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Abstract. [Context and motivation] For the past several years, Cyber Physical 
Systems (CPS) have emerged as a new system type like embedded systems or 
information systems. CPS are highly context-dependent, observe the world 
through sensors, act upon it through actuators, and communicate with one an-
other through powerful networks. It has been widely argued that these proper-
ties pose new challenges for the development process. [Question/problem] 
Yet, how these CPS properties impact the development process has thus far 
been subject to conjecture. An investigation of a development process from a 
cyber physical perspective has thus far not been undertaken. [Principal ide-
as/results] In this paper, we conduct initial steps into such an investigation. We 
present a case study involving the example of a software simulator of an air-
borne traffic collision avoidance system. [Contribution] The goal of the case 
study is to investigate which of the challenges from the literature impact the de-
velopment process of CPS the most. 
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1 Introduction 

Cyber Physical Systems (CPS) blur the line between traditional system types. On the 
one hand, CPS observe the environment through sensors and act upon it like Embed-
ded Systems [1]. On the other hand, they communicate through powerful network 
interfaces like Service-Based Systems and interact with human users like Information 
Systems [2]. The individual systems are not necessarily new and may be systems that 
are already in everyday application [3]. What makes these systems cyber physical is 
that they collaboratively achieve goals any individual system cannot achieve [4].  

Consider the home health network example in [2]. Sensor devices (e.g., heart rate 
sensor, blood glucose meter, etc.) are distributed in a home of a patient to observe 
vital signs. If one of the sensors detects a medically concerning reading, the CPS net-
work can automatically contact emergency services and submit vital signs to the dis-
patched emergency crews. In this example, the medical sensors and their networking 
ability build on existing technologies, yet the functionality of monitoring, collecting, 
and transmitting the relevant medical information is a cyber physical functionality.  



In this example, the individual CPS that make up the CPS network each have a 
specific role as part of the home health network. However, as outlined in [4], CPS 
may also form dynamic networks at runtime. In [4], this is demonstrated by means of 
a smart automotive adaptive cruise control systems that work together to resolve traf-
fic jams. These systems may be by different vendors, older or newer revisions, and 
offer additional functionality that can be integrated to resolve the traffic jam. Moreo-
ver, cars may drive away and leave a CPS network to form new networks with other 
cars. Potentially, the traffic jam may also include vehicles that are not equipped with a 
smart adaptive cruise control. In summary, the composition of the CPS network can 
change at runtime and in unpredictable ways. 

These dynamic and heterogeneous properties of CPS networks must be accounted 
for during the development of any individual system that becomes part of a CPS net-
work. This means that the development process of traditional systems, such as adap-
tive cruise control systems, or blood glucose meters, must take on a cyber physical 
perspective. In the past several years, existing approaches have been applied or ex-
tended and novel approaches have been proposed to aid a cyber physical development 
process. Such approaches encompass many areas of software engineering (e.g., secu-
rity engineering, [5, 6], requirements engineering [7], or safety engineering [8]) and 
many application domains (e.g., automotive systems [9], Industry 4.0 [10], or energy 
systems [11]). These approaches have in common that they assume that challenges for 
the software development process of CPS exist, but a systematic investigation of these 
challenges has thus far not been undertaken.  

In this paper, we take initial steps to investigate the challenges faced during soft-
ware development of Cyber Physical Systems. We present a case study of the devel-
opment of a simulator of an airborne Traffic Collision Avoidance System (TCAS). 
This paper is structured as follows: The following Section 2 reviews the related work 
on challenges in the development of CPS and outlines CPS properties that are subject 
of investigation in the case study. Section 3 gives a brief overview over the TCAS 
systems and motivates why it is a suitable example of a CPS. Section 4 discusses the 
case study design and the research questions that are based on the challenges from 
Section 2. Section 5 discusses the results of the case study with regard to the research 
questions from Section 4 before Section 6 concludes the paper. 

