
A Verified Translation from Circus to CSPM

Artur Oliveira Gomes

Trinity College Dublin
gomesa@tcd.ie

Abstract. We are proposing the implementation of a verified tool ca-
pable of translating Circus programs into CSPM allowing the user to
perform model checking using existing tools such as FDR. In this pa-
per, we discuss some existing strategies for a manual translation and
then we summarise the steps required in order to produce and verify the
implementation of a translation tool.

1 The Problem

Nowadays, providing software correctness is likely to be an increasing challenge
for developers, as software complexity and magnitude are growing exponentially.
Moreover, the software development processes recently are being required to be
complete within short periods of time, which conflicts with the timing required
for software verification. The problem can be, at least partially, solved with
support of a validation process, such as testing, formal verification, and model
checking, through techniques and tools with as much automation as possible,
since such task being performed manually requires time, but more importantly,
it can be as error-prone as is the software to be verified.

Circus is a formal language, which combines Z, and CSP constructs allowing
both behavioural and structural aspects of systems to be captured as Circus
specifications. At present, however, there is no tool support for model- checking
Circus. In order to overcome this problem, we can translate Circus into CSP by
hand, and then, model-check the translated model using FDR, which supports
specifications written in CSP. FDR analyses failures and divergence models, with
checks related to, for example, deadlock, livelock, and termination.

We have to translate Circus into CSP, by adapting the Circus model to the
CSP view of the world. For instance, we have to capture the state-based features
of Circus, derived from Z, in CSP. However, industrial-scale applications would
require too much effort and caution from the user in order to avoid the intro-
duction of errors due to the handmade translation, not mentioning the fact that
a handmade translation is time consuming.

Recently, we have worked on formalising a model of the haemodialysis ma-
chine [12] using Circus. The haemodialysis machine purifies the blood of a person
whose kidneys are not working normally, removing waste and excess of water
from the blood. We produced a manual translation from the haemodialysis Cir-
cus model into CSP in order to analyse our model using FDR. Our research
showed that the manual translation is not easy for large systems, and therefore
an automatic tool would be useful for this task.



2 Related Works

In this section we survey a few existing formalisms and tools: we first present
some state-based languages; then we detail some process-based languages; and
finally we show a few combination of these formalisms. In our project we aim at a
formalisms that captures both state-based constructs and concurrent processes.

Z [30], B [1] and VDM [8], are used to model structural aspects of a system,
providing a mathematical description, using, for example, set theory, first-order
logic and lambda calculus. However, these languages are not designed to model
aspects of the system behaviour like communication between components.

Verification of state-based languages is possible for languages like Z, B and
VDM. A Z refinement calculus is presented by Cavalcanti and Woodcock [3]. Z
specifications written in LATEX can be animated with JAZA [29]. Likewise, the
Community Z Tools [5] parses Z specifications and allows a range of assessments.

The communication behaviour aspects of a system are captured by languages
such as Communicating Sequential Processes (CSP) [15] and Calculus of Com-
municating System (CCS) [16]. With these languages, we can describe interac-
tions, communication and synchronization between processes. Programs written
using CSP be verified regarding non-determinism, deadlock freedom and livelock
freedom with help of model analysis tools, via model- checking using FDR [10].

As we aim at the verification of complex and critical systems, we need a for-
malization that combines both state-transformation and communication aspects
of the system, allowing us to create more complete formal models. Combinations
of Object-Z along with CSP, are addressed in [26]. On the other hand, Schneider
and Treharne integrate CSP and B [28]. The Z language combined with CSP is
present in [19]. Finally, Galloway and Stoddart combine CCS with Z [11].

Woodcock and Cavalcanti defined Circus [31], which is a formalism that not
only combines Z and CSP, but also Morgan’s refinement calculus [17], and
Dijkstra’s guarded command language [6]. Its semantics is based on the Unifying
Theories of Programming [14]. Furthermore, a refinement calculus for Circus
is presented by Oliveira [24], using tool support with ProofPower-Z [32]. An
extension of Circus presented by Sherif and He, is used in order to capture the
temporal aspects of systems, known as Circus Time [25].

