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Abstract. We promote and analyze the needs of a common publicly
available benchmark dataset to be used for neural-symbolic studies of
learning and reasoning. The recently released Visual Genome repository
is proposed as a suitable dataset to meet these needs. Along with the
original tasks that were suggested by the Visual Genome creators, we
propose neural-symbolic tasks that can be used as challenges to promote
research in the field and competition between lab groups.
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1 Introduction

Research into neural-symbolic integration seeks to combine learning from sub-
symbolic vector representations of data and concepts with symbolic reasoning
and knowledge representation. [4–7]. In order to integrate the sub-symbolic neu-
ral representations of sensory data with the symbolic knowledge tools developed
within AI over the last 60 years of research, a mathematical toolbox has to
be designed that has the capability of translating between different levels of
knowledge representation. In its infancy, by comparison, neural-symbolic studies
are promising ventures towards an AI system which can recognize patterns in
sensory data and reason about such commonsense patterns and knowledge.

The existence of a satisfactory dataset has been shown to be fruitful in many
computer science fields. It enables a fair comparison of existing approaches and
encourages competition. It should be mentioned also that benchmark datasets
introduce a potential bias, as problems not covered by the benchmark receive
less attention. Due to the growth of the web and abundance of data, ease of an-
notation by crowd-sourcing and the desire to build accurate applications, many
large datasets have been developed within computer vision, such as ImageNet
[1], Microsoft COCO [2] and VQA [3]. The size of these datasets is large to
accommodate very complex models, specifically deep neural networks, with the
promise of use as technological tools in everyday life such as image search and
retrieval, or image captioning for the visually impaired.
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There are valuable experimental studies in neural-symbolic reasoning, how-
ever there is a need for a common publicly-available benchmark dataset to en-
courage progress and communications in the field. Datasets exist in Statisti-
cal Relational Learning (SRL) and Inductive Logic Programming (ILP) which
may be suitable for neural-symbolic integration. Recently developed datasets
for vision-language tasks such as image caption generation and visual ques-
tion answering seem attractive for neural-symbolic studies since they require
complex pattern recognition over images and symbol manipulation of language.
Yet, symbol manipulation and reasoning are limited to image description text
that is unstructured, and not amenable to traditional natural language process-
ing (NLP) tools. The ideal dataset for neural-symbolic studies should include
a large and complex raw data set for sub-symbolic systems to learn effective
and discriminative representations, as well as a formal representation of the raw
data (a knowledge-base in first order logic) for symbolic systems to learn general
rules and perform logical inference. Existence of both complex sub-symbolic data
and its high level symbolic interpretation is essential for developing the above-
mentioned translational methods between the two forms of representations which
are at the heart of neural-symbolic integration.

In this paper, we propose the use of the Visual Genome dataset [13] as the
best challenge benchmark dataset for neural-symbolic integration. The dataset
is valuable “as is” towards the goals of neural-symbolic integration, however, we
also suggest additional features and challenge tasks for the dataset to meet a
wider range of research objectives within neural-symbolic computing.

In Section 2, we recall the goals of neural-symbolic integration (NSI). In
Section 3, we describe the visual genome (VG) dataset. In Section 4, we list
existing applications of VG to NSI. In Section 5, we propose the new applications
and extensions, and in Section 6, we conclude the paper.

2 Neural-Symbolic Reasoning

Neural-symbolic systems [8] integrate logical reasoning and statistical learning
by offering sound translation algorithms between network and logic models. They
contain three main components: (1) knowledge encoding and reasoning in neu-
ral networks, (2) knowledge evolution and network learning, and (3) knowledge
extraction from trained networks. In a neural-symbolic system, neural networks
provide the machinery for efficient computation and robust learning, while logic
provides high-level representations, reasoning and explanation capabilities to the
network models, promoting modularity, facilitating validation and maintenance
and enabling a better interaction with existing systems.