2 Related Work: Properties and Challenges for Development 

Several authors have defined overlapping properties of CPS. Some authors place em-
phasis on the connected nature of CPS or focus on the cloud-like aspect of their net-
works (like Systems of Systems, see e.g., [9, 12]). Other authors focus on the interac-
tion between CPS and human users (see, e.g., [13, 14, 16]) or the control of real-world 
processes (like embedded systems, see e.g., [10, 11, 15]). In this paper, the focus of 
investigation lies on the properties of CPS networks. According to [4, 12], these prop-
erties can be categorized into orthogonal dimensions: static vs. dynamic and hetero-
geneous vs. homogeneous CPS networks, as summarized in Table 1. 



Table 1. Properties of CPS Networks based on [4, 12]. 

 Static CPS Networks Dynamic CPS Networks 

Homogeneous The CPS network is composed of a fixed 
number of individual CPS and each CPS 
has a known feature set. In this case, the 
CPS network is akin to Multi-Agent 
Systems [17].  

The CPS network forms new connections 
at runtime with nodes posessing a known 
feature set. Dynamic allocation of nodes to 
a CPS network is akin to artificial hive 
intelligence systems [19]. 

Heterogeneous The CPS network is composed of a fixed 
number of individual CPS, but the 
individual CPS devices have different 
feature sets. In this case, the CPS network 
is akin to Systems of Systems [18]. 

The CPS network forms new connections 
at runtime with nodes posessing an 
unknown feature set. Dynamic allocation 
of nodes to a CPS network is akin to 
Service-Oriented Architectures [20]. 

 
In Table 1, the term “homogeneous” implies that CPS have the same externally ob-
servable features, but does not imply that all CPS are the same type. Instead, individ-
ual CPS can be developed by a different vendor, etc. All four categories have in 
common that the CPS within the network collaboratively achieve a common goal. In 
contrast to Multi-Agent Systems [17] and Service-Oriented Architectures [20], these 
objectives must not necessarily be known at development time. This implies that in 
contrast to artificial hive intelligence systems [19] and Systems of Systems [18], 
where the role of each node is predetermined, the role of a CPS can only be assumed 
during development and may change at runtime. Changes in runtime pose novel chal-
lenges to the software development of these systems. 

In the past several years, a plethora of papers have been published discussing these 
challenges (e.g., [2-4, 9, 11, 14, 16, 21, 23, 24]). The following Table 2 lists some of 
these challenges. For the sake of providing an overview, several similar challenges 
reported in different papers were condensed into one. Challenges that do not pertain 
to the properties outlined in Table 1 have been omitted (e.g., social challenges [2], 
application-domain specific challenges [11], or hardware challenges [22]).  

Table 2. Challenges for CPS Networks Proposed in the Related Work. 

ID Challenge Description Source 
1 Uncertainty due to Open 

Contexts 
CPS operate in the real-world, with an indeterminate set 
of entities and context properties influencing their 
behavior, which are monitored or influenced by the CPS. 

[2],[3],[4] 

2 Behavioral Adaptability 
and Predictability of 
Behavior Adaptation 

Heterogeneous CPS networks may be composed of CPS 
of different vendors, newer and older revisions, or CPS 
with limited compatibility. The CPS network must adapt 
to changes in the context as well as it’s own composition 
and predictably adapt their behavior. 

[2],[4],[9], 
[11],[21],[24] 

3 Sensing Human Intent, 
Information Exchange, 
Human-in-Loop Control 

CPS must be aware of human intentions, provide 
adequate information depending on the current 
operational situation, and adapt to changes in both. 

[13],[14], 
[16],[21] 

4 Requirements Elicitation Existing requirements elicitation approaches may not 
scale up to elicit the requirements for CPS networks 
comprising a very large number of nodes. 

[16],[23] 

5 Requirements Modeling 
and System Modeling 

Approaches to graphically or formally model artifacts of 
individual CPS and CPS networks must account for 
changes in network composition, uncertainty due to open 
contexts, and CPS collaboration. 

[2],[4], 
[11],[24] 



6 Deployment and Main-
tenance 

Deploying large CPS networks is burdened by the 
number of nodes in the network. Even for autonomous 
CPS, network maintenance requires physical access, 
which does not scale up with large CPS networks. 

[21],[23] 

7 Validation/Verification 
of Behavior 

Runtime adaptation of CPS network topology and of CPS 
network behavior must be validated and verified with 
regard to the operational purpose of each CPS, the 
common goal of the CPS network, and human intentions. 

