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ABSTRACT

Large-scale workflows for big data analytics have become
a main consumer of energy in data centers where moldable
parallel computing models such as MapReduce are widely
applied to meet high computational demands with time-
varying computing resources. The granularity of task par-
titioning in each moldable job of such big data workflows
has a significant impact on energy efficiency, which remains
largely unexplored. In this paper, we analyze the properties
of moldable jobs and formulate a workflow mapping prob-
lem to minimize the dynamic energy consumption of a given
workflow request under a deadline constraint. Since this
problem is strongly NP-hard, we design a fully polynomial-
time approximation scheme (FPTAS) for a special case with
a pipeline-structured workflow on a homogeneous cluster
and a heuristic for the generalized problem with an arbitrary
workflow on a heterogeneous cluster. The performance supe-
riority of the proposed solution in terms of dynamic energy
saving and deadline missing rate is illustrated by extensive
simulation results in Hadoop/YARN in comparison with ex-
isting algorithms.
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1 Introduction

Next-generation applications in science, industry, and busi-
ness domains are producing colossal amounts of data, now
frequently termed as “big data”, which must be analyzed
in a timely manner for knowledge discovery and technologi-
cal innovation. Among many practical computing solutions,
workflows have been increasingly employed as an important
technique for big data analytics, and consequently such big
data workflows have become a main consumer of energy
in data centers. Most existing efforts on green computing
were focused on independent MapReduce jobs and tradi-
tional workflows comprised of serial programs. Energy effi-
ciency of big data workflows in Hadoop systems still remains
largely unexplored.

Modern computing systems achieve energy saving mainly
through two types of techniques, i.e. task consolidation to
reduce static energy consumption (SEC) by turning off idle
servers, and load balancing to reduce dynamic energy con-
sumption (DEC) through dynamic voltage and frequency
scaling (DVFS), or a combination of both. However, these
techniques are not sufficient to address the energy efficiency
issue of big data workflows because i) frequently switching
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on and off a server may reduce its lifespan or cause unnec-
essary peaks of energy consumption, and ii) DVFS may not
be always available on all servers in a cluster. Therefore, we
direct our efforts to workflow mapping for dynamic energy
saving by adaptively determining the degree of parallelism
in each MapReduce job to mitigate the workload overhead
while meeting a given performance requirement.

Parallel jobs are generally categorized into three classes
with flexibility from low to high: rigid jobs exemplified by
multi-threaded programs running on a fixed number of pro-
cessors, moldable jobs exemplified by MapReduce programs
running on any number of processors decided prior to exe-
cution, and malleable jobs running on a variable number of
processors at runtime [11]. A moldable job typically follows
a performance model where the workload of each component
task decreases and the total workload, proportional to DEC,
increases as the number of allotted processors increases [15].
The validity of this model has been verified by many real-
life parallel programs in various big data domains and will
serve as a base of our workflow mapping solution for energy
saving of big data workflows.

In this paper, we construct analytical cost models and for-
mulate a workflow mapping problem to minimize the DEC
of a workflow under deadline and resource constraints in
a Hadoop cluster. This problem is strongly NP-hard be-
cause a subproblem to minimize the makespan of indepen-
dent jobs on identical machines under a single resource con-
straint without considering energy cost has been proved to
be strongly NP-hard [12]. In our problem, it is challenging
to balance the trade-off between energy cost and execution
time of each component job to determine their respective
completion time in MapReduce workflows, regardless of sev-
eral previous efforts in traditional workflows, such as the
partial critical path method [4].

We start with a special case with a pipeline-structured
workflow (a set of linearly arranged jobs with a dependency
between any two neighbors along the line) on a homoge-
neous cluster. We prove this special case to be weakly
NP-complete and design a fully polynomial-time approxi-
mation scheme (FPTAS) of time complexity linear with re-
spect to 1/ǫ. By leveraging the near optimality and low
time complexity of our FPTAS, we design a heuristic for the
generalized problem with a directed acyclic graph (DAG)-
structured workflow on a heterogeneous cluster. This heuris-
tic iteratively selects the longest chain of unmapped jobs
from the workflow and applies our FPTAS to the selected
pipeline while taking machine heterogeneity into considera-
tion.
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In sum, our work makes the following contributions to the
field.

