB T , N = L3  ÷èñëî óçëîâ, m  íàìàãíè÷åííîñòü ñèñòåìû, óãëîâûå ñêîáêè èñïîëüçîâàíû äëÿ
îáîçíà÷åíèÿ óñðåäíåíèÿ ïî ðàçëè÷íûì êîíôèãóðàöèÿì.
   Ñîãëàñíî òåîðèè êîíå÷íî ðàçìåðíîãî ñêåéëèíãà ïîâåäåíèå âîñïðèèì÷èâîñòü âáëèçè êðèòè÷åñêîé òåìïå-
ðàòóðû óäîâëåòâîðÿþò ñîîòíîøåíèþ:
   Èç ýòîãî ñîîòíîøåíèÿ ìîæåò áûòü îïðåäåëåíî îòíîøåíèå êðèòè÷åñêèõ èíäåêñîâ γ/ν . Êðèòè÷åñêèé èí-
äåêñ ν ìîæåò áûòü âû÷èñëåí èç ñîîòíîøåíèÿ:
                                              dU4
                                                  ∼ L−1/ν .
                                               dT
Îñòàëüíûå êðèòè÷åñêèå èíäåêñû âû÷èñëÿþòñÿ èç ñêåéëèíãîâûõ ñîîòíîøåíèé:
                                       γ        ν
                               η = σ − , β = (D − σ + η), α = σ − Dν.
                                       ν        2
2   Ðåçóëüòàòû êîìïüþòåðíîãî ìîäåëèðîâàíèÿ
Êîìïüþòåðíûé ìîäåëèðîâàíèå êðèòè÷åñêîãî ïîâåäåíèÿ îñóùåñòâëÿëîñü äëÿ ñèñòåì ñ ëèíåéíûìè ðàçìå-
ðàìè îò L = 25 äî L = 50 ñ øàãîì L=5. Êîëè÷åñòâî øàãîâ Ìîíòå-Êàðëî íà ñïèí 3 · 105 . Äëÿ óòî÷íåíèÿ
ðåçóëüòàòîâ â ðÿäå ñëó÷àåâ ìîäåëèðîâàëèñü ñèñòåìû ðàçìåðîì äî L = 90. Äëÿ èññëåäîâàíèÿ ñâîéñòâ ìî-
äåëè â âû÷èñëèòåëüíîì ýêñïåðèìåíòå âàðüèðîâàëîñü äâà ïàðàìåòðà  b è σ . Ïàðàìåòð σ èçìåíÿëñÿ â
èíòåðâàëå îò 1.5 äî 2.0 ñ øàãîì 0.1. Ïàðàìåòð b ïðèíèìàë çíà÷åíèÿ îò 0.1 äî 0.9 ñ øàãîì 0.1.
   Âû÷èñëåíèÿ âûïîëíÿëèñü íà ãðàôè÷åñêîì ïðîöåññîðå ñ èñïîëüçîâàíèåì òåõíîëîãèè CUDA. Ïåðâûé íà-
áîð èòåðàöèé îñóùåñòâëÿëñÿ íà îáû÷íîì ïðîöåññîðå äëÿ ïðèâåäåíèÿ ñèñòåìû â ðàâíîâåñíîå ñîñòîÿíèå.
Ïîñëå ýòîãî ñèñòåìà ðàçáèâàëàñü íà áëîêè, êàæäûé èç êîòîðûõ îáðàáàòûâàëñÿ â ñâîåì ïîòîêå íà ãðà-
ôè÷åñêîì ïðîöåññîðå. Îáùåå êîëè÷åñòâî ïîòîêîâ äîñòèãàëî 445. Äàííûå îò âñåõ ïîòîêîâ ñîáèðàëèñü è
îáðàáàòûâàëèñü ñîâìåñòíî äëÿ ïîëó÷åíèÿ ñòàòèñòè÷åñêèõ çàêîíîìåðíîñòåé.
   Êîìïüþòåðíûé ýêñïåðèìåíò ïîêàçàë, ÷òî äàëüíîäåéñòâóþùèå ñèëû îêàçûâàþò ñóùåñòâåííîå âëèÿíèå
íà êðèòè÷åñêóþ òåìïåðàòóðó ôàçîâîãî ïåðåõîäà. Çàâèñèìîñòü êðèòè÷åñêîé òåìïåðàòóðû îò îòíîñèòåëüíîé
èíòåíñèâíîñòè äàëüíîäåéñòâóþùåãî âçàèìîäåéñòâèÿ b ïðåäñòàâëåíà íà ðèñóíêå 1.