[3],[4],[14], 
[16],[21],[24] 

8 Failure Robustness, Sec-
urity, and Safety 

Not only must each CPS be robust to failures and not 
pose harm to other CPS or human users, but the 
cooperative functionality of the network must be reliable 
and safe also. Moreover, the CPS network must be secure 
from unauthorized manipulation. 

[2],[3],[4], 
[9],[16],[21] 

 
As can be seen from Table 2, there are two classes of challenges. Challenge 1, 2, and 
3 pertain to the dynamic nature of CPS networks during operation that must be ac-
counted for during software development. The remaining Challenges 4 through 8 
pertain to the development disciplines that must be tailored to account for CPS adap-
tation as well as for large scale networks. 

3 Case Example: Traffic Collision Avoidance System (TCAS) 

The purpose of this paper is to investigate the development process of an individual 
CPS, which becomes part of a CPS network during operation. In this section, we de-
scribe the case example, which was the artifact to be developed in the case study, and 
we discuss the rationale for selecting the TCAS as the case example.  

3.1 TCAS Abstract Functionality 

The case example is a Traffic Collision Avoidance System (TCAS). TCAS is an avi-
onics system designed to prevent mid-air collisions between aircraft in flight. To do 
so, TCAS detects other aircraft (i.e., “traffic”) within a certain distance in front of the 
own aircraft, alerts the pilots through “traffic advisories”, and produces “resolution 
advisories.” Resolution advisories are recommended changes in the vertical speed 
(i.e. climb or descend rate) in order to increase the separation altitude between the 
own aircraft and the threat aircraft such that a collision can be avoided. Fig. 1 shows 
TCAS’ simplified functionality based on [25, 26].  

As can be seen, a TCAS monitors the airspace around the aircraft for traffic 
equipped with a corresponding active transponder (“Mode-S Interrogation” in Fig. 1). 
This allows establishing two-way communication between the own aircraft and traffic 
nearby to coordinate collision avoidance. If some other aircraft in the vicinity is not 
equipped with an active transponder (e.g., many recreational aircraft), or no tran-
sponder at all (e.g., ultralight or hostile aircraft), the TCAS uses the own aircraft’s 
transponder and onboard radar to detect uncooperative traffic (“Mode-C-Only All 
Call”). The function “target surveillance” determines the flight trajectories for all 
traffic detected through radar contacts and transponder replies and discriminates traf-
fic into “intruders,” i.e. traffic that might pose a collision threat, and other traffic. 



 
Fig. 1. Principle Functionality of TCAS based on [25, 26]. 

For each intruder, and under consideration of the own aircraft’s flight path, the func-
tion “Comparison with Own A/C trajectory” computes the relative approach vector to 
the intruder, the distance to the intruder (“Range” in Fig. 1), the intruder’s relative 
altitude (“Alt”) and the time until the intruder is intercepted (“Tau”). 

Based on this information, a traffic advisory (“TA”) is issued. Concurrently, the 
TCAS computes the closest point of approach (“CPA”), i.e. the point in three-
dimensional space, where the own aircraft is closest to the intruder. If it is determined 
that the CPA is smaller than a minimal safe separation altitude, the intruder is consid-
ered a collision “threat” and a resolution advisory (“RA”) is produced through audito-
ry alerts and cockpit instruments. 

3.2 Rationale for Selecting TCAS as the Case Example 

In Section 2, we have listed challenges previous authors have assumed to burden the 
development of static and dynamic, homogeneous and heterogeneous CPS networks 
and in Section 3.1, we have introduced the case example. We have selected the im-
plementation of a TCAS simulator because, depending on the specific interactions 
between the TCAS of two or more aircraft, the TCAS can participate in all four CPS 
network types from Section 2: 

• Homogeneous vs. Heterogeneous: A CPS network involving multiple TCAS 
instances is homogeneous, if the TCAS instances are cooperative in the sense out-
lined in Section 3.1, i.e. using Mode-S transponder functionality actively work to-
gether to avoid collisions. A CPS network involving multiple TCAS instances is 
heterogeneous, if at least one intruder aircraft is uncooperative, e.g., when the in-
truder aircraft is not equipped with TCAS functionality or a hostile aircraft.  