• To the best of our knowledge, our work is among the
first to study energy-efficient mapping of big data work-
flows comprised of moldable jobs in Hadoop systems.

• We prove a deadline-constrained pipeline-structured
workflow mapping problem for minimum total (en-
ergy) cost to be weakly NP-complete and design an
FPTAS for it.

• The performance superiority of the proposed heuristic
for the general workflow mapping problem in terms of
dynamic energy saving and deadline missing rate is il-
lustrated by extensive simulation results in Hadoop/YARN
in comparison with existing algorithms.

The rest of the paper is organized as follows. Section 2
provides a survey of related work. Section 3 formulates a big
data workflow mapping problem. We prove a special case
to be weakly NP-complete and design an FPTAS for it in
Section 4, and design a heuristic for the generalized problem
in Section 5. Section 6 evaluates the performance.

2 Related Work

A large number of research efforts have been made to op-
timize the data replication scheme in Hadoop distributed
file system (HDFS) so that data nodes can be turned off
without affecting data availability [16, 5, 8]. Our research
on job scheduling is orthogonal to these efforts, and adds an
additional level of energy efficiency to Hadoop systems.

2.1 Energy-efficient Job Scheduling in Hadoop

2.1.1 Heterogeneous Computing Environments

Since servers in large-scale clusters are typically upgraded
or replaced in an incremental manner, many techniques con-
sider hardware heterogeneity of Hadoop clusters for energy
saving. Cardosa et al. proposed static virtual machine (VM)
placement algorithms to minimize the cumulative machine
uptime of all physical machines (PMs), based on two prin-
ciples: spatial fitting of VMs on PMs to achieve high re-
source utilization according to complementary resource re-
quirements from VMs, and temporal fitting of PMs with
VMs having similar runtime to ensure that a server runs at a
high utilization level throughout its uptime [6]. Mashayekhy et al.
modeled the energy-aware static task scheduling of a MapRe-
duce job as an Integer Programming problem, and designed
two heuristics that assign map/reduce tasks to machine slots
to minimize energy consumption while satisfying the ser-
vice level agreement (SLA) [22]. Cheng et al. proposed a
heterogeneity-aware dynamic task assignment approach us-
ing ant colony optimization, referred to as E-Ant, to min-
imize the overall energy consumption of MapReduce appli-
cations with heterogeneous workloads in a heterogeneous
Hadoop cluster without a priori knowledge of workload prop-
erties [9].

2.1.2 Renewable Energy

Several efforts were focused on utilizing renewable energy
in the operation of Hadoop clusters. Goiri et al. proposed
a framework, GreenHadoop, for a data center powered by
renewable (green) energy and by carbon-intensive (brown)
energy from the electrical grid as a backup. It dynamically
schedules MapReduce jobs to minimize brown energy con-
sumption by delaying background computations within their
time bounds to match the green energy supply that is not
always available [14]. Cheng et al. designed a scheduler for a

Hadoop cluster powered by mixed brown and green energy,
which dynamically determines resource allocation to hetero-
geneous jobs based on the estimation of job completion time
and the prediction of future resource availability [10].

2.1.3 Resource Allocation

The majority of existing efforts targeted the first gener-
ation of Hadoop. The work on the second generation of
Hadoop, i.e. YARN, is still quite limited. Li et al. proposed
a suspend-resume mechanism in YARN to mitigate the over-
head of preemption in cluster scheduling, and used a check
pointing mechanism to save the states of jobs for resump-
tion [19]. Their approach dynamically selects appropriate
preemption mechanisms based on the progress of a task and
its suspend-resume overhead to improve job response time
and reduce energy consumption.

