
Querying Distributed Heterogeneous
Linked Data Interfaces through Reasoning

Joachim Van Herwegen

Supervised by Ruben Verborgh and Erik Mannens
Data Science Lab (Ghent University - iMinds)

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
joachim.vanherwegen@ugent.be

Abstract. Linked Data can be distributed through multiple interfaces
on the Web, each of them with their own expressivity. However, there is
no generic client available that can handle querying over multiple hetero-
geneous interfaces. This increases the complexity of combining datasets
and designing new interfaces with traditional approaches. Rule-based
reasoning is going to be explored to combine different interfaces without
intervention of a human developer. Using an iterative approach to extend
Linked Data interfaces, I will evaluate different querying set-ups for the
sparql language on performance, completeness and correctness. Prelimi-
nary results look promising: preparatory research on query optimization
using light-weight Linked Data interfaces has shown there is still room
for optimization. I aim to design a generic Linked Data querying engine,
capable of handling different interfaces, that can easily be extended. As
my PhD is still in an early phase, I hope to narrow the scope in the next
months, based on feedback of the Doctoral Consortium.

1 Problem Statement

Nowadays there are multiple ways to access Linked Data. sparql endpoints
and data dumps are the most popular methods [10] but alternative options
such as Triple Pattern Fragments [30] are gaining in popularity. These options
do not use different querying methods besides sparql, resulting in diverging
access interfaces. Not all sparql endpoints support the full range of sparql
functionality [9], meaning even a set of sparql endpoints can already have
heterogeneous interfaces. This complicates querying datasets: different client
implementations are necessary to query the full spectrum of available data.

For my PhD, I consider using rule-based rdf reasoning to solve this problem.
Reasoning is an important component of the Semantic Web: it allows us to draw
conclusions from the available data. In the case of executing Linked Data queries
the data is the actual query that needs to be executed, together with interme-
diate results and possibly additional metadata provided by the endpoints. The
conclusion is then how to answer this query using the available methods, meaning
reasoning can be used to solve these queries by leveraging all its advantages such
as pattern matching and ontology comprehension.



2 Joachim Van Herwegen

2 Relevancy

Having heterogeneous Web apis has always been a problem of the Semantic
Web [29]. The diversity in interfaces makes it hard to create the originally
envisioned agents [7] capable of interfacing with this Web of knowledge. Querying
Linked Data is now starting to face a similar problem with an increase of available
interfaces [9,10,30]. For Web apis, attempts have been made to solve this problem
by introducing generic description languages [27]. However, for Linked Data query
interfaces there is no similar technology. This is not helped by the fact that new
interfaces are still being developed [24, 26]. A generic, interface-independent
solution to this problem is thus required so the Linked Data is not splintered
over the Web.

3 Related Work

To create the proposed system I will make use of the extensive amount of research
that has already been done in multiple fields, which I categorize in Linked Data
Fragments, sparql querying, federated sparql and rule-based reasoning.

3.1 Linked Data Fragments

The main goal behind Linked Data Fragments [30] is to provide a uniform way
to talk about the available Linked Data interfaces. Specifically, it suggests that
there are many possible interfaces with varying complexity on either the server
or client side between a simple data dump and a fully fledged sparql endpoint,
thus providing a base for the work required.

One additional contribution was the Triple Pattern Fragments (tpf) [30]
interface. This interface aims to reduce the server load of executing sparql queries
by only supporting single triple pattern requests and offloading the remaining
execution complexity to the client.

Several extensions have already been suggested for the tpf, two of which I
contributed to [24,26], again moving some complexity back to the server without
having too much impact on the performance. This effectively increases the number
of available interfaces to access Linked Data, making even more apparent the
requirement for a generic method to query these.

3.2 sparql

sparql [11] is the current standard for querying rdf [13] data. It allows the user
to request Linked Data results through sparql endpoints. Although the sparql
functionality is described in the specification, it is not fully supported by all of
these endpoints [9].

Much research has already been done on how to execute queries efficiently.
This can be a complex problem depending on the operators used in the query [17].
Several optimizations have already been proposed, such as focusing on rewriting



Querying Heterogeneous Linked Data Interfaces 3

sparql algebra [21], ordering operations based on selectivity [23] or creating an
optimization model for the entire sparql execution process [12].

For my suggested approach, I will base the query execution on this already
existing research. Many of these optimizations are dataset independent and focus
solely on the query composition itself, allowing for re-use in any sparql query
engine.