Neural-symbolic systems have had important applications in diverse areas
such as bioinformatics, fraud prevention, assessment and training in simulators,
cognitive robotics, general game playing, image, audio and video classification,
software verification, and the semantic web. Nevertheless, a major challenge that
remains is how to effectively benefit from both (i) robust statistical methods
that work well on real-valued vectors and (ii) rich and interpretable represen-
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Fig. 1. From perceptual awareness to cognitive understanding of images [13]: images
are annotated with numerous region descriptions, objects, attributes, and relationships,
e.g.: “girl feeding large elephant” and “a man taking a picture behind girl” (top picture),
with objects (e.g. elephant), attributes (e.g. large) and their relationships (e.g. feeding)
described in the bottom picture.

tations which enable explanations to be reasoned about and transferred across
applications. The above requires the effective translation of relational symbolic
knowledge for use by statistical methods which work well with vectors (without
the need for grounding all instances of the knowledge-base into the model of
choice) and the effective extraction of compact and rich representations from
vector-based models following neural network learning.

The emergence of symbolic representations is natural in any complex do-
main associated with large collections of data. In fact, symbolic representations
seem critical to the solution of many interesting challenges involving big data.
Consider, for example, the recent AlphaGo experiment1 or the requirements of
life-long learning[9] or intelligent agents who interact with the environment. The
above is particularly relevant when neural-symbolic integration meets computer

1 https://www.technologyreview.com/s/601072/five-lessons-from-alphagos-historic-
victory/
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vision. As pointed out at a recent Dagstuhl seminar on neural-symbolic com-
puting 2, a serious challenge in the field is the lack of specifically relevant and
systematic evaluation mechanisms. The benchmark-based approach, which is
useful in some cases, is very limited in others, including the benchmarks used in
Statistical Relational Learning (SRL) and Inductive Logic Programming (ILP)
[11, 12]. In particular, when the goal is (i) to evaluate how well a system in-
tegrates learning and reasoning, or (ii) to evaluate how useful or interpretable
the learned descriptions are, existing benchmarks fall short: SRL will tend to
ground all representation without a focus on first-order reasoning; ILP tend not
to handle real-valued vectors or provide for robust learning. Neural-symbolic sys-
tems seek to benefit from the knowledge representation and reasoning capacities
of logical symbolic representations, and the robust learning capacities of neural
networks, reconciling the logical nature of reasoning and the statistical nature of
learning [10]. The provision of a data challenge as proposed here should promote
the fair comparative evaluation of: (1) effective learning from noisy data and (2)
reasoning about what has been learned.

3 Visual Genome

Visual understanding is suggested to be an AI-complete problem [17], therefore
it is a challenging testbed for neural-symbolic studies. A genuine understanding
of a visual scene requires detecting objects, recognizing attributes of objects and
inferring their interactions and relationships. Understanding images thoroughly
requires a grounding of visual concepts onto language and a formalized represen-
tation of the components of an image, as stated in [13]: “existing models would
be able to detect discrete objects in a photo but would not be able to explain
their interactions or the relationships between them. Such explanations tend
to be cognitive in nature, integrating perceptual information into conclusions
about the relationships between objects in a scene...”. Going from perceptual
to cognitive, from image to language, demands a range of operations that must
lift the representation from subsymbolic to symbolic, which it is at the core of
neural-symbolic computation studies.

Similar to previous attempts on visual knowledge bases [14–16], the Visual
Genome provides a large set of images and annotations of image regions which
is formalized as a scene graph of objects and their relations. Images in the
dataset (see Figure 1) contain multiple image regions each having multiple object
instances. The attributes of object instances and their relationship (predicate)
with other objects are also recorded. Region graphs are combined to form a scene
graph of an image, which can be translated into a knowledge base, as well as
plain language using basic NLP tools. The concepts in the dataset can be linked
to existing knowledge in other datasets or systems because all objects, attributes
and relationships in each image in the Visual Genome can be mapped onto a
corresponding WordNet ID, called a synset ID [18]. As described in the Visual

2 http://www.dagstuhl.de/14381
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Genome project main webpage3, the dataset contains 108,249 images (with an
average image size of 500 pixels), 4.2 million region descriptions (with around
75,000 unique image objects), 1.7 million visual question-answers, 2.1 million
object instances, 1.8 million attributes (40,500 unique attributes), 1.8 million
relationships (40,500 unique relationships), 1.5 million object-object relationship
instances, 1.6 million attribute-object instances, 108,249 total scene graphs and
3,788,715 total region graphs.

