Resource Analysis and Automated Verification for
the Thirty Meter Telescope using
Executable SysML Models

(Invited Talk)

Nerijus Jankevicius
No Magic Europe
Kaunas, Lithuania

nerijus(@nomagic.com

Abstract— SysML and its supporting modeling tools have
evolved to support a precise execution semantics for an
automated verification of design models. This paper gives
an overview of the application of such analyses in the
context of the Thirty Meter Telescope (TMT), one of the
next generation giant optical ground based telescopes.

Keywords—SysML; Simulation; Model Execution; Verification
and Validation; Requirements Verification; Automation; System
Requirements; Roll-Up; Test Cases; Analysis; MBSE

[. INTRODUCTION

Thirty Meter Telescope (TMT) [10] is under development
by the TMT International Observatory (TIO). The examples in
this paper are extracted from a production-level SysML model
which involves the modeling and analysis of the Alignment
and Phasing System (APS) for the TMT, developed by Jet
Propulsion Lab (JPL) with the help of the tools, patterns and
methods developed by No Magic Inc. The APS team pursues
an MBSE approach to analyze the requirements and to
demonstrate that the specified design satisfies the requirements.
Based on the customer supplied requirements and derived use
cases, the goals are to analyze operation scenarios to ensure
that power, mass, and duration requirements are always met by
the specified system design. The TMT model [12] uses SysML
[3] as modeling language.

II. STANDARDS AND TOOLS

Executable models are executed with the help of an
execution or simulation engine. The execution of the models
was performed using the Cameo Simulation Toolkit (CST) [2],
which is a plugin to MagicDraw [1] enabling model execution
for early system behavior simulation.

CST is a simulation platform based on OMG fUML
standard [4], which defines precise model execution semantics
and a virtual machine for UML [5], enabling compliant models
to be transformed into various executable forms for
verification.

CST uses fUML as a foundation to plug in additional
standard engines, such as W3C SCXML (State Chart XML)
engine for state machines [7], JSR223 for scripting-action
languages, and a parametric solver based on PSCS (Precise
Semantics of UML Composite Structures) [6].

The resource analysis makes particular use of the
parametric solver, and the behavior (fUML and SCXML)
execution engines of CST.

The parametric solver uses the fUML standard to create
objects of blocks (UML classes stereotyped with SysML
Block) and set their attribute (property) values. Also, as
SysML’s parametric diagram is based on UML’s composite
structure diagram, ports (properties at the boundary of classes)
and connectors (between properties) are part of the execution
model.

One notable kind of connector is a binding connector which
makes the values of properties at both ends of the connector
equal. If one value changes, the change propagates to the
opposite end. These semantics allow the “given” values (of
pre-bound attributes) to immediately propagate after fUML
object instantiation and update any “target” values (of unbound
attributes) after constraints evaluate. Initially, at instantiation of
objects and attributes, CST analyzes the causality of attributes,
i.e., determines which attributes are given and which are target
in the parametric equation. Initial solving provides the given
values and derives the target values.

Whenever the value of an attribute that is bound to
constraint parameter changes, the constraint is re-evaluated and
updates all related variables, creating a cascade effect, which
may trigger more and more related constraints evaluations. If
that happens during behaviors execution (state machine or
activity), CST re-evaluates the parametrics and considers an
entire cascade as part of the run-to-completion step (an atomic
action which happens at the same instant of time). CST is
flexible in dealing with underspecified models as it fills in
automatically some gaps concerning initial conditions (e.g. not
all parameters of activities value properties need to be fully



specified). Based on this feature of CST dynamic (behavior
based) roll-ups using parametrics is built in the running model.

III. AUTOMATED REQUIREMENTS VERIFICATION AND SYSTEMS

ANALYSIS WITH SYSML
The Executable System Engineering Method (ESEM) [9]

defines steps and patterns to construct an executable model to
carry out resource analysis:

1. Formalize Requirements
Requirements are specified by SysML Blocks and
Constraint Blocks where a Boolean expression defines
the requirement.

2. Specify Design
The system design is specified by decomposition trees
of its functional and physical aspects

3. Characterize Components
The individual components are augmented by a
standard modeling pattern, adding several properties
(e.g. power, mass, duration) used in the analysis

4. Specify Analysis Context
The Analysis context binds formal requirements to the
as-designed system properties for analysis.

5. Specify Operational Scenarios
Operational scenarios elaborate customer use cases as
a sequence or activity diagram. Operational scenarios
exercise different configuration; e.g. for power
consumption

6. Specify Configurations
The initial state of the operational scenarios (in this
case, e.g. the initial power consumption
configurations) is specified with different
decomposition trees of instance specifications

7.  Run Analysis
The configured analysis is run using a simulation
engine, such as CST. This provides several outputs
such as: a) timeline of the states of the individual
components which shows state changes of individual
components during the simulation (Fig 1), b) rolled up
power and margin, and c) value profiles, which show
the total value over time of the rolled up value (e.g.
total power of dome installation part of the APS) — see
Fig 2. These products represent different views that
can be used by the engineer to analyze the results.

As soon as the results of the different scenarios are

formalized into so-called property-based requirements (3),
which allow for a formalized trace of requirements into the
design. The as-specified conceptual design (4) and/or the
realization design (5) are verified against the changed
requirement, resulting in pass or fail (6). The systems
modeling environment and change scenario is described in
more detail in [11].