2.2 Energy-efficient Workflow Scheduling

Many efforts were made on energy-efficient scheduling of
workflows comprised of precedence-constrained serial pro-
grams. Some of these approaches targeted virtualized en-
vironments by migrating active VMs onto energy-efficient
PMs in time [25] or consolidating applications with comple-
mentary resource requirements [28]. Zhu et al. developed a
workflow scheduling framework, pSciMapper, which consists
of two major components: i) online power-aware consolida-
tion, based on available information on the utilization of
CPU, memory, disk, and network by each job, and ii) of-
fline analysis including a hidden Markov model for estimat-
ing resource usage per job and kernel canonical correlation
analysis for modeling the resource-time and resource-power
relationships [28].

Other approaches were focused on physical clusters as
follows. Lee et al. proposed a static workflow schedule
compaction algorithm to consolidate the resource use of a
workflow schedule generated by any scheduling algorithm
in homogeneous environments [17], and designed two static
energy-conscious workflow scheduling algorithms based on
DVFS in heterogeneous distributed systems [18]. In [20],
three types of DVFS-based heuristics, namely, prepower-
determination, postpower-determination, and hybrid algo-
rithms, were designed to solve a static problem of joint power
allocation and workflow scheduling for schedule length (or
energy consumption) minimization under an energy con-
straint (or a time constraint). Zhang et al. proposed a
DVFS-based heuristic to statically maximize workflow reli-
ability under a energy constraint in a heterogeneous clus-
ter [27], and designed a Pareto-based bi-objective genetic
algorithm to achieve low energy consumption and high sys-
tem reliability for static workflow scheduling [26].

2.3 Moldable/Malleable Job Scheduling

Some efforts have been made to minimize the comple-
tion time of a workflow comprised of malleable jobs [23,
7, 21], but there exist relatively limited efforts on mold-
able/malleable job scheduling for energy efficiency. Sanders et al.
designed a polynomial-time optimal solution and an FP-
TAS to statically schedule independent malleable jobs with
a common deadline for energy consumption minimization
based on the theoretical power models of a single processor
using the DVFS technology, i.e. p = fα and p = fα + δ,
respectively, where f is CPU frequency and δ is the constant
static power consumption [24].
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3 Problem Formulation

3.1 Cost Models

3.1.1 Cluster Model

We consider a heterogeneous Hadoop cluster consisting
of a set M of machines connected via high-speed switches,
which can be partitioned into homogeneous sub-clusters {Cl}.
Each machine mi is equipped with Ni homogeneous CPU
cores of speed pi and a shared memory of size oi. For
the entire cluster, a central scheduler maintains an avail-
able resource-time (ART) table R, which records the num-
ber NA

i (t) ≤ Ni of idle CPU cores and the size oAi (t) ≤ oi
of available memory in each machine mi at time t.

3.1.2 Workflow Model

We consider a user request in the form of a workflow
f(G, d), which specifies a workflow structure G and a dead-
line d. The workflow structure is defined as a DAG G(V,A),
where each vertex vj ∈ V represents a component job, and
each directed edge aj,j′ ∈ A denotes an execution depen-
dency, i.e. the actual finish time (AFT) tAF

j of job vj must

not be later than the actual start time (AST) tAS
j′ of job vj′ .

The completion time of the workflow is denoted as tC . We
consider the map and reduce phases of each MapReduce job
as two component jobs connected via an execution depen-
dency edge.

3.1.3 MapReduce Model

We consider a MapReduce job vj running a set of parallel
map (or reduce) tasks, each of which requires a memory of
size oj and spends a percentage µi,j of time executing CPU-
bound instructions on a CPU core of machine mi. In job
vj , generally, as the number Kj of parallel tasks increases,
the workload wj,k(Kj) of each task sj,k decreases and the
total workload wj(Kj) = Kj ·wj,k(Kj) of all tasks increases.
However, the maximum numberK′

j of tasks that can be exe-
cuted in parallel without performance degradation is limited
by the cluster capacity, e.g. K′

j ≤
∑

mi∈M
min{Ni, ⌊oi/oj⌋}.

