
An Information Retrieval System for
FIRE 2016 Microblog Track

 Trishnendu Ghorai
Department of CST

IIEST, Shibpur

ABSTRACT
This paper describes our approaches to FIRE (Forum for
Information Retrieval Evaluation) 2016 Microblog track. The
main aim of this track was to develop an information retrieval
system that can identify relevant tweets posted during a disaster
event. The relevance is measured with respect to some predefined
topics provide by the track organizers. In this working note we
have given the description of the system which has taken part in
this year’s FIRE track as well as has analysed the performance of
the system.

Keywords

FIRE; information retrieval; tweet; relevancy;

1 INTRODUCTION
 User written informal microblogs, like tweets, are quite important
and a big source of real time information. As this microblogs are
quite informal and doesn’t obey standard vocabulary, thus special
information retrieval system and recommendation systems are
needed to retrieve information from this microblogs. To boost the
retrieval performance of information retrieval system FIRE has
introduced this track this year [4]. In this task the participant IR
systems have to find relevant tweets from a set of tweets posted
during the recent disaster time. The initial dataset consists of
around 50,000 tweets from twitter that were posted in a recent
Nepal earthquake. The relevancy of the tweet is measured with
respect to topics, which will identify different resources that are
available or required during the disaster time. The organizers
provide a set of seven topics in the standard TREC format. The
main challenge of the task is to tackle the nosiness of the tweets
and at the same time find most relevant tweets. To deal with the
problem of noise we have applied a preprocessing phase on tweets
which will remove all noisy data from the tweets. The tweets are
converted to a bag of words to ease up the scoring process. To
calculate relevance, we have developed two different scoring and
raking methods. The topics are optimized by constructing new
queries based on the previous topics.

2 SYSTEM OVERVIEW

In this section we have described the system architecture for the
data challenge. The system consists of tweet preprocessing, query
generation, scoring of tweets and result analysis.

2.1 Brief Overview
In this task, a set of previously collected tweets (more specifically
tweet ids) on Nepal Earthquake 2015 was provided. And
alongside 7 queries were given in the traditional TREC format (an
XML like format). The goal of this task was to find most relevant
tweets from the set of tweets based on the queries.

Our system has mainly four components as follows,

1) Tweet Preprocessing – As tweets are informally written,
tweets generally contain a lot of noise and unnecessary
data. For this reason, in preprocessing stage data filters are
applied on the tweets to get rid of the unwanted data.

2) Query Construction – The topics are provided have three
parts, namely tittle, narration and description. To get more
relevant tweets, a new set of queries is constructed from
this given topic.

3) Scoring of tweets – Once the queries are constructed each
tweet are scored based on each query. Two different
approaches have been used in scoring the tweets.

4) Final filtering – When each tweet gets a score against
each topic, a heuristic threshold has been set to get good
quality tweets.

2.2 Tweet Preprocessing
The following steps have been taken to preprocess the tweet text.

1) Punctuation removal – Punctuations are removed from
each tweet. We have not given any extra importance to
hash tags, all ‘#’ symbols are also removed.

2) Case folding – All the capital letters in the tweets are
converted to small letters

3) Stop word removal – All commonly used English words
which do not have much significance on the subject
matter of the tweet but are used only for semantic reasons
are removed. A list of top most frequently used words
(around 500 words) are used as stop word list. And from
the tweet the words that are present in the stop word list
are removed.

4) Non ASCII character – In addition, we have removed all
non ASCII characters which come to tweet due to the use
of emoticons and other symbol

5) Constructing bag of word – Each tweet is then splited
into words and are converted to a set of words. Each set
represents the collection of the distinct word that are
present in the tweet. Each bag of word is identified by the
tweet id of the tweet which is unique to the tweet and can
be used to track it in next steps.

2.3 Query Construction
Topics are made of three fields, namely the title, description and
narratives. Titles contain several three or four keys, while
descriptions are one-sentence long statements of the users’
information needs; narratives are paragraph-length descriptions of
the tweets that the users want to receive and are the long
description. Each topic is assigned one topic id which can be used
to uniquely specify one topic in submission stage. Query
construction part consists of two different phases described as
follows:

1) Keyword Extraction – As nouns in a sentence holds most
of the information, we choose nouns in the topics as the
keywords for the query. We have used Stanford Part-Of-
Speech Tagger[1] to label different parts-of-speech first
and then collected words which have been identified as
Noun.