3.3 Federated sparql

Federated querying aims to tackle the problem of having to use multiple data
sources to answer a (sparql) query. Two major components of this are source
discovery and source selection [14]. For the work described in this paper, source
selection is the most important part, on which a lot of research has already been
done [18]. This is a complex issue with a lot of separate components that can be
optimized [19].

3.4 Rule-based Reasoning

Notation3 (n) [6] is an extension of the rdf model. It offers several additional
features such as the possibility to refer to graphs, write logical rules that can
be used for reasoning, and express proofs of these reasoning results. There are
several reasoners supporting n, with the main ones being cwm [5] and eye [28].

An important part of reasoning over Linked Data are the owl ontologies [4],
which allow for a description of conclusions that can be drawn from Linked Data.
Traditionally, the reasoning over owl ontologies is done by Description Logic
based reasoners using the tableaux algorithm [22]. However, one of the owl
profiles [16], owl-rl, was designed to support rule-based reasoners in coping
with owl ontologies. The main reasons I choose for rule-based reasoning are
performance [3] and the proof generation done by n reasoners, since I propose
to base query plans on the generated proofs.

4 Research Questions

My main research question is:
– How can reasoning improve query plans for accessing distributed heterogeneous

Linked Data interfaces?

Important corresponding sub-questions are:
– How can we describe sparql queries and ldf endpoints formally in rdf?
– How can we execute and optimize sparql queries using these descriptions?
– How can we extend this process to federated querying?



4 Joachim Van Herwegen

5 Hypotheses

My hypotheses are the following:
– The decision generated by the reasoner corresponds to the valid query plan

and the proof is an explanation of why the plan was chosen.
– sparql queries can be described with an rdf representation of the correspond-

ing sparql algebra. An ontology can be made to describe the expressiveness
of common Linked Data interfaces.

– The proposed system will provide both complete and correct results.
– Existing research in source selection for federated querying can be applied to

support multiple data sources while maintaining comparable execution times
to existing frameworks.

6 Preliminary results

A sub-problem of querying heterogeneous interfaces is executing a sparql query
on a tpf platform: multiple calls are necessary to fully execute the query and
performance can differ greatly based on the chosen plan [30]. There have already
been several publications providing optimized solutions for this problem [1,25],
indicating that there is definitely room for optimization. In my paper [25] I
focused on how the number of requests can be optimized and how tpf data can
be joined more efficiently to increase query answering performance. Many of the
underlying ideas can be reused in the framework suggested here.

Related to that is using reasoning to combine multiple services to produce a
requested result as described for the restdesc structure [27]. This is a framework
that formally describes web apis and uses reasoning to create workflows through
these apis. Results there have shown that this algorithm can scale for many
services and proof lengths, meaning that the proposed system could handle larger
queries and datasets.

7 Approach

I propose an iterative approach to tackle this problem, which will start out with
a single interface such as tpf and only the base features of a sparql query, such
as bgp matching. This reduces the initial complexity of the problem but still
requires several necessary components to be built.

sparql query description Before any reasoning can be done, the reasoner has
to understand the query. This means it needs an rdf representation of the actual
query. There already are ontologies supporting this, such as spin. These focus on
the actual sparql representation though. I propose to work with sparql algebra
instead. The algebra breaks a query down to its base components, that can then
be assigned to interfaces able to solve them, and to represent that algebra in
rdf.



Querying Heterogeneous Linked Data Interfaces 5

Interface description To reason over heterogeneous interfaces there needs to
be a way to describe their functionality: the reasoner has to understand which
parts of a query this specific interface can answer. This needs to be done in such
a way that the functionality can be matched with query components as described
above. I am currently investigating the Hydra vocabulary which was designed
to describe web services [15]. Some parts of the vocabulary are already used
as metadata in tpf endpoints so those can be reused. An essential part of my
research in respect to interfaces descriptions is related to the rules that combine
Hydra with the sparql algebra components, indicating what the response looks
like when calling a specific interface.

Initial plan optimization There already exist multiple optimization techniques
for sparql queries as mentioned in Section 3.2. Optimizations that focus on
sparql query rewriting will be highly relevant, while those depending on local
indexes on the data are less likely to be used. In the case of tpf and possibly other
interfaces we are provided with additional metadata which can also influence the
query plan. In the case of a single sparql endpoint the plan is rather simple:
send the query to that endpoint. However, in case of multiple endpoints or more
restrictive interfaces the query will need to be split up into multiple calls.