Note that a serial program can be considered as a special
case of a MapReduce job with K′

j = 1. The execution time
of task sj,k on machine mi is ti,j,k = wj,k(Kj)/(µi,j · pi).
Estimating the execution time of a task on any service is
an important issue. Many techniques have been proposed
such as code analysis, analytical benchmarking/code profil-
ing, and statistical prediction, which are beyond the scope
of this work.

The active state ai,j,k(t) of task sj,k on machine mi is 1
(or 0) if it is active (or inactive) at time t. The number of
active tasks in job vj on machine mi at time t is ni,j(t) =
∑

sj,k∈vj
ai,j,k(t). The number of CPU cores and the size

of memory used by all component jobs of a workflow on
machine mi at time t are ni(t) =

∑

vj∈V
ni,j(t) and oi(t) =

∑

vj∈V
[ojni,j(t)], respectively.

3.1.4 Energy Model

The DEC of a workflow in a cluster is

E =
∑

mi∈M
{Pi

∑

vj∈V
[µi,j

∫ tC

0
ni,j(t)dt]}, where Pi is the

dynamic power consumption (DPC) of a fully utilized CPU
core, and which is validated by energy measurements of prac-
tical systems in [9].

3.1.5 Mapping Function

We define a workflow mapping function as M : {sk(vj)
[tSj,k, tEj,k]
======⇒ mi,∀vj ∈ V,∃mi ∈ M,∃[tSj,k, t

F
j,k] ⊂ T}, which

Table 1: Notations used in the cost models.
Notations Definitions
M =

⋃

l Cl a cluster of machines divided into homogeneous
subclusters {Cl}

mi(Ni, pi, the i-th machine equipped with a memory of size oi
oi, Pi) and Ni CPU cores of speed pi and DPC Pi per core

at full utilization
R the available resource-time table of cluster M

NA
i (t) the number of idle CPU cores on machine mi at time t

oAi (t) the size of available memory on machine mi at time t
f(G(V,A), a workflow request consisting of a workflow structure

d) of a DAG G(V,A) and a deadline d
vj , sj,k the j-th component job in a workflow and the k-th

task in job vj
aj,j′ the directed edge from job vj to job vj′

tAS
j , tAF

j the actual start and finish time of job vj

tC the completion time of a workflow
µi,j the percentage of execution time for CPU-bound

instructions in job vj on machine mi

oj the memory demand per task in job vj
wj(K) the workload of job vj partitioned into K tasks
wj,k(K) the workload of task sj,k in vj with K tasks
Kj , K

′

j the number and the maximum possible number of
tasks in vj

ti,j,k the execution time of task sj,k running on machine mi

ai,j,k(t) indicate whether task sj,k is active on machine mi

at time t
ni,j(t) the number of running tasks in job vj on machine mi

at time t
ni(t) the number of CPU cores used by f on machine mi

at time t
oi(t) the size of memory used by workflow f on machine mi

at time t
E the DEC of workflow f in cluster M

denotes that the k-th task of the j-th job is mapped onto
the i-th machine from time tSj,k to time tEj,k. The domain
of this mapping function covers all possible combinations
of a set V of component jobs of the workflow, a set M of
machines, and a time period T of workflow execution.

3.2 Problem Definition
We formulate a deadline- and resource-constrained work-

flow mapping problem for energy efficiency (EEWM):

Definition 1. EEWM: Given a cluster {mi(Ni, pi, oi, Pi)}
of machines with an available resource-time table {NA

i (t), oAi (t)},
and a workflow request f(G(V,A), d), where each job vj has
a set {wj(Kj)|Kj = 1, 2, . . . ,K′

j} of workloads for different
task partitions, and each task in job vj has a percentage µi,j

of execution time for CPU-bound instructions on machine
mi and a memory demand oj , we wish to find a mapping

function M : (V,M, T ) → {sk(vj)
[tSj,k, tEj,k]
======⇒ mi} to mini-

mize the dynamic energy consumption:

min
M

E,

subject to the following deadline and resource constraints:

tC ≤ d,

tAF
j ≤ tAS

j′ ,∀aj,j′ ∈ A,

ni(t) ≤ NA
i (t),∀mi ∈ M,

oi(t) ≤ oAi (t),∀mi ∈ M.