Ðèñ. 1: Ãðàôèêè çàâèñèìîñòè êðèòè÷åñêîé òåìïåðàòóðû îò ïàðàìåòðà èíòåíñèâíîñòè ýôôåêòîâ äàëüíî-
äåéñòâèÿ b ïðè ðàçëè÷íûõ çíà÷åíèÿõ ïàðàìåòðà σ .

  Ëèíåéíàÿ çàâèñèìîñòü êðèòè÷åñêîé òåìïåðàòóðû îò ïàðàìåòðà b ïðè âñåõ çíà÷åíèÿõ σ ìîæåò áûòü îáú-
ÿñíåíà ðîñòîì ýíåðãèè íåîáõîäèìîé äëÿ ïåðåâîðîòà îäíîãî ñïèíà çà ñ÷åò âëèÿíèÿ ñîñåäåé, ñëåäóþùèõ çà
áëèæàéøèìè. Èç ãðàôèêîâ òàêæå âèäíî, ÷òî çíà÷åíèÿ êðèòè÷åñêîé òåìïåðàòóðû óáûâàþò ñ ðîñòîì σ ïðè
îäíîì è òîì æå b. Äàííûé ýôôåêò îáúÿñíÿåòñÿ, ÷òî ñ óâåëè÷åíèåì σ äàëüíîäåéñòâóþùåå âçàèìîäåéñòâèå
áûñòðåå óáûâàåò ñ ðàññòîÿíèåì è âëèÿíèå ñïèíîâ, ñëåäóþùèõ çà áëèæàéøèìè, ñòàíîâèòñÿ ìåíüøå. Íà
ðèñóíêå 2 ïðåäñòàâëåíà çàâèñèìîñòü òàíãåíñà óãëà íàêëîíà t ãðàôèêîâ êðèòè÷åñêèõ òåìïåðàòóð.
  Ãðàôèê, ïðåäñòàâëåííûé íà ðèñóíêå 2 ìîæåò áûòü ñ âûñîêîé òî÷íîñòüþ àïïðîêñèìèðîâàí ñîîòíîøåíè-
åì:
                                 t = −(1.29 ± 0.02)σ + (9.93 ± 0.04).
Ñëåäîâàòåëüíî çàâèñèìîñòü êðèòè÷åñêîé òåìïåðàòóðû îò ïàðàìåòðîâ äàëüíîäåéñòâèÿ èìååò ñëåäóþùèé
âèä:
                     Tc (b, σ) = (−(1.29 ± 0.02)σ + (9.93 ± 0.04))b + (4.52 ± 0.01).
Ñëåäóåò îòìåòèòü, ÷òî çà ïðåäåëàìè èññëåäóåìûõ èíòåðâàëîâ b è σ âîçìîæíû îòêëîíåíèÿ îò ïîëó÷åííîé
çàâèñèìîñòè.

3   Çàêëþ÷åíèå
Òàêèì îáðàçîì äàëüíîäåéñòâóþùèå ñèëû, óáûâàþùèå ïî ñòåïåííîìó çàêîíó, ñóùåñòâåííî âëèÿþò íà òåì-
ïåðàòóðó ôàçîâîãî ïåðåõîäà. Çíà÷åíèå êðèòè÷åñêîé òåìïåðàòóðû îò îáîèõ ïàðàìåòðîâ äàëüíîäåéñòâèÿ
íîñèò ëèíåéíûé õàðàêòåð. Ïðè÷åì ïàðàìåòð b îáåñïå÷èâàåò ëèíåéíûé ðîñò êðèòè÷åñêîé òåìïåðàòóðû, à
ïàðàìåòð σ ïðèâîäèò ê ëèíåéíîìó óáûâàíèþ òåìïåðàòóðû.
Ðèñ. 2: Ãðàôèê çàâèñèìîñòè òàíãåíñà óãëà íàêëîíà ïðÿìîé ðîñòà êðèòè÷åñêîé òåìïåðàòóðû t îò ïàðàìåòðà
äàëüíîäåéñòâèÿ σ .

