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Abstract

English. In this paper we describe our ap-
proach to EVALITA 2016 POS tagging for
Italian Social Media Texts (PoSTWITA).
We developed a two-branch bidirectional
Long Short Term Memory recurrent neu-
ral network, where the first bi-LSTM uses
a typical vector representation for the in-
put words, while the second one uses a
newly introduced word-vector represen-
tation able to encode information about
the characters in the words avoiding the
increasing of computational costs due to
the hierarchical LSTM introduced by the
character—based LSTM architectures. The
vector representations calculated by the
two LSTM are then merged by the sum
operation. Even if participants were al-
lowed to use other annotated resources in
their systems, we used only the distributed
data set to train our system. When evalu-
ated on the official test set, our system out-
performed all the other systems achieving
the highest accuracy score in EVALITA
2016 PoSTWITA, with a tagging accu-
racy of 93.19%. Further experiments car-
ried out after the official evaluation pe-
riod allowed us to develop a system able
to achieve a higher accuracy. These ex-
periments showed the central role played
by the handcrafted features even when ma-
chine learning algorithms based on neural
networks are used.

Italiano. In questo articolo descriviamo il
sistema che abbiamo utilizzato per parte-
cipare al task POS tagging for Italian So-
cial Media Texts (PoSTWITA) della con-
ferenza EVALITA 2016. Per questa parte-
cipazione abbiamo sviluppato un sistema
basato su due reti neurali parallele en-

trambi bidirezionali e ricorrenti di tipo
Long Short Term Memory (LSTM). Men-
tre la prima rete neurale é una LSTM
bidirezionale che prende in input vettori
che rappresentano le parole in maniera
tipica rispetto a precedenti lavori, la sec-
onda prende in input una nuova rappre-
sentazione vettoriale delle parole che con-
tiene informazioni sui caratteri contenuti
evitando un incremento del costo com-
putazionale del sistema rispetto a LSTM
che prendono in input rappresentazioni
vettoriali delle sequenze di caratteri. Le
rappresentazioni vettoriali ottenute dalle
due LSTM vengono in fine combinate at-
traverso [’operatore di somma. Il nos-
tro sistema, utilizzando come dati anno-
tati solo quelli distribuiti dagli organiz-
zatori del task, quando valutato sul test
set uffciale ha ottenuto il miglior risul-
tato nella competizione EVALITA 2016
PoSTWITA, riportando una accuratezza di
93.19%. Ulteriori esperimenti condotti
dopo il periodo ufficiale di valutazione ci
hanno permesso di sviluppare un sistema
capace di raggiungre una accuratezza an-
cora maggiore, mostrandoci l'importanza
dell’ingegnerizzazione manuale delle fea-
tures anche quando vengono utilizzati al-
goritmi di apprendimento basati su reti
neurali.

1 Description of the system

Our approach to EVALITA 2016 PoSTWITA
(Bosco et al., 2016) task was implemented in a
software prototype operating on tokenized sen-
tences which assigns to each token a score ex-
pressing its probability of belonging to a given
part-of-speech class. The highest score represents
the most probable class.



Differently from the previous EVALITA part of
speech tagging tasks (Tamburini (2007), Attardi
and Simi (2009)), in EVALITA 2016 PoSTWITA
the participants must tackle the problem of analyz-
ing text with low conformance to common writ-
ing practices. For example, capitalization rules
may be ignored; excessive punctuation, particu-
larly repeated ellipsis and question marks may be
used, or spacing may be irregular (Agichtein et
al., 2008). Our development system strategy took
into account this issue. In particular, we imple-
mented a multiple input bidirectional Long Short
Term Memory recurrent neural network (LSTM)
model. We developed a two-branched bidirec-
tional LSTM (bi-LSTM) where the first bi-LSTM
uses a typical vector representation of the input
words commonly used for different classification
tasks, while the second one uses a newly intro-
duced word-vector representation specifically de-
signed to handle peculiarities of ill-formed or not
standard texts typical of social media texts.

To create the input vectors for the two branches
we use a combination of different components ex-
tracted from three different word embedding lex-
icons, from a manually created morpho-syntactic
lexicon and from handcrafted features specifically
defined to improve the accuracy of the system
when tested on social media texts.

In this work we used Keras (Chollet, 2016) deep
learning framework to generate the neural network
models.

1.1 Lexicons

In order to improve the overall accuracy of our
system, we developed three word embedding lex-
icons' and we used a manually created morpho-
syntactic lexicon.

1.1.1 Word Embedding lexicons

Since the lexical information in tweets can be very
sparse, to overcame this problem we built three
word embedding lexicons.