2) Giving weight to keywords – As all the topics can be
broadly classified into two groups based on if it wants to
retrieve tweets on ‘availability’ or ‘requirement’. For this
reason, the words like ‘availability’ or ‘requirement’ have
been assigned more weight than the other key words in the
topics.

Each query can be expressed as a set of keywords where each
keyword is assigned a definite weight and each query is assigned
the topic ids to identify each query in later stage.

2.4 Scoring
After construction of queries, each bag of words corresponding to
each tweet is assigned a score with respect to a query. We have
used two different scoring techniques for two separate runs.

Method–1: Co-occurrence based Similarity
This method is based on co-occurrence based similarity measure
[2]. This method tries to find out how many words from the query
have also occurred in the tweet and scored the tweet based on that.
For a given tweet T = {t 1, t2 , ..., t n } and a given query Q = {q1,
q2 , ..., qn } the score of the tweet is calculated as follows:

Score (T , Q) = | intersection of T ,Q | / | Q | , where | Q |
denotes number of elements in set Q.

That is this score measure the fractions of common words in a
tweet and a query. The higher the fraction, higher the probability
that the tweet is relevant to the query.

Method–2: WordNet based Semantic
Similarity

The previous method is generally based on the co-occurrence
similarity which does not concern about the meaning wise
similarity of two words. This problem can be solved by
WordNet[3] based approach. WordNet is a lexical database of
English. Each word in WordNet has a set of cognitive synonyms
called synsets. Two find the similarity between two words we can
calculate the similarity between two synsets.

For a given tweet T = {t1, t2 , ..., tn } and a given query Q = {q1,
q2 , ..., qn } the score of the tweet is calculated as follows:

1) For each t i and q j we have first found the synsets of two
words say S1 and S2 respectively. Now for each term in
S1 and each term in S2 we have calculated wup

similarity.1 After this all wup score is added up and
normalized. This normalized score denotes the similarity
value between t i and q j

2) We iterate through all the terms in tweets and queries and
summed up all the similarity score of each pairs and
normalize it.

3) This normalize score is the final score of the tweet respect
to that particular query.

2.5 Final Filtering
After scoring the tweets according to relevance to each
topic, we need to choose most relevant tweets for a given
topic. For this reason, we have taken a heuristically set
threshold based filtering method to choose most relevant
tweets. The threshold has been set to 0.25. That is the
tweets which have a score greater than 0.25 are considered
as relevant and are submitted. All other tweets have been
discarded.

3 RESULT ANALYSIS
Table-1 shows the result of our two submitted runs. The run
acquired from method-1 is tagged as “ss” and then run acquired
from method-2 is tagged as “ws”. The runs have been evaluated
based ground truth obtained by the organizers. Different metrics
like Precision@20, Recal@1000, MAP@10000 and MAP have
been used to evaluate the runs.

Run Id Precision
@20

Recall
@1000

MAP
@1000

Overall
MAP

trish_iiest_ss 0.0929 0.1407 0.0140 0.0203

trish_iiest_ws 0.0786 0.0618 0.0032 0.0099

 Table-1
As it can be clearly seen from the result, though the second
method uses a more deep similarity measure than the first
approach the first approach performs better than the second one.
The most probable reason for this is due to lack of grammar and
spelling wise correctness of tweets. Most of the tweets are
informally written microblogs, so using a standard English
dictionary based filters and standard semantics based methods are
not practically that much effective. While much simpler co-
occurrence based similarity measure outperforms it on the basis of
performance and running time and cost.

4 CONCLUSION
In this working note, we have presented a brief discussion on our
approach to FIRE 2016 microblog task. We have observed that
traditional dictionary and vocabulary based filtering techniques
are very inefficient for informally written documents like tweets.
The relatively simpler co-occurrence based methods suits well for
future work that also includes finding new filtering techniques and
parameters to tackle such informally written documents like
tweets.

1http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity/wup.pm

5 REFERENCES

[1] http://nlp.stanford.edu/software/tagger.shtml.
[2] Ekkachai Naenudorn Suphakit Niwattanakul, Jatsada

Singthongchai and Supachanun Wanapu. Using of jaccard
coefficient for keywords similarity. volume 1, pages 380–
384, Hong Kong, 2013

[3] https://wordnet.princeton.edu/

[4] S. Ghosh and K. Ghosh. Overview of the FIRE 2016
Microblog track: Information Extraction from Microblogs
Posted during Disasters. In Working notes of FIRE 2016 -
Forum for Information Retrieval Evaluation, Kolkata, India,
December 7-10, 2016, CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