4 Special Case: Pipeline-structured Workflow
We start with a special case with a Pipelined-structured

workflow running on HOmogeneous machines (PHO). We
prove it to be NP-complete and design an FPTAS to solve
EEWM-PHO.
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Generally, we may achieve more energy savings on an
under-utilized cluster than on a fully-utilized cluster. Hence,
the problem for a single pipeline-structured workflow is still
valuable in real-life systems. The EEWM-PHO problem is
defined as follows.

Definition 2. EEWM-PHO: Given I idle homogeneous
machines {mi(N, p, o, P )} and a workflow f(G(V,A), d) con-
taining a chain of J jobs, where each job vj has a workload
list {wj(Kj)|Kj = 1, 2, . . . ,K′

j}, and each task in job vj has
a percentage µj of execution time for CPU-bound instruc-
tions and a memory demand oj , does there exist a feasible
mapping scheme such that DEC is no more than E?

4.1 Complexity Analysis
We prove that EEWM-PHO is NP-complete by reducing

the two-choice knapsack problem (TCKP) to it.

Definition 3. Two-Choice Knapsack: Given J classes
of items to pack in a knapsack of capacity H, where each
class Cj (j = 1, 2, . . . , J) has two items and each item rj,l
(l = 1, 2) has a value bj,l and a weight hj,l, is there a choice
of exactly one item from each class such that the total value
is no less than B and the total weight does not exceed H?

The knapsack problem is a special case of TCKP when we
put each item in the knapsack problem and a dummy item
with zero value and zero weight together into a class. Since
the knapsack problem is NP-complete, so is TCKP.

Theorem 1. EEWM-PHO is NP-complete.
Proof. Obviously, EEWM-PHO ∈ NP . We prove that

EEWM-PHO is NP-hard by reducing TCKP to EEWM-
PHO. Let ({Cj(bj,1, hj,1, bj,2, hj,2)|1 ≤ j ≤ J}, B,H) be an
instance of TCKP. Without loss of generality, we assume
that bj,1 > bj,2 and hj,1 > hj,2 > 0. If hj,1 < hj,2, rj,1
would always be selected. If hj,2 = 0, we can always add
τ > 0 to hj,1, hj,2 and H such that hj,2 > 0.

We construct an instance of EEWM-PHO as follows. Let
I = 2, d = H , vj = Cj , K′

j = 2, oj = o, wj(1) =
hj,1µjp, wj(2) = 2hj,2µjp, uj = (Bj−bj,1)/(hj,1P ) and E =
∑

1≤j≤J
Bj − B, where Bj = (2hj,2bj,1 − hj,1bj,2)/(2hj,2 −

hj,1). It is obvious that the construction process can be done
in polynomial time.

Then, if job vj only has one task, its execution time is
tj(1) = wj(1)/(µjp) = hj,1, and its DEC isEj(1) = tj(1)µjP =
Bj − bj,1. If job vj has two tasks, the execution time of each
task is tj(2) = wj(2)/(2µjp) = hj,2, and the DEC of job vj
is Ej(2) = 2tj(2)µjP = Bj − bj,2. Obviously, two tasks in a
job are mapped onto two machines simultaneously.

Therefore, if the answer to the given instance of TCKP
is YES (or No), the answer to the constructed instance of
EEWM-IJOM is also YES (or No). Proof ends.

4.2 Approximation Algorithm
We prove that EEWM-PHO is weakly NP-complete and

design an FPTAS as shown in Alg. 1 by reducing this prob-
lem to the weakly NP-complete restricted shortest path (RSP)
problem [13], which is solvable with an FPTAS.