Ñïèñîê ëèòåðàòóðû
     [1] S. Mukherjee, P. Raychaudhuri, A.K. Nigman Critical behavior in La0.5 Sr0.5 CoO3 . Phys. Rev. B.,
         61:86518653, 2000.

     [2] N. Menyuk, K. Dwight, T.B. Reed Critical Magnetic Properties and Exchange Interactions in EuO.
         Phys.Rev. B., 3:16891698, 1971.


     [3] J. Mira, J. Rivas, M. Vazquez, J.M. Garcia-Beneytez, J. Arcas, R.D. Sanchez, M.A. Senaris-Rodriguez
         Critical exponents of the ferromagnetic-paramagnetic phase transition of La1−x Srx CoO3 (0.20 < x <
         0.30). Phys.Rev. B., 59:123126, 1999.

     [4] R. Cabassi, F. Bolzoni, A. Gauzzi, F. Licci Critical exponents and amplitudes of the ferromagnetic
         transition in La0.1 Ba0.9 V S3 . Phys. Rev. B., 74:184425184430, 2006.

     [5] A. Perumal, V. Srinivas Critical behavior of weak itinerant ferromagnet F e90−x M nx Zr10 (0 < x < 16)
         alloys. Phys. Rev. B., 67:094418094423, 2003.

     [6] J.C. Le Guillou, J. Zinn-Justin Critical exponents from eld theory. Phys. Rev. B., 21:39763998, 1980.

     [7] M.E. Fisher, S.-K. Ma, B.G. Nickel Critical Exponents for Long-Range Interactions. Phys. Rev. Lett.,
         29:917920, 1972.

     [8] J. Honkonen Critical behaviour of the long-range (phi2 )2 model in the short-range limit. J. Phys. A.,
         23(5):825831, 1990.

     [9] E. Luijten, H. Mebingfeld Criticality in One Dimension with Inverse Square-Law Potentials.        Phys.
         Rev. Lett., 86:53055308, 2001.


    [10] E. Bayong, H.T. Diep Eect of long-range intaraction on the critical behavior of the continuous Ising
         model. Phys. Rev. B., 59:1191911924, 1999.

    [11] E. Luijten Test of renormalization predictions for universal nite-size scaling functions. Phys. Rev. E.
         60:75587561, 1999.

    [12] E. Luijten, H.W.J. Blote Classical critical behavior of spin models with long-range interactions. Phys.
         Rev. B., 56:8945-–8958, 1997.


    [13] S.V. Belim Inuence of long-range eects on the critical behavior of three-dimensional systems. Jetp
         Lett., 77:112114, 2003.
    [14] S.V. Belim Eect of long-range interactions on the critical behavior of three-dimensional disordered
         systems. Jetp Lett., 77: 434437, 2003.

    [15] S.V. Belim Critical dynamics of three-dimensional spin systems with long-range interactions. J. Exp.
         Theor. Phys. 98:745749, 2004.


    [16] S.V. Belim Eect of elastic deformations on the critical behavior of disordered systems with long-range
         interactions. J. Exp. Theor. Phys., 98:316321, 2004.

    [17] S.V. Belim Eect of long-range interactions on the multicritical behavior of homogeneous systems. J.
         Exp. Theor. Phys., 98:338441, 2004.


    [18] T. Blanchard, M. Picco, M.A. Rajabpour Inuence of long-range interactions on the critical behavior
         of the Ising model. Europhysics Letters, 101(5):56003(5), 2013.

    [19] M. Picco Critical behavior of the Ising model with long range interactions. arXiv:1207.1018v1 .

    [20] X. Zhang, M.A. Novotny Critical behavior of ising models with random long-range (small-world)
         interactions. Braz. J. Phys., 36(3):664671, 2006.

    [21] Binder K. Critical Properties from Monte-Carlo Coarse-Graining and Renormalization.          Phys. Rev.
         Lett., 47:693696, 1981.




           Computer Simulation of Ising Model with Long-Range Interaction

                                       Sergey V. Belim, Igor B. Larionov

   Critical behavior of 3D Ising model with long-range interaction is simulated. The power law case for long-range
forces is considered. Dependences of critical temperature and critical exponents from long-range parameters are
calculated. Critical temperature changes under the linear law. Long-range eects dominate for big systems.