For this purpose, we trained two predict mod-
els using the word2vec? toolkit (Mikolov et al.,
2013). As recommended in (Mikolov et al., 2013),
we used the CBOW model that learns to pre-
dict the word in the middle of a symmetric win-
dow based on the sum of the vector representa-
tions of the words in the window. For our ex-

"The three word embedding lexicons are freely available

at the following website: http://www.italianlp.it/.
2http://code.google.com/p/word2vec/

periments, we considered a context window of
5 words. These models learn lower-dimensional
word embeddings. Embeddings are represented by
a set of latent (hidden) variables, and each word is
a multidimensional vector that represent a specific
instantiation of these variables. We built two Word
Embedding Lexicons starting from the following
corpora:

o The first lexicon was built using a tokenized
version of the itWaC corpus?. The itWaC cor-
pus is a 2 billion word corpus constructed
from the Web limiting the crawl to the .it
domain and using medium-frequency words
from the Repubblica corpus and basic Italian
vocabulary lists as seeds.

e The second lexicon was built from a tok-
enized corpus of tweets. This corpus was col-
lected using the Twitter APIs and is made up
of 10,700,781 Italian tweets.

In addition to these two lexicons, we built an-
other word embedding lexicon based on fastText
(Bojanowski et al., 2016), a library for efficient
learning of word representations and sentence
classification. FastText allows to overcome the
problem of out-of-vocabulary words which affects
the relying methodology of word2vec. Generat-
ing out-of-vocabulary word embeddings is a typi-
cal issue for morphologically rich languages with
large vocabularies and many rare words. FastText
overcomes this limitation by representing each
word as a bag of character n-grams. A vector rep-
resentation is associated to each character n-gram
and the word is represented as the sum of these
character n-gram representations. To build the lex-
icon based on fastText, we adopted as learning cor-
pus the same set of tokenized tweets used to build
the word2vec based lexicon.

1.1.2 Morpho-syntactic lexicon

We used a large Italian lexicon of about 1,300,000
forms, developed as part of the SemaWiki
project*. The full-form lexicon was generated
from a base lexicon of 65,500 lemmas, initially in-
spired by the Zanichelli dictionary>, and updated
along several years and cross-checked with other

online dictionaries®. For each form the lexicon

3http://wacky.sslmit.unibo.it/doku.php?id=corpora

“http://medialab.di.unipi.it/wiki/SemaWiki

>Zingarelli: Il nuovo Zingarelli minore, 2008.

%Aldo Gabrielli: Il Grande Dizionario di Italiano; Tullio
De Mauro: Il Dizionario della lingua italiana.



contains all the possible parts-of-speech and pro-
vides information on morpho-syntactic features,
but using a different tagset (ISST-TANL Tagsets’)
with respect to the one used for POSTWITA.

1.2 The POS tagger architecture

The LSTM unit was initially proposed by Hochre-
iter and Schmidhuber (Hochreiter et al., 1997).
LSTM units are able to propagate an important
feature that came early in the input sequence over
a long distance, thus capturing potential long-
distance dependencies. This type of neural net-
work was recently tested on Sentiment Analy-
sis tasks (Tang et al., 2015), (Xu et al., 2016)
where it has been proven to outperform classifi-
cation performance in several sentiment analysis
task (Nakov et al., 2016) with respect to com-
monly used learning algorithms, showing a 3-4
points of improvements. Similar big improve-
ments have not been obtained in tagging tasks,
such as Part-Of-Speech tagging. This is most due
to the fact that state-of-the art systems for part of
speech tagging exploit strong performing learning
algorithms and hard feature engineering. In ad-
dition, a little knowledge of the surrounding con-
text is enough to reach very high tagging perfor-
mance. On the contrary, LSTM networks per-
form very well with respect to other learning al-
gorithms when word dependencies are long. Al-
though without a big improvement, POS tagging
systems which exploit LSTM as learning algo-
rithm have been proven to reach state-of-the-art
performances both when analyzing text at char-
acter level (Ling et al., 2015) and at word level
(Wang et al., 2016). More specifically they used a
bidirectional LSTM allows to capture long-range
dependencies from both directions of a sentence
by constructing bidirectional links in the network
(Schuster et al., 1997). In addition, (Plank et al.,
2016) have proposed a model which takes into ac-
count at the same time both word level and char-
acter level information, showing very good results
for many languages. As proposed by these sys-
tems, we employed a bidirectional LSTM archi-
tecture. We implemented a 2-branch bidirectional
LSTM but instead of using the character based
branch we introduced another specific word level
branch in order to reduce the computational cost
of the hierarchical LSTM introduced by the char-
acter based LSTM. This branch encodes informa-

"http://www.italianlp.it/docs/ISST-TANL-POStagset.pdf

tion about the characters in each word of a sen-
tence. The vector representations calculated by
the two LSTM are then merged by the sum opera-
tion. For what concerns the optimization process,
categorical cross-entropy is used as a loss func-
tion and the optimization process is performed
by the rmsprop optimizer (Tieleman and Hinton,
2012). Each bidirectional LSTM branch is con-
figured to have 24 units. In addition, we applied
a dropout factor to both input gates and to the re-
current connections in order to prevent overfitting
which is a typical issue of neural networks (Galp
and Ghahramani, 2015). As suggested in (Galp
and Ghahramani, 2015) we have chosen a dropout
factor value in the optimum range [0.3, 0.5], more
specifically 0.35 for each branch.