Therefore, visual genome contains a dense formal knowledge representation
of images suitable to be manipulated by symbolic computation approaches, as
well as sensory image data ready to be recognized and analyzed by connection-
ist methods. For vision/language tasks, region descriptions and question-answer
pairs related to images are also provided. Overall the dataset enables a wide
range of scene understanding applications, which typically require high level
symbol manipulation and language processing. Furthermore, the symbolic for-
malism contained in Visual Genome favors first order logic representations and
relational learning. The scale of the dataset means that approaches which per-
form grounding will probably be less effective than truly relational approaches.
In other words, Visual Genome targets a major, arguably the most important,
open challenge in neural-symbolic integration: the effective handling of learning
from real-valued vectors and reasoning from rich knowledge representations.

4 Existing Applications on the Visual Genome

The developers of the dataset have introduced some interesting tasks, two of
which are explained below.

4.1 Attribute and Relationship Prediction

Object class prediction and object detection is at the center of computer vi-
sion studies, and successful deep learning algorithms [20, 19] dominate the field.
The Visual Genome enables dense and accurate attribute/predicate estima-
tion; bounding boxes that contain an object can be analyzed for predicting
attribute/predicate dimensions.

Researchers have found that learning attribute-object class pairs for each
bounding box dramatically improves attribute prediction performance possibly
due to the unique association of some attributes with specific object classes.
Similarly, learning subject class - predicate - object class triplets instead of pred-
icate only, can improve performance. This is again due to the fact that some
relationships occur only among a very small subset of objects classes (e.g. the
drive predicate accepts the person subject exclusively). Such applications can be
considered an instantiation of collective classification in relational learning [32].

3 https://visualgenome.org/
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4.2 Caption Generation and Visual Question Answering

The existence of region descriptions and question-answer pairs on images facil-
itate vision-language processing tasks. The visual representation of images and
regions can be used in a generative architecture to produce syntactically and se-
mantically correct text such as automated image caption generation. Recurrent
neural network algorithms have been deployed successfully [21] for such vision-
language applications. However, a major challenge has been judging performance
accuaracy of automated image captioning, e.g. is “A cat is beside a dog under a
parked car” the same as “A car is parked over a dog and a cat”?

5 Suggested Applications and Extensions

Visual Genome holds a very rich representation of the visual world, ready to be
exploited by cognitive tasks. We envision that the dataset can be used for a wide
set of experimental paradigms, or can be extended by additional crowd-sourced
annotations as required. We provide a set of novel tasks, which is not meant to be
exhaustive. Along with the task definitions, we provide a high level algorithmic
description of how to tackle them in order to illustrate how neural-symbolic
studies would benefit from the dataset.

Generally, neural-symbolic approaches would ground the sensory data onto
symbols and manipulate those, or perform vector algebra on neural representa-
tions to form a hierarchy of concepts and rules on the vector space. The main
questions are how to accurately and effectively ground the data or how to ma-
nipulate the vectors as done with symbols in AI, as well as how to use both
mathematical tools simultaneously.

5.1 Visual Entailment

Comprehension of entailment and contradiction in sentences is an important
part of language processing. In textual entailment tasks, two sentences need
to be understood and the system has to decide whether they contradict each
other, they are neutral (unrelated) or they entail each other. The scene graph
in Visual Genome is already a valuable asset in the textual entailment task, as
utilized in a study in [22], yet there is much more to be done. We propose a new
task called visual entailment in which images, relationships and scene graphs are
used to detect entailment and contradictions. This is a very natural use of the
image representation for neural-symbolic tasks: inference can be performed at
the symbolic level if images are grounded onto class and attribute predictions by
a classifier, or inference can be partly done at the sub-symbolic level using the
neural representations of images. Sub-symbolic computation requires an algebra
on semantically meaningful vector representations [33].

We present two image bounding boxes, then ask whether there is entail-
ment/contradiction/neutralism. The decision is very much related to the possi-
ble relationships between image boxes. If there is a relationship then the answer
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is entailment, if not, it can be neutral or contradiction, depending on the com-
patibility with commonsense. A car and a tire imply entailment, a car and a
house window may be neutral but a car and a kitchen sink is probably a con-
tradiction. The output can be set to a range between -1 (contradiction) and 1
(entailment), at which point the supervised learning may become a regression
task instead of classification. It should be noted that visual entailment aims at
finding relationships between two scenes thus the proposed task is closely related
to link prediction in relational learning, where the goal is to learn the existence
of a relationship. Therefore, the idea of contradiction in visual entailment means
learning the lack of a relationship, which is not the case in textual entailment
task.