• Static vs. Dynamic: A CPS network involving multiple TCAS instances is static, 
if there is a known set of aircraft, either cooperative or uncooperative, in the vicini-
ty of the own aircraft and their altitudes must be coordinated such that no aircrafts 
collide. In reality, this is an atypical case. A CPS network involving multiple 
TCAS instances is dynamic, if aircraft spontaneously enter each other’s air space 



during flight, resulting in the need to increase separation altitude. This is the typi-
cal use case of TCAS. 

It must be noted, that even when one intruder aircraft is uncooperative in the sense 
outlined in Section 3.1, other TCAS in the CPS network can still react appropriately 
such that the common goal of avoiding a collision is achieved collaboratively (unless 
an intruder is actively attempting a collision). It follows that the TCAS example can 
partake in the different CPS networks outlined in Section 2. TCAS is therefore a suit-
able surrogate for investigations into the development process of CPS participating in 
such networks.  

4 Case Study Design 

The purpose of the case study is to investigate the development process of a TCAS, 
which will form CPS networks with other TCAS during operation. In this section, we 
describe the design of the case study following the checklist and guidelines from [28]. 
The case example system and background theory on challenges in CPS development 
have already been discussed in Sections 2 and 3, respectively. In the following sub-
sections, we discuss the case study context, research questions, and data analysis.  

4.1 Study Context: Course, Participants, and Procedure 

The case study took place as part of a software engineering seminar course at the 
authors’ affiliation, instructed in fall 2016 by the third author. The course is geared 
towards advanced students with considerable knowledge in development. The course 
objective is for students to apply their theoretical knowledge about software develop-
ment in a significant development project over the course of one semester.  

Participants. There was a total of eight students enrolled in the course. Three of 
the students participated in the TCAS case study, while the remaining students 
worked on other course projects. All three participants were enrolled in an undergrad-
uate computer science or software engineering program. As for the course prerequi-
site, participants had demonstrable prior experience in software development, yet no 
experience with CPS development. Age and gender were assumed to not impact de-
velopment ability and hence were not recorded.  

Requirements Phase. The course was structured over 15 weeks with three class 
meetings every week. Approximately half of the semester (seven out of 15 weeks) 
was dedicated to requirements engineering and system design. In this phase, the first 
class meeting each week was dedicated to lecturing on model-based requirements 
artifacts. Specifically, lectures included context diagrams, KAOS goal models, and 
UML sequence diagrams for scenario modeling (see [29]) as well as technical archi-
tecture models (see [30]), which students were instructed to use for the case study. 
The second weekly class meeting was dedicated to modeling examples using the 
technique discussed in the previous meeting. The purpose was to give students more 
exposure to the practical application of the respective modeling technique. The final 
weekly meeting was dedicated to independent work of participants on their respective 



tasks using the modeling techniques. Participants were free to meet individually, as a 
team, or with the instructor and set their own objectives for their weekly modeling 
task. The requirements phase consisted of four milestones. Each milestone objective 
was to create an initial version of a requirements model and revise the models from 
the previous milestone to ensure consistency and completeness. Milestones were pre-
sented weekly for review, critique, as well as instructor and peer feedback. 

Implementation Phase. After the requirements phase completed, the case example 
implementation began. Implementation followed the agile SCRUM methodology, as 
given the limited timeframe of a semester, agile implementation approaches allow for 
quick progress in producing executable artifacts. At the onset of this phase, students 
were introduced to agile development and asked to derive a backlog from their re-
quirements artifacts, which were developed a more rigid approach (i.e. [29], see 
above). Each week was considered a sprint, were at least one item from the backlog 
ought to be implemented, and the requirements artifacts were to be updated, if need-
ed. Class meetings during the implementation phase began with a daily SCRUM 
meeting, where students presented their progress, current issues, and the next issue on 
their agenda. Class meetings were dedicated to presentation of progress, discussion of 
implementation strategy and technology, and assisting other case example teams.  