Currently, there are a few tools for supporting Circus, such as a refinement
calculator, CRefine [4], and an animator for Circus, Joker [21]. However, model-
checking tool for Circus is still unavailable. The usual process in order to over-
come that is to translate Circus by hand to CSPM , and then use FDR. Model
checking through FDR allows the user to perform a wide range of analysis, such
as refinement checks, deadlock and livelock freedom, and termination.

A manual translation from Circus into CSPM is described by Oliveira et
al. [23], where they apply the refinement laws to Circus programs in order to
translate them into CSPM . Their approach focuses on a subset of Circus that
can be easily mapped into CSPM , by transforming state-rich Circus processes
into stateless processes. There is also work by Mota et al. that prototypes a
strategy for model checking Circus using Microsoft FORMULA [18].



Another strategy used in order to overcome the lack of tool support for model
checking Circus is proposed by Beg [2], who prototyped and investigated an au-
tomatic translation that supports a simplified abstract form of Circus. However,
the Haskell work did not involve the development of a Circus parser.

Research Questions:

1) Is it possible to build a verified translator from Circus to CSPM ?
2) Does the use of Haskell make this task easier?
3) What precisely does it mean for the translator to be correct?
4) What is the relationship between the correctness of the translator tool in

development here and the arguments in Oliveira et. al. [23] about the cor-
rectness of their translation scheme?

In this Ph.D project, we propose the development of a verified tool for trans-
lating Circus programs into CSPM . We are developing a tool that partially au-
tomates the translation technique proposed by Oliveira et. al. [23]: they use the
Circus refinement laws in order to transform state-rich Circus specification into
a stateless Circus version of the specification. For this, the state components of
a state-rich Circus process are transformed into a Memory process [20], with
get and set messages capturing the state changes, resulting in a stateless Circus
process. The translated CSPM code will be in conformance with FDR. This tool
partially automates the refinement of Circus programs, using the Circus refine-
ment laws, as it will be required some degree of input from the user.

The entire tool set will be developed as an extension of JAZA, which parses
Z specifications written in LATEX, the same input used by the Community Z
Tools. Circus specifications are written as a sequence of block environment, very
similar to the way Z paragraphs are written. However, we assume that the Circus
document is already type checked by existing tools [5]. Our goal is to formally
verify the implementation of the translation from Circus to CSPM using of Is-
abelle/HOL theorem prover with help of Haskabelle, a tool used to translate
Haskell programs into Isabelle specifications [13]. We can take advantage of our
experience with Isabelle/HOL whilst verifying our Haskell code. However, we
also know that it is possible to verify Haskell programs using testing, model
checking and interactive theorem proving [7].

3 Current work and next steps

As a first step towards our model-checking approach for Circus we produced a
new parser for Circus specifications written in LATEX. We expanded the JAZA
parser in order to support Circus on top of the existing support for the Z language.
We are making a step forward and bringing the Circus notation into the JAZA
tool so it can parse Circus programs and then, targeting model checking.

As we have the new parser for Circus, we are now working on two new tasks:
(1) designing the tool for automating the translation from Circus into CSPM ,



which should include (2) the implementation of the Circus refinement laws in
Haskell. Task 2 looks similar to CRefine [4], however, because we are writing
Haskell code, we will import that code into Isabelle/HOL and use theorem prover
in order to certify that the implementation of the laws is correct.

From the tasks (1) and (2), we introduce a third one, which involves estab-
lishing precisely what we mean by a correct translation. The verification step
of the implemented tool should involve: (3.1) defining the specification of the
translation to be capture in Isabelle/HOL; (3.2) establishing the theorem of
correctness of the implementation; and (3.3) defining the refinement relation be-
tween laws and translations from [22,23], and the corresponding Haskell code
that implements those translations. We intend to show the correctness of our
implementantion of the Circus refinement laws. By defining the refinement re-
lation, we capture the relationship between the mathematical notation of the
laws [22] and our Haskell representation of the Circus AST.

Oliveira et al. [23], suggest the use of the refinement laws as part of the
translation in order to obtain CSPM specifications from Circus. In their work, a
sequence of refinement steps is followed, applying a some Circus refinement laws
So far, we have implemented the selected set of refinement laws in Haskell, but
the integration with JAZA is yet to be implemented.