3 g SR
5
= e
. - [“J iy
{ ’ 2
3 50008
i
i =
-
L
:g H
Figure 1. Timeline of component states
£3 Peak Power Limit Explanation
Peak Power i x

8PS Realization

Total Power  960.0
Total Mass 00

dome installstion summit Instaliation

TotalPewer 4500 TotalPower  S00.0
Tetal ass 08 Total Mass 0.0

|7 R=8
Dome total power Summit total power

500 |
400
g 300
2 200
100
ol

o s 1

, APS total power

= | 1000
50

aPS Realization standb: B
’ L

H

12 | &
250

o |

Tumon 0l

© 1 2 8 4 B 6 7 B 8 W 1112 13 |

™= 1 d 3|
Figure 2. Power profiles of APS subsystems
— f_:‘;'mUpdate Requirements ——; Analyze
= —— e Conceptual
3 = [ Design i

g

available, the satisfaction of the original customer requirement
has to be demonstrated. This is done with a separate analysis
context.

A typical scenario to verify the as-designed system is when
a requirement changes (Fig 3).

A change (1) of a TMT requirement (kept in DOORS (2)
as management tool for textual requirements) is propagated to
the SysML model, managed in a model repository, where it is

Analyze Realization

- Design/Specification
\ £

Max duration Post-segment exchange: 2200 50005 | :

Number of exposures of 455 % 6 6

Max peak power consumption in domes@-Slew 8. 1kw

Number of motors with 50W 48 12

Figure 3. Propagation of a change in the requirements of APS



IV. LESSONS AND EXPERIENCE GATHERED FROM THE
EXECUTABLE TMT MODEL

By driving the analysis directly from data in the model, the
inconsistency that often emerges when data is also maintained
in analysis tools (e.g., Excel) was eliminated. In addition,
performing the analysis by simulating the system design
captured in the model has the added benefit of having all the
necessary information (e.g., the state of the system at relevant
time points) readily available to check. This makes the
development of analysis patterns (e.g., rollups) to check the
satisfaction of requirements reasonably straightforward.

Different rollups can be applied to different characteristics
of a system like power and mass. They all follow the same
basic pattern. Originally the mass and power roll-ups for the
APS were maintained and calculated in Excel spreadsheets for
different (simplified) scenarios and updated whenever a
requirement or the system design changed. However, it was
completely disconnected from the SysML system model which
captures the different operational scenarios, the system design,
and the requirements. Integrating the roll-ups simplified the
maintenance and consistency of the data (change was only in
one place: the system model) and helped automate the
checking of requirement satisfaction. Another added benefit is
that performing the analysis on the system model directly
allows the analysis result to stay in the model, which makes the
engineering document that would be generated from the model
stay up to date and consistent.

Obviously, not all kinds of system analysis (e.g., finite
element analysis) can be performed using the semantics of
SysML alone. These analyses would require the augmentation
of SysML with other profiles that capture the missing
information. Also, the reliability of the analyses that can be
performed using this method relies on the reliability of the
SysML simulation tools, which may be less mature than their
general-purpose counterparts. However, this is often mitigated
by integrating the former with the latter.

V. CONCLUSIONS AND FUTURE WORKS

Requirement verification is an important kind of analysis
that is often performed in the context of MBSE. In this paper, a
running example derived from an industrial case study was
presented. In the sample a practice is used where automated
requirements verification with a set of executable SysML
modeling patterns is deployed. These patterns integrate
parametrics with the execution semantics of behavioral
diagrams.

The presented practice integrates the standard pattern of an
analysis context with the behavior execution pattern by
specifying a scenario as the behavior of the analysis context’s
classifier. The instance of the analysis context contains the
current state of the scenario, and the parametrics compute the
values of selected properties as the scenario runs. The initial
state for the analysis context comes from a tree of instance
specifications and their property values (a configuration), and
the output is another tree that displays the computed values of
the analysis.

There are plans to improve some of the patterns related to
behavior modeling to support executability. For example, there
is a need to find a more formal way to tie constraints on value
properties for each power mode to the state. It is desirable to
improve the roll-up pattern that deals with state specific
constraints, by avoiding hard coding constraint values in state
invariant or other constraints. Furthermore, running simulations
generates a large amount of results which are currently stored
in instance specifications, which make the design model grow
unnecessarily. Those results (sequence diagram recording,
instance snapshots, simulation logs) should be stored outside of
the system model in dedicated data repository.

VI. ACKNOWLEDGEMENTS

The author would like to acknowledge the major ongoing
contributions of Robert Karban to the evolution of system level
behavior specification and analysis with executable models.

REFERENCES

[1] No Magic Inc., 2016. “MagicDraw”. http://ww.magicdraw.com.

[2] No Magic Inc., 2016. “Cameo Simulation Toolkit”.
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-
toolkit.html.

[3] OMG, 2014. “Systems Modeling Language (SysML) Version 1.4”.

[4] OMG, 2014. “Semantics of a Foundational Subset for Executable UML
Models (FUML) Version 1.17.

[5] OMG, 2015. “Unified Modeling Language (UML) Version 2.5”.

[6] OMG, 2015. “Precise Semantics of UML Composite Structures (PSCS)
Version 1.0”.

[71 W3C, 2015. “State Chart XML (SCXML): State Machine Notation for
Control Abstraction. W3C Recommendation 1”.

[8] W3C,2016. “World Wide Web Consortium”. http://www.w3.org.

[9] Karban, R., Jankevicius, N., Elaasar, M., “ESEM: Automated System
Analysis using Executable SysML Modeling Patterns”, Annual INCOSE
International Symposium (IS 2016), Edinburgh, UK, 2016.

[L0]TMT, 2016. “Thirty Meter Telescope”. http://www.tmt.org.

[11] Karban, R., Dekens, F., Jankevic¢ius, N., Elaasar, M., “Creating System
Engineering Products with Executable Models in a Model Based
Engineering Environment”, Modeling, Systems Engineering, and Project
Management for Astronomy VI, SPIE, Edinburgh, UK, 2016.

[12]“TMT model” https://github.com/Open-MBEE/TMT-SysML-Model.