The implementation phase concluded at the end of the semester with a graded final 
presentation. Participants’ course grades were established by means of a departmental 
criteria list, which is solely based on the students’ individual performance as a team 
member and their application of knowledge from previous courses. Participants’ 
course grades were hence independent of project success or case study outcome. Ap-
proval from the authors’ university’s ethical review board was sought before students 
agreed to participate in the case study by providing informed consent and usage rights 
for their artifacts and code. 

4.2 Objectives and Research Questions 

The key goal is to gain initial insights into the specific challenges that arise when 
developing a system from a cyber physical perspective, as outlined in Section 1. To 
do so, the following research questions were defined: 

• RQ1: How did students execute the development process in the context of the 
course instruction? Approaching system development from a cyber physical per-
spective was not a main focus of the curriculum in the students’ degree program 
and may have influenced the results. 

• RQ2: Which challenges from the literature are the most relevant? As was 
illustrated in Section 2, in the literature, a large amount of hypothetical challenges 
for the development process of CPS have been suggested. These challenges pertain 
to the dynamic allocation of CPS to homogeneous or heterogeneous networks. Yet, 
which of these hypothetical challenges impact development is to be explored. 

• RQ3: Which development discipline is impacted the most by these challenges? 
Each of the challenges discussed in Section 2 may affect some development disci-
pline more than others. For example, challenges in requirements modeling (Chal-



lenge 5 in Table 2) may impact the requirements engineering phase of develop-
ment, but also implementation. For approaches to be able to address these chal-
lenges, the impact of these challenges must be known. 

4.3 Case Selection and Unit of Analysis 

The TCAS case example from Section 3.1 is intended to be implemented as a plugin 
for the X-Plane flight simulator [27]. X-Plane is a recreational flight simulation game 
as well as a flight instruction platform for future pilots. It features a realistic flight 
model based on empirical data and real-time computations. Due to an available API, 
X-Plane is extendable through plugins, which allow execution of arbitrary C++ code. 
The specific unit of analysis for the case study is the development process of a TCAS 
plugin for X-Plane. The research questions from Section 4.2 are investigated within 
the context of the requirements and implementation phases (see Section 4.1). 

4.4 Data Collection and Analysis 

There were three types of artifacts that were collected and analyzed: requirements 
artifacts milestones from the requirements phase, implemented executable aritfacts 
(e.g., code, test cases, configurations), and reports from the daily SCRUM meetings. 

Requirements Artifact Milestones. The four milestones during the requirements 
phase collected through an online campus system every second week. Since a mile-
stone consisted of revising previous versions of artifacts based on feedback and 
knowledge discovery, milestones were incremental. Moreover, participants were 
asked at the end of the implementation phase to produce a fifth milestone of their 
requirements artifacts to account for the changes to the artifacts necessitated during 
the implementation phase. During data analysis, milestones were compared to one 
another with regard to revisions made due to knowledge discovery, i.e. revisions to 
one artifact that became necessary due to progress made while working on another 
artifact. This means that changes due to instructor feedback were not recorded. In 
particular, changes due to the cyber physical properties of TCAS were recorded and 
categorized according to each research question (see Section 4.1). 

Implementation Code. All source-code-based artifacts, which included code, 
third-party libraries, image artwork for TCAS instruments, configuration files, etc., 
were collected incrementally throughout the implementation phase using a remote 
repository. Participants were asked to commit their changes to these artifacts at least 
once at the end of each sprint. During data analysis, changes to code and code quality 
were not taken into account. However, progress during implementation was tracked 
with regard to the specific aspect that was worked on during a sprint. In particular, we 
took note on whether or not a particular implementation aspect pertained to traditional 
system properties or cyber physical properties of the TCAS. For example, when is-
sues arose regarding networking, interface rendering, or platform-plugin interaction, 
this was considered an implementation issue pertaining to either traditional system 
properties or pertaining to the simulation platform. On the other hand, when an issue 
arose pertaining to establishing a connection between the own aircraft and other air-



craft and subsequently discriminating other aircraft into threats, intruders, or other 
nearby traffic, this was considered an issue pertaining to CPS.  