The implementation of part of the Circus refinement laws in Haskell is es-
sential in order to apply the refinement laws whilst rewriting Circus processes,
according to the proposed translation strategy. We intend to ensure that the
translation process is as automated as possible in order to produce an equiv-
alent CSPM specification that relies on its original Circus version, in order to
avoid the introduction of errors in the specification due to user interaction.

The reason for adopting the translation presented by Oliveira et al. is that,
even though it is a manual translation, with no tool support involved, each
translation step is justified by the Circus refinement laws, and these have been
formally proved to be consistent using ProofPower-Z [22]. Currently, their ap-
proach covers a subset of Circus. Once we have implemented that subset, we can
extend it in order to cover a wider group of Circus constructs. In our work, we
want to show that our implementation of the above mentioned translation rules
and refinement laws in our translator is correct.

As the approach for model checking Circus consists of mapping the Circus into
CSP. It means that, for instance, we should consider that CSP does not capture
the notion of state. Thus, we need to provide a transformation that carries the
values stored in a state-rich Circus processes into the CSP specifications.

Our tool transforms the specification from state-rich to stateless Circus pro-
cesses using our Haskell representation of Circus using Haskell’s data types, ob-
tained from the parsing process from LATEX. So far, we have the functions that
transform state-rich into stateless Circus processes, defined as Ω functions, im-
plemented but not yet integrated with JAZA. This step is similar to what will
be made with the application of the Circus refinement laws.

Moving towards the CSPM code, we then have to apply the mapping func-
tions, defined as Υ functions, that translates stateless Circus into CSPM . Such



task may look simple for some parts of a Circus specification since it includes
CSP constructs. However, we have to carefully map the Z constructs into CSP,
such as predicates and expressions. Up to date, we have the implementation of
all the Υ functions [23]. However, our tool does not contemplate the transla-
tion of all Z expressions and predicates, and neither translates Z schemas and
axiomatic definitions1 into CSPM , which will be addressed in our future work.

In this work, we are proposing the development of a tool that will not only be
able to automatically translate Circus into CSPM , but also to pretty-printing the
specification into either: CSPM , after applying the mapping functions; LATEX,
as an output for the refined specification; and, a for a future work Haskell code
resulted from the refinement. Moreover, in a near future, we can integrate the
tool with a Circus refinement calculator allowing us to refine Circus to Circus.
This is similar to CRefine, however, we plan to design a tool for discharging
proof obligations with support from a theorem proving [9], and also plan to
refine Circus into a programming language, such as Haskell itself.

Acknowledgements This work is funded by CNPq (Brazilian National Coun-
cil for Scientific and Technological Development) within the Science without
Borders programme, Grant No. 201857/2014-6, and partially funded by Science
Foundation Ireland grant 13/RC/2094.

References

1. Abrial, J.R.: The B-book - Assigning Programs to Meanings. Cambridge University
Press (2005)

2. Beg, A., Butterfield, A.: Development of a prototype translator from Circus to
CSPm. In: ICOSST. pp. 16–23 (Dec 2015)

3. Cavalcanti, A.L.C., Woodcock, J.C.P.: ZRC—A Refinement Calculus for Z. Formal
Aspects of Computing 10(3), 267—289 (1999)

4. Conserva Filho, M., Oliveira, M.V.M.: Implementing tactics of refinement in cre-
fine. In: SEFM’12. pp. 342–351. Springer (2012)

5. CZT: Community Z Tools (Oct 2016), czt.sourceforge.net/
6. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of

Programs. Commun. ACM 18, 453–457 (August 1975)
7. Dybjer, P., Haiyan, Q., Takeyama, M.: Verifying haskell programs by combining

testing, model checking and interactive theorem proving. Information and software
technology 46(15), 1011–1025 (2004)

8. Fitzgerald, J.S., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques
in Software Development (2. ed.). Cambridge University Press (2009)

9. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/utp: A mechanised theory engineer-
ing framework. In: Naumann, D. (ed.) Unifying Theories of Programming - 5th
International Symposium, UTP 2014, Singapore, May 13, 2014, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8963, pp. 21–41. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-14806-9_2