Bag-of-Character
[ Word-based LSTM ] [ Word-based LSTM ]

!

[ Merged vectors ]

Categorical
crossentropy

Figure 1: Diagram of the two-branched bi-LSTM
architecture.

1.2.1 Word-based bi-LSTM

In this part, we describe the Word-based bidirec-
tional LSTM branch of the proposed neural net-
work architecture and the word level information
given in input to this layer. Each word is repre-
sented by a low dimensional, continuous and real-
valued vector, also known as word embedding and
all the word vectors are stacked in a word em-
bedding matrix. To train this LSTM branch, each
input word in the tweet is represented by a 979-
dimensional vector which is composed by:
Word2vec word embeddings: the concatenation
of the two word embeddings extracted by the
two available word2vec Word Embedding Lexi-
cons (128 components for each word embedding,
thus resulting in a total of 256 components), and
for each word embedding an extra component was
added in order to handle the “unknown word” (2
components).

FastText word embeddings: the word embed-
dings extracted by the fastText Word Embedding
Lexicon (128 components).



Morpho-syntactic category: the parts-of-speech
and the corresponding morpho-syntactic features
obtained by exploiting the Morpho-syntactic lexi-
con, resulting in 293 components.

Spell checker: the parts-of-speech and the corre-
sponding morpho-syntactic features of the word
obtained by analyzing the current word using
a spell checker (pyenchant®) and exploiting the
Morpho-syntactic lexicon, resulting in 295 com-
ponents.

Word length: a component representing the
length of the analyzed word.

Is URL: a component indicating whether the
“http” substring is contained in the analyzed word.
Is uppercase: a component indicating if the ana-
lyzed word is uppercase.

Is capitalized: a component indicating if the ana-
lyzed word is capitalized.

End of sentence: a component indicating whether
or not the sentence was totally read.

1.2.2 Bag-of-Character Word-based
bi-LSTM

In this part, we describe the Bag-of-Character
Word-based bidirectional LSTM branch of the
proposed neural network architecture and the word
level information given in input to this layer. Dif-
ferently from the Word-based LSTM branch, in
this branch we did not use pretrained vectors. To
train this LSTM branch, each input word in the
tweet is represented by a 316-dimensional vector
which is composed by:

Characters: a vector representing the set of char-
acters which compose the current word. Since our
considered alphabet is composed by 173 different
characters, the resulting in a 173-dimensional vec-
tor.

Lowercased characters: 134 components rep-
resenting the set of lowercased characters which
compose the current word.

Has numbers: a component indicating whether or
not the current word contains a number.

Contains not numbers: a component indicating
whether or not the current word contains non num-
bers.

Contains lowercased: a component indicating
whether or not the current word contains lower-
case characters.

Contains uppercased: a component indicating
whether or not the current word contains upper-

8http://pythonhosted.org/pyenchant/

case characters.

Contains alphanumeric: a component indicating
whether or not the current word contains alphanu-
meric characters

Contains not alphanumeric: a component indi-
cating whether or not the current word contains
non alphanumeric characters

Contains alphabetics: a component indicating
whether or not the current word contains alpha-
betic characters.

Contains not alphabetics: a component indicat-
ing whether or not the current word contains non
alphabetic characters.

End of sentence: a component indicating whether
the sentence was totally read.

2 Results and Discussion

To develop our system, we created an internal
development set of 368 tweets randomly selected
from the training set distributed by the task
organizers. The first row in Table 1 reports the
accuracy achieved by our final system on the
internal development set and on the official test
set (row Two-branch bi-LSTM).

Configuration Devel Test
Two-branch bi-LSTM 96.55 93.19
Word bi-LSTM 96.03 92.35
Bag-of-Char. Word bi-LSTM  84.47 80.77
No Morpho-syntactic lexicon 96.48 93.54
No spell checker 96.49 93.31
No word2vec lexicons 93.23 89.87
No fastText lexicon 95.85 92.43
No feature engineering 96.39 93.06

Table 1: Tagging accuracy (in percentage) of the
different learning models on our development set
and the official test set.