Participant Reports. During the daily SCRUM meetings, participants reported 
their progress in the previous sprint, and reported on current issues they were working 
on. Albeit these reports are subjective and qualitative, they became the richest source 
of insight into the development process, as they gave an “uncensored” account on the 
specific challenges students encountered during development. We use the term “un-
censored” to address the notion that participants were eager to remind us of the level 
of difficulty and challenges they experienced with the TCAS case example system. 
Similarly, when a challenge was resolved, participants keenly reported the specific 
strategy which lead to success. For the purpose of the case study, we took particular 
note of challenges pertaining to the interaction of two or more TCAS systems during 
operation, as these reflect the cyber physical nature of TCAS. 

4.5 Threats to Validity 

Albeit great care was taken to design and conduct the case study, threats to validity 
remain. In the following, we discuss these threats, their mitigation, and open threats. 

Internal Validity: The case study must be thoroughly designed to answer the 
research questions. We have applied the best practices outlined in [28] to design the 
case study. We derived research questions based on the literature discussed in Section 
2 and describe the design in detail in Section 4. We provide an account of the raw 
artifacts and development process that we base our results on in Section 4.5. Never-
theless, the context of the study may have impacted results, as with any case study. 

External Validity: The case study must be representative and allow for gener-
alizability of results. In Section 3, we have explained the case example system in 
sufficient detail to allow replication in larger contexts. Moreover, we have outlined in 
Section 3.2, why the case example is a suitable surrogate for a CPS. Nevertheless, the 
case study did not develop a “real” TCAS, but was concerned with developing a 
simulator, leaving open questions as to the level of realism of the simulated plugin. 
Albeit the development process aimed at developing realistic TCAS functionality 
based on official regulatory documents, this threat partially remains.  

Construct Validity: Measurements must be appropriate to measure results. As 
with many case studies, the study at hand basis its findings on qualitative observa-
tions, participant reports, and artifacts created by participants. These information 
sources are inherently subjective. To mitigate this threat, we resort to a mere objective 
report on the development process in Sections 5.1 and 5.3. Moreover, to increase 
confidence in our work, we make available all case study materials to researchers and 
enthusiasts (see footnote in Section 4.5). 

Conclusion Validity: Conclusions must be free of bias. One potential source of 
bias is the fact that one of the authors was the instructor of the course in which the 
case study took place. This may have influenced case study success and participant 
performance. Of course, it is the third author’s key interest to see his students suc-
ceed. Yet, by university policy, course grades do not depend on project success. 
Moreover, findings are objective reports regarding the development process, not stu-



dent performance. Nevertheless, individual student performance may have impacted 
case study results. Lastly, the process of summarizing CPS challenges in Section 2 
may have influenced conclusions regarding the impact of the cyber physical nature 
onto development. Albeit we defined a clear scope in Section 2 to investigate the 
challenges, more investigations into the development process of CPS are necessary to 
confirm our results. 

5 Results of the Case Study 

In the following subsections, we report on the findings of the case study with regard 
to the research questions from Section 4.1. 

5.1 RQ1: How did students execute the development process in the context of 
the course instruction? 

The case study began in the first week of the semester with participants researching 
the basic functionality of TCAS by studying FAA regulatory documents (e.g., [25, 
26]) and other online resources1. Moreover, participants familiarized themselves with 
plugin development for X-Plane. The first milestone in the requirements phase en-
tailed the construction of a rough context model, representing the interplay of the 
TCAS with the simulated components. The context model is shown in Fig. 2.  

 
Fig. 2. TCAS Context Model depicted using UML class diagram notation. 

As can be seen, the X-Plane platform simulates all aircraft. These can be either the 
user’s own aircraft, or potential intruders. Aircraft Data for non-user aircraft are col-
lected through a X-Plane, through the Multiplayer Network connection. The Multi-
player Network connection represents aircraft in the simulated world. This component 
                                                             
1 An example of such a resource can be found on the StackExchange post by user “DeltaLima” 
(available at https://goo.gl/fnXOhI, accessed January 3, 2017). Albeit StackExchange is neither 
a reliable academic nor an official technical reference, it provided sufficient technical details 
for the participants to move forward with the case study. 



was already existing and not part of the case study. Aircraft Data is exchanged using 
X-Plane’s internal Data Bus, which is a collection of variables that store values per-
taining to the current simulation. The TCAS is designed as a plugin for X-Plane, 
which makes use of the Data Bus and queries Aircraft Data such as, vertical speed, 
airspeed, or latitudinal and longitudinal positions. From the perspective of the user’s 
own aircraft, it cannot be known whether or not the intruder is cooperative or not. 
Therefore, only the user aircraft is composed of a TCAS in Fig. 2. A Local Area Net-
work (LAN) connection is used by the TCAS to simulate transponder and radar sweep 
(i.e. Mode-S and Mode-C calls in Fig. 1), in order to find the subset of simulated air-
craft close to the user’s own aircraft within the simulated world. This subset consti-
tutes nearby traffic (see Section 3.1).  