Given an instance of EEWM-PHO, we construct an in-
stance of RSP according to the pipeline-structured workflow
as follows. As illustrated in Fig. 1, the network graph G con-
sists of V = {vj,k|j = 1, . . . , J, k = 1, . . . ,K′

j} ∪ {u0, uj |j =
1, . . . , J} with a source u0 and a destination uJ , and E =
{e2j−1,k , e2j,k|j = 1, . . . , J, k = 1, . . . ,K′

j}, where e2j−1,k =
(uj−1, vj,k) and e2j,k = (vj,k, uj). Then, we calculate the ex-
ecution time of job vj with k tasks as tj(k) = wj(k)/(k·p·µj),

e1,1 e2,1

e1,2 e2,2

e1,k e2,k

e1,K’ e2,K’

 ⁞ 

 ⁞ 

v1,1

v1,2

v1,k

v1,K’

u1u0

e3,k

…

e2J-2,k

uJ-1

e2J-1,1 e2J,1

e2J-1,2 e2J,2

e2J-1,k e2J,k

e2J-1,K’ e2J,K’

 ⁞ 

 ⁞ 

vJ,1

vJ,2

vJ,k uJ

1
st
 Job J

th
 Job

vJ,K’1

11 J

J

J

Figure 1: A constructed network corresponding to
a workflow with a pipeline structure.

Algorithm 1: EEWM-PHO-FPTAS

Input: A cluster {mi(N, p, o, P )} and a chain of jobs {vj}
with a deadline d and a set {wj(Kj)} of workloads

1: Construct a DAG G(V,E) for pipeline {vj} as shown in
Fig. 1, and assign cost Ej(k) and delay tj(k) to edge e2j−1,k
and zero cost and zero delay to edge e2j,k ;

2: Use FPTAS in [13] to find the minimum-cost path from u0

to uJ under delay constraint d with approximate rate (1 + ǫ)
and convert it to mapping scheme.

and accordingly its DEC as Ej(k) = k · P · µj · tj(k). Sub-
sequently, we assign the cost c(e) and delay l(e) of each
edge e ∈ E as c(e2j−1,k) = Ej(k), l(e2j−1,k) = tj(k), and
c(e2j,k) = l(e2j,k) = 0, and set the delay constraint on a
path from u0 to uJ to be d. As a result, the minimum cost
in RSP is exactly the minimum DEC in EEWM-PHO, and if
vj,k is on the solution path to RSP, the j-th job has k tasks.
Based on Theorem 1 and the above reduction, we have

Theorem 2. EEWM-PHO is weakly NP-complete.

Let K′ = max1≤j≤J K′
j . Then, |V| ≤ JK′ + J + 1 and

|E| ≤ 2JK′ in the constructed graph G. It is obvious that
the construction process can be done within time O(JK′).
Therefore, EEWM-PHO finds a feasible solution that con-
sumes energy within the least DEC multiplied by (1 + ǫ) in
time O(J2K′2/ǫ) if the FPTAS in [13] is used to solve RSP in
acyclic graphs. Thanks to the special topology in Fig. 1, the
time complexity is further reduced to O(JK′(logK′+1/ǫ)).

5 Algorithm Design for an Arbitrary Work-

flow on a Heterogeneous Cluster

We consider EEWM with a DAG-structured workflow on
a heterogeneous cluster and design a heuristic algorithm,
referred to as big-data adaptive workflow mapping for energy
efficiency (BAWMEE).

5.1 An Overview of BAWMEE
The key idea of BAWMEE is to partition a DAG into

a set of pipelines and then repeatedly employ Alg. 1 with
near optimality and low time complexity to achieve energy-
efficient mapping of each pipeline.