We tested different configurations of our system
in order to evaluate the contribution on the tag-
ging accuracy of: i) each branch in the proposed
architecture, ii) the different word embedding and
morpho-syntactic lexicons and iii) the handcrafted
features. We carried out different experiments that
reflect the questions we wanted to answer, more
specifically the questions are:

e (a) what are the contributions of the Word-
based bi-LSTM and of the Bag-of-Character
Word-based bi-LSTM?



e (b) what is the contribution of the Morpho-
syntactic lexicon?

e (c) what is the contribution of the spell
checker?

e (d) what is the contribution of fastText with
respect to word2vec Word Embedding lexi-
cons?

In order to answer to the question (a), first we
run the Word-based LSTM excluding the Bag-of-
Character Word-based bi-LSTM branch, then we
excluded the Word-based bi-LSTM to verify the
Bag-of-Character Word based bi-LSTM contribu-
tion. The results of these experiments are reported
in Word bi-LSTM and Bag-of-Char. Word bi-LSTM
rows in Table 1. The Word-based bi-LSTM is
clearly the best performer with respect to the Bag-
of-Character one, but remarkable is that our pro-
posed two-branch architecture shows an improve-
ment of about 0.5 points in the development set
with respect to the best single bi-LSTM. The same
behaviour is shown in the test set, where the com-
bined system achieves an improvement of 0.84
points with respect to the single Word-based bi-
LSTM.

In order to answer to the question (b), we ex-
cluded from the input vectors of the Word-based
bi-LSTM branch the morpho-syntactic category
components extracted from Morpho-syntactic lex-
icon. Row No Morpho-syntactic lexicon reports
the results and shows that this information gives
a negligible improvement on the development set
and unexpectedly a slight drop on the test set.

For what concerns the question (c), we excluded
the morpho-syntactic category components of the
word obtained using the spell checker. The results
are reported in the No spell checker row. Simi-
larly to what happened in the (b) experiment, also
such information do not contribute in increasing
the tagging performances.

In order to compare the contributions of fast-
Text and word2vec lexicons (question (d)), we
considered two different system configurations:
one removing the two word2vec lexicons (No
word2vec lexicons row) and one removing fastText
and itWac word2vec lexicons (No fastText lexicon
row). In this second configuration, we removed
also the itWac word2vec lexicon to compare fast-
Text and word2vec using the same learning corpus
(the twitter corpus described in section 1.1.1). In

both configurations we excluded the other Word-
based LSTM components, while we left all the
components of the Bag-of-Character Word-based
LSTM. The results show that word2vec seems to
be a better choice with respect to fastText, both
in development and in test sets. This is in con-
trast with what we would have expected consider-
ing that fastText learns the word embedding rep-
resentation using subword information that should
be particularly useful for the analysis of non stan-
dard text such as social media ones.

2.1 Single bi-LSTM and Handcrafted
features

After the submission of the final system results, we
devised two further experiments. The first one was
devoted to testing the tagging performances of a
single word-based bi-LSTM architecture with re-
spect to the presented Two-branch bi-LSTM. The
second experiment was aimed to study the effect
of handcrafted features combined with the learn-
ing ones. To this aim, we developed a Part-of-
Speech tagger based on a single word-based bi-
LSTM, where each input word vector is the con-
catenation of the two input word representations
of the bi-LSTMs presented in Section 1.2.1 and
Section 1.2.2.

Table 2 reports the results of these experiments.
As shown in the Single bi-LSTM row, the use of the
single architecture instead of the two-branch one
does not affect tagging results, actually the single
bi-LSTM slightly outperforms the two-branch ar-
chitecture when tested on the test set (+0.48%).

In order to evaluate the effect of handcrafted
features, we conducted a last experiment where
we removed all the components from the input
vectors of the single Word-based bi-LSTM with
the exceptions of word2vec and fastText word em-
beddings. No handcrafted features row shows the
relevance of the handcrafted features that yield
an improvement of 1.34% and 1.68% on the de-
velopment and the test sets respectively. These
results show the important role of feature engi-
neering even when neural networks learning algo-
rithms are used.

3 Conclusion

In this paper we reported the results of our partici-
pation to the EVALITA 2016 POS tagging for Ital-
ian Social Media Texts (PoOSTWITA). By resort-
ing to a two-branch bidirectional LSTM, word em-



Configuration Devel Test
Single bi-LSTM 96.39 93.67
No handcrafted features 95.22 91.99

Table 2: Tagging accuracy of the single word-
based bi-LSTM on our development set and the
official test set.

beddings and morpho-syntactic lexicons and hand
crafted features we achieved the best score. In par-
ticular, we showed the relevance of handcrafted
features that allowed an improvement of more than
one percentage point in terms of tagging accuracy
both in development and test sets when combined
with learned features such as word embedding lex-
icons. As future research direction we will test the
contribution of a pure character based LSTM with
respect to character handcrafted features.
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