Based on the context model and TCAS’ principle functionality outlined in regula-
tory documents, a goal model was developed. An excerpt is shown in Fig. 3. 

 
Fig. 3. TCAS Goal Model using KAOS notation (excerpt). 

Participants began with the anti-goal “Collide With Intruding Aircraft,” which is to be 
avoided. Following the KAOS tutorial from [31], participants refined this goal into 
one goal model depicting the entire, abstract functionality of TCAS (left diagram in 
Fig. 3). Once participants felt the goal model to be sufficiently detailed, they assigned 
KAOS “agents” to the goals, which were intended to represent components of the 
TCAS plugin (e.g., “Transponder,” “Decider,” “Gauge,” in the left diagram in Fig. 3). 
Thinking about agent implementations, participants felt that some lower-level goals 
were still too abstract to implement. Hence, participants opted to refine the goal mod-
el further, by taking the lowest-level goals and refining them into own diagrams. For 
example, the right side in Fig. 3 shows the refinement diagram of the goal “Detect and 
Monitor Cooperative Aircraft” in the left diagram in Fig. 3. This process iteratively 
continued until each goal was assigned to an agent (e.g., “Transponder and “Resolu-
tion Connection” in the right diagram in Fig. 3) and subjectively, goals were suffi-
ciently detailed.  

Once goal models were complete, scenario models were constructed. Fig. 4 shows 
two example scenarios.  



 
Fig. 4. Initial TCAS Interaction Scenarios with Cooperative and Uncooperative Intruders. 

As shown in Fig. 4, scenarios were created depicting the conceptual interaction be-
tween TCAS components. Following the approach outlined in [29], at least one sce-
nario was created for each goal, showing its exemplary fulfillment. For example, the 
scenario on the left in Fig. 4 shows the exemplary interaction between components to 
fulfill the goal “Detect Cooperative Aircraft” from Fig. 3 (right goal diagram), which 
also is intended to fulfill the goals “Receive Broadcast” and “Notify Decider.” Doing 
so resulted in the identification of missing goals (e.g., a corresponding goal for han-
dling uncooperative intruders, see right diagram in Fig. 4), which triggered iterative 
revisions of goal models and scenario models. 

In total, participants produced more than 20 goal, scenario, and context diagrams, 
which were iterated and refined weekly and more than 5,000 lines of code. Due to 
space limitations, these artifacts cannot be fully discussed here. Therefore, we are 
making these artifacts available2 to interested researchers and enthusiasts. 

5.2 RQ2: Which challenges from the literature are the most relevant? 

The case study was predominantly impacted by challenges pertaining to the interac-
tion between the user’s own aircraft and intruder aircraft. In particular, a considerable 
challenge was to differentiate simulated aircraft close to the user’s aircraft from those 
that are far away, e.g., on another continent, but within the simulated world. This 
challenge arose due to the specific architecture of the simulated aircraft: The Multi-
player Network connection does not discriminate between close and far away aircraft, 
making it necessary for the TCAS simulator to make this differentiation before regu-
lar TCAS functionality can be carried out. Real-life TCAS identify nearby aircraft 
through the transponder and radar, making this challenge unique to the case study. 
Moreover, once nearby traffic was identified, only cooperative intruders could be 
reliably identified (i.e. when they actively send a Mode-S reply, see Fig. 1). For unco-
operative intruders, it can only be heuristically established through Mode-C replies 
and the absence of a Mode-S reply.  