1 We are working with predicates, expressions, schemas and axiomatic definitions cur-
rently supported by JAZA, based on Spivey’s [27] Z notation.

czt.sourceforge.net/
http://dx.doi.org/10.1007/978-3-319-14806-9_2


10. FSE, F.S.E.L.: Failures-Divergence Refinement: FDR2 User Manual. (Jun 2016)
11. Galloway, A.J., Stoddart, W.J.: An Operational Semantics for ZCCS. In:

ICFEM’97. pp. 293–302. IEEE Computer Society Press (1997)
12. Gomes, A.O., Butterfield, A.: Modelling the Haemodialysis Machine with Circus.

In: ABZ’16. LNCS, vol. 9675, pp. 409–424. Springer (2016)
13. Haftmann, F.: From higher-order logic to haskell: there and back again. In: Gal-

lagher, J.P., Voigtländer, J. (eds.) Proceedings of the 2010 ACM SIGPLAN Work-
shop on Partial Evaluation and Program Manipulation, PEPM 2010, Madrid,
Spain, January 18-19, 2010. pp. 155–158. ACM (2010), http://doi.acm.org/10.
1145/1706356.1706385

14. He, J., Hoare, C.A.R.: Unifying Theories of Programming. In: Orlowska, E., Szalas,
A. (eds.) RelMiCS. pp. 97–99 (1998)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

16. Milner, R.: A Calculus of Communicating Systems. Springer (1982)
17. Morgan, C.C.: Programming From Specifications, 2nd Edition. Prentice Hall In-

ternational series in computer science, Prentice Hall (1994)
18. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid Prototyping of a Semantically

Well Founded Circus Model Checker. In: SEFM’14. pp. 235–249. Springer (2014)
19. Mota, A., Sampaio, A.: Model-Checking CSP-Z. In: European Joint Conference on

Theory and Practice of Software. pp. 205–220. Springer (1998)
20. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case

models. Formal Aspects of Computing 26(3), 441–490 (2012)
21. Oliveira, D., Oliveira, M.: Joker: An Animation Framework for Formal Specica-

tions. In: SBMF’11 - Short Papers. pp. 43–48. ICMC/USP (Sep 2011)
22. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying Theories in ProofPower-Z.

Formal Aspects of Computing (2007)
23. Oliveira, M.V.M., Sampaio, A.C.A., Antonino, P.R.G., Ramos, R.T., Cavalcanti,

A.L.C., Woodcock, J.C.P.: Compositional Analysis and Design of CML Models.
Tech. Rep. D24.1, COMPASS Deliverable (2013)

24. Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs using Circus.
Ph.D. thesis, Department of Computer Science, University of York (2005)

25. Sherif, A., Cavalcanti, A., He, J., Sampaio, A.: A process algebraic framework
for specification and validationof real-time systems. Formal Asp. Comput. 22(2),
153–191 (2010)

26. Smith, G.: A Semantic Integration of Object-Z and CSP for the Specification of
Concurrent Systems. In: Proceedings of FME 1997, volume 1313 of LNCS. pp.
62–81. Springer (1997)

27. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1989)

28. Treharne, H., Schneider, S.: Using a Process Algebra to Control B Operations. In:
IFM. pp. 437–456 (1999)

29. Utting, M.: Jaza User Manual and Tutorial (June 2005), www.cs.waikato.ac.nz/
~marku/jaza/userman.pdf checked May 1st, 2016

30. Woodcock, J.C.P., Davies, J.: Using Z–Specification, Refinement, and Proof.
Prentice-Hall (1996)

31. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: ZB ’02. pp. 184–203.
Springer, London, UK (2002)

32. Zeyda, F., Cavalcanti, A.: Mechanical Reasoning about Families of UTP Theories.
In: SBMF 2008. pp. 145–160 (2008)

http://doi.acm.org/10.1145/1706356.1706385
http://doi.acm.org/10.1145/1706356.1706385
www.cs.waikato.ac.nz/~marku/jaza/userman.pdf
www.cs.waikato.ac.nz/~marku/jaza/userman.pdf

	A Verified Translation from Circus to CSPM