The task becomes even more interesting and similar to textual entailment
if we allow one or two of the image boxes to be a large region with multiple
objects and relationships in it. Then the system needs to analyze the congruence
of region graphs, hence knowledge bases. A subsymbolic approach would use
neural embeddings of the image boxes to generate rules of entailment on the
vector space possibly using a vector symbolic architecture [23, 24] and/or an
attention-memory computation framework [25]. A symbolic approach would use
the class/attribute/relationship predictors to go up to knowledge base level.

5.2 Scene Graph Estimation

Possibly the hardest task is generating the scene graph of an image because the
graph holds the complete high level information regarding the image, we need
to go from the sensory to the most complete cognitive level. It requires to fo-
cus on specific bounding boxes in the image, estimate object/attribute labels
and jump to other image boxes while predicting relationships between them.
Thus the graph can be built part by part possibly with multiple passes on the
same image region. These multiple passes can possibly be hierarchical in nature,
extracting graph structure from coarse to fine details. This workflow resembles
the strategy of recurrent architectures with attention-memory mechanisms[26].
Another strategy more in the flavor of neural-symbolic computation would be
training the system by encoding regions and scenes in the training dataset with
fixed length vector representations and forming a “graph knowledge-base”, then
matching the test region with the knowledge base to obtain the most repre-
sentative and similar region description in the training set. After this initial
estimation, fine-tuning can optionally be done with the recurrent architectures
with attention-memory mechanisms.

The main challenge in this task is related to the variable binding problem:
multiple instances of the same object/concept/relationship as it appears in dif-
ferent times and context need to reuse a common function with possibly different
values. One possible solution to this problem is transferring learned representa-
tion across different contexts [28].
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5.3 Visual Rule Extraction and Analogy

Is it possible to mine the scene graphs for extracting logical clauses such as
“If Man not(Standing) Then Man SitsOn(Something)”? This capability is
essential for forming the visual commonsense knowledge mentioned earlier. In a
similar flavor, visual analogies can be made such as “Leg is to Man as Tire is
to Car”. These are strictly in the domain of symbolic computation when images
are grounded to class/attributes and predicate predictions are processed in the
scene graph. However, what if we wanted to retrieve rules and analogies directly
using image portions? Then, neural representations of images would need to be
processed to harvest conditional and analogical “statements” at the sub-symbolic
level [27, 29, 34]. The rules and analogies that form the commonsense knowledge
and representations of the images are expected to live on the same space, which
is essential for combining connectionist and symbolic capabilities. Visual rule
extraction can also be tackled with inductive bias transfer of neural networks
across different task domains [30]. More interesting approaches would be again
hybrid ones that utilizes the symbolic mechanisms along with vector algebra.

5.4 Collective Classification

Another relevant relational learning task is collective classification: simultaneous
prediction of the class of several object bounding boxes in a region given their
attributes or relations. This is superficially similar to attribute and relation
prediction tasks already examined in [13], yet the proposed task is not bounded
by pairwise bounding box queries but all the objects in a region or even in a
whole image can be considered for a more challenging collective classification.
This is directly related with multiple task learning and inductive bias transfer
between many tasks, as studied from a neural-symbolic perspective in [31].

5.5 Unsupervised co-training of a subject class - predicate - object
class using images and symbols

Related to prior work discussed in Section 4.1 is the unsupervised co-training
of subject class - predicate - object class triples using both image data as well
as symbolic logic. The intention is to show that one can learn an unsupervised
generative model (e.g. stacked Restricted Boltzmann Machines) that are capa-
ble of reconstructing the images given the symbols, and the symbols given the
images. Here, symbols could be represented as combinations of textual inputs or
as images themselves.

6 Conclusion

We have proposed Visual Genome as a challenge and benchmark dataset for
neural-symbolic integration. Along with the original tasks that were suggested
by the Visual Genome creators, we also identify tasks specific for neural-symbolic
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integration, in particular combining learning from real-valued vectors and rea-
soning from rich relational knowledge representations, to promote research in
the field and competition between lab groups.
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