                                                             
2 https://goo.gl/kjvyw  



This introduced uncertainty (Challenge 1 in Table 2) considering the specific 
makeup of the CPS network: in previous literature, it was assumed that CPS are de-
signed to either be part of a homogeneous or heterogeneous network. Yet, as we 
learned through the case study, the network makeup in this sense cannot be reliably 
established and may change at runtime. Especially the fact that the CPS network 
makeup changes during runtime requires the TCAS to react appropriately, necessitat-
ing predictable behavioral adaptation (Challenge 2). For example, when the own air-
craft is to avoid a non-cooperative intruder, a decision must be made to climb or de-
scend to increase separation altitude. In the case study, a Decider component was 
created, which issues “climb” or “descend” RAs depending (based on heuristics from 
[25, 26]). However, the question came up, whether or not the reason why a “climb” or 
“descend” RA was issued needed to be communicated to the pilots (Challenge 3). 
Similarly, if the pilots do not follow the resolution advisories (e.g., climb, even 
though the RA indicates to descend), issues arose during development of how to make 
the intruder aircraft aware such that a collision can be avoided. 

5.3 RQ3: Which development discipline is impacted the most by these 
challenges? 

The development process largely resembled that of an embedded system. However, 
uncertainty and behavioral adaptation (Challenges 1 and 2) mainly impacted require-
ments engineering phases of development (Challenges 4 and 5) as well as the quality 
assurance (Challenges 7 and 8), while the implementation phase was nearly equiva-
lent to previous projects from the embedded systems domain. Specifically, uncertain-
ty about the specific type of the CPS network constituents (i.e. homogeneous or het-
erogeneous CPS) required frequent revisions of the model-based requirements arti-
facts (Challenge 5). For example, frequent changes to scenario models necessitated by 
different interactions motivated changes in the goals. It is interesting to note that 
changes in requirements models were preceded by frequent consultations of the con-
text model (i.e. Fig. 2). While the context model was only rarely adapted, the infor-
mation documented therein lead to fruitful discussions about the interaction between 
the user’s own aircraft and a possible intruder, which guided the implementation.  

The interaction of several cyber physical TCAS impacted deployment (Challenge 
6), verification (Challenge 7), and functional robustness (Challenge 8) also. After unit 
tests were complete, verification included testing the TCAS functionality using two 
computers, each running an X-Plane instance, to which the compiled TCAS plugin 
was deployed. Initially, participants did not account for testing TCAS functionality 
using different versions (e.g., the latest build together with a TCAS that is a few revi-
sions old). Instead, when a new version was compiled, the new revision was deployed 
to both test computers. During later development stages, when frequent bug fixes and 
redeployment took place, this process was streamlined to deploying merely onto one 
computer. This introduced a kind of CPS heterogeneousness into the CPS network 
that was discussed in [4]: the CPS network consists of nodes with the same function-
ality, but different versions. This type of heterogeneousness was unanticipated 
throughout the case study and in many cases resulted in failure of TCAS’ functionali-



ty. Specifically, intruders were not recognized reliably or RAs were computed incor-
rectly. The result was impaired functional robustness (Challenge 8), which burdened 
quality assurance in late stages of development. 

6 Discussion and Outlook 

In this paper, we presented a case study into the development process of homogene-
ous and heterogeneous, dynamic Cyber Physical System networks. The case example 
system of an airborne Traffic Collision Avoidance System was chosen to investigate 
which challenges previously suggested in the literature impact the software develop-
ment process of a CPS. Case study results show that the most significant challenges 
pertain to runtime uncertainty of CPS network configurations, predictable behavioral 
adaptation, and human-in-the-loop control. The most significantly impacted develop-
ment disciplines are requirements engineering, quality assurance, and deployment.  

The case study at hand provides merely an initial, exemplary insight into the de-
velopment process of a system from a cyber physical perspective. It is not as a defini-
tive investigation into the challenges underlying CPS development in general. Addi-
tional empirical investigations are needed to investigate the challenges of CPS devel-
opment in more detail and with more robust evidence. This is subject of future work. 

We encourage repetition and extension of our research. Therefore, we make avail-
able the current implementation of the TCAS simulator along with its development 
artifacts (see Section 5). The current status of the TCAS simulator handles arbitrary 
TAs and RAs for the closest threat. 
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