Adaptive query optimization In case the query execution is split up in
multiple calls, these will provide intermediate results, which can also influence
the query plan. If results indicate that a component is more selective it is more
interesting to focus on that one first for example. This means that the ordering
of the plan is also quite important: the results of one component of the query
influence the bindings for another component if they share a common variable,
making that one more selective. Since it is impossible to completely determine
this in advance, the system will have to adapt at runtime to those intermediate
results. Additional rules will be necessary to support this, allowing the reasoner
to take this information into account.

Extending the system Once the system works for tpf interfaces and simple
queries, it will be extended to additional interfaces and sparql operators. The
challenge there will be to make sure all interface functionality can be described
adequately. It is impossible to predict all the necessary components since it also
needs to support future interfaces, but the system should be modular enough
that it can be extended once new descriptions are required.

Multiple data sources So far I have only described solutions with a single
interface which require multiple requests to execute a query. In that case the
single interface provides all the necessary data to solve that query. However, this
is no longer the case when we use the interfaces of multiple sources. To solve
this the descriptions need to be extended with additional metadata describing
the contents of the endpoint where possible. Here I will make use of the already
existing work in federated querying.



6 Joachim Van Herwegen

8 Evaluation Plan

The proposed system will be evaluated by comparing it to existing querying
technologies. Since I suggested an iterative approach, starting with a more simple
system which is then extended, the evaluations will also be iterative: each new
extension will require a complete evaluation to determine its influence on the
complete system. I plan to make use of existing sparql benchmarks [2, 8, 20].
The evaluation will be done in multiple steps to make sure all bases are covered
for having a functioning query engine.

Correctness The first step of the evaluation will be verifying the correctness of
the algorithm: make sure the returned results are actually correct answers to the
query.

Completeness The second important component to have a working sparql
engine is making sure it returns all the results. This might not always be necessary,
especially in the case of federated queries, but for the initial implementation on
a single data source with simple queries the answer needs to be complete.

Optimization Once the framework passes the two steps mentioned above, I
will investigate the performance: how does it compare to existing technologies
and sparql engines? In the case of a single tpf interface there are already
multiple implementations available for comparison [1,25,30]. The case of a single
sparql endpoint is trivial since that simply involves sending the query to the
endpoint. Once multiple data sources are used there are already several existing
implementations to compare with [18]. There are multiple features that need to
be covered in performance tests, such as response time, bandwidth requirements
and the influence of the number or size of datasets.

9 Reflections

My first paper on query optimization for tpf [25] introduced me to the vast
amount of work that has been done in the field of sparql query optimization. One
problem with tpf is that since it is a new technology, new optimizations would
have to be researched since it provided a novel way to execute sparql queries. It
is possible that much of the original research on sparql query optimization can
be reused, but this has to be investigated on a case by case basis. This inspired
me to propose a framework for generic sparql query execution.

There are many challenges that need to be tackled before the idea can come to
fruition. One of the main hypotheses I build upon is the ability to create adequate
rules and descriptions so query plans can be generated using a reasoning engine.
Working with restdesc has shown me that reasoning can be quite powerful for
the Semantic Web. In case I am unable to find an adequate solution, the system



Querying Heterogeneous Linked Data Interfaces 7

proposed can still be built in a non-reasoning environment, although it would
lose all reasoning advantages.

The second big hurdle is the combination of multiple interfaces. Although
source selection has already been extensively researched as shown in Section 3.3,
the combination of both different sources and different interfaces provides a new
level of complexity. Assuming the remainder of the framework works correctly,
providing a solution will definitely be possible. However, providing an acceptably
optimized solution will be much harder. It is still unclear to me how to best
tackle this, which is why I look forward to discussing this during the Doctoral
Consortium.

References

1. Acosta, M., Vidal, M.E.: Networks of linked data eddies: An adaptive web query
processing engine for rdf data. In: The Semantic Web-ISWC 2015, pp. 111–127
(2015)

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of rdf
data management systems. In: The Semantic Web–ISWC 2014, pp. 197–212 (2014)

3. Arndt, D., De Meester, B., Bonte, P., Schaballie, J., Bhatti, J., Dereuddre, W.,
Verborgh, R., Ongenae, F., De Turck, F., Van de Walle, R., Mannens, E.: Ontology
reasoning using rules in an eHealth context. In: Rule Technologies: Foundations,
Tools, and Applications. Lecture Notes in Computer Science, vol. 9202, pp. 465–472.
Springer (Jul 2015)

4. Bechhofer, S.: owl: Web ontology language. In: Encyclopedia of Database Systems,
pp. 2008–2009. Springer (2009)

5. Berners-Lee, T.: cwm - a general-purpose data processor for the semantic web. Tech.
rep. (2000), https://www.w3.org/2000/10/swap/doc/cwm.html

6. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3logic: A logical
framework for the world wide web. CoRR abs/0711.1533 (2007)

7. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific american
284(5), 28–37 (2001)

8. Bizer, C., Schultz, A.: The Berlin sparql benchmark. International Journal on
Semantic Web and Information Systems 5(2), 1–24 (2009)

9. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparqlWeb-
querying infrastructure: Ready for action? In: Proceedings of the 12th International
Semantic Web Conference (Nov 2013)

10. Ermilov, I., Martin, M., Lehmann, J., Auer, S.: Linked open data statistics: Col-
lection and exploitation. In: Knowledge Engineering and the Semantic Web, pp.
242–249. Springer (2013)

11. Harris, S., Seaborne, A.: sparql . query language. Recommendation, World Wide
Web Consortium (Mar 2013), http://www.w3.org/TR/sparql11-query/

12. Hartig, O., Heese, R.: The sparql query graph model for query optimization. In:
The Semantic Web: Research and Applications, pp. 564–578. Springer (2007)

13. Hayes, P., Patel-Schneider, P.: rdf 1.1 semantics. W3C recommendation, W3C
(Feb 2014), http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

14. Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space.
Synthesis lectures on the semantic web: theory and technology 1(1), 1–136 (2011)

15. Lanthaler, M., Gütl, C.: Hydra: A vocabulary for hypermedia-driven Web apis. In:
Proceedings of the 6th Workshop on Linked Data on the Web (May 2013)

https://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/TR/sparql11-query/


8 Joachim Van Herwegen

16. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., et al.: owl 2
web ontology language: Profiles. W3C recommendation 27, 61 (2009)

17. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In:
International semantic web conference. vol. 4273, pp. 30–43. Springer (2006)

18. Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A., Hausenblas, M.:
Querying over federated sparql endpoints - A state of the art survey. CoRR
abs/1306.1723 (2013)

19. Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngonga Ngomo, A.C.: A fine-grained
evaluation of sparql endpoint federation systems. Semantic Web (Preprint), 1–26
(2015)

20. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: SP2Bench: A sparql
performance benchmark. In: Semantic Web Information Management, pp. 371–393.
Springer (2010)

21. Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In:
Proceedings of the 13th International Conference on Database Theory. pp. 4–33.
ACM (2010)

22. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
owl-dl reasoner. Web Semantics: science, services and agents on the World Wide
Web 5(2), 51–53 (2007)

23. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: sparql basic
graph pattern optimization using selectivity estimation. In: Proceedings of the 17th
international conference on World Wide Web. pp. 595–604. ACM (2008)

24. Van Herwegen, J., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.:
Substring filtering for low-cost Linked Data interfaces. In: The Semantic Web –
ISWC 2015. Lecture Notes in Computer Science, vol. 9366, pp. 128–143. Springer
(Oct 2015)

25. Van Herwegen, J., Verborgh, R., Mannens, E., Van de Walle, R.: Query execution
optimization for clients of triple pattern fragments. In: Proceedings of the 12th

Extended Semantic Web Conference (Jun 2015)
26. Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle, R.:

Opportunistic Linked Data querying through approximate membership metadata.
In: The Semantic Web – ISWC 2015. Lecture Notes in Computer Science, vol. 9366,
pp. 92–110. Springer (Oct 2015)

27. Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T.,
Gabarró Vallés, J.: The pragmatic proof: Hypermedia API composition and execu-
tion. Theory and Practice of Logic Programming (2016)

28. Verborgh, R., De Roo, J.: Drawing conclusions from Linked Data on the Web. IEEE
Software 32(5), 23–27 (May 2015)

29. Verborgh, R., Mannens, E., Van de Walle, R.: Bottom-up web apis with self-
descriptive responses. In: Proceedings of the First Karlsruhe Service Summit Re-
search Workshop (Feb 2015)

30. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-
cost knowledge graph interface for the Web. Journal of Web Semantics 37–38,
184–206 (2016)


	Querying Distributed Heterogeneous Linked Data Interfaces through Reasoning