In BAWMEE, each workflowmapping consists of two com-
ponents: iterative critical path (CP) selection and pipeline
mapping. A CP is the longest execution path in a workflow,
which can be calculated in linear time. The algorithm starts
with computing an initial CP according to the average exe-
cution time of each job running in serial on all the machines,
followed by a pipeline mapping process. Then, it iteratively
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Algorithm 2: BAWMEE

Input: a workflow f(G(V, A), d) and an ART table R for
sub-clusters {Cl}

1: Tbl← buildTET (V, {Cl});
2: if simplyMap(f,R({Cl}), T bl) =True then

3: return .
4: tLF

j ← +∞ for ∀vj ∈ f ; tLF
J ← d for the end job vJ in f ;

5: Calculate the average execution time t̄j of each job vj
running in serial on all the machines;

6: G′ ← G;
7: while ∃ an unmapped job ∈ V do

8: Find the critical path cp ending at a job v with the
earliest LFT in G′ according to {t̄j |vj ∈ G′};

9: if EEPM(cp,R({Cl}), T bl) =False then

10: v ←MDPM(cp,R({Cl}));
11: if v 6= Null then
12: D ← {all the downstream jobs of v in G−G′};
13: if D 6= ∅ then
14: Cancel the mapping of each job v′ ∈ D, and add

v′ and its associated precedence constraints to G′;
15: EAJM(v, R({Cl});
16: G′ ← G′ − {vj ∈ cp|vj is mapped};

Table 2: Time-Energy Table Tblj of Job vj .
tj(Kj,1, Cj,1) < tj(Kj,2, Cj,2) < . . . < tj(Kj,n, Cj,n)
ej(Kj,1, Cj,1) > ej(Kj,2, Cj,2) > . . . > ej(Kj,nCj,n)
Kj,1 ∈ [1,K′

j ] Kj,2 ∈ [1,K′

j ] . . . Kj,n ∈ [1,K′

j]
Cj,1 ⊂ M Cj,2 ⊂ M . . . Cj,n ⊂ M

computes a CP with the earliest last finish time (LFT) from
the remaining unmapped workflow branches based on the
same average execution time of a job as above and performs
a pipeline mapping of the computed CP until there are no
branches left.

In pipeline mapping, we consider two extreme scenarios:
resource/time sufficiency and resource/time insufficiency. In
the former case, we only need to focus on energy efficiency,
while in the latter case, it may be unlikely to meet the
performance requirement. Therefore, we design one algo-
rithm for each of these two scenarios: a heuristic for energy-
efficient pipeline mapping (EEPM) under a deadline con-
straint in Alg. 3, which calls Alg. 1, and a heuristic for min-
imum delay pipeline mapping (MDPM) with energy aware-
ness in Alg. 4. If Alg. 3 fails to find a feasible mapping
scheme due to limited resources, we resort to Alg. 4. In
EEPM, due to the homogeneity of tasks in a job, we map
all the tasks in the same job onto a homogeneous sub-cluster,
hence using Alg. 1 to balance the trade-off between execu-
tion time and DEC (directly associated with total work-
load) for each job on a pipeline. In MDPM, we search for
a good task partitioning to minimize the end time of each
job through a limited number of tries by reducing the possi-
ble number of tasks in each job vj from {1, 2, 3, . . . , K′

j} to

{1, 2, 22, . . . , 2⌊logK′

j⌋} ∪ {K′
j}.

5.2 Algorithm Description

If a job vj has been mapped, it has AST tAS
j and AFT

tAF
j . If all the preceding (and succeeding) jobs, in Prec (and
Succ), of job vj are mapped, its earliest start time (EST)
(and LFT) can be calculated as

tES
j =

{

0, if vj is the start job of workflow f,
max

vj′∈Prec(vj)
tAF
j′ , otherwise;

Algorithm 3: EEPM

Input: a pipeline pl with its EST pl.est and LFT pl.lft, an
ART table R({Cl}), and TETs {Tblj}

Output: a boolean variable to indicate whether pl or its
part is mapped

1: Label the index j of each job in pl from 1 to the length of pl;
2: Calculate the earliest possible start time of the first job in pl

on any machine as est according to R({Cl});
3: pl.est← max{est, pl.est};
4: if

∑
vj∈pl tj(Kj,1, Cj,1) > pl.lft− pl.est then

5: return False.
6: Convert pipeline pl, where each quadruple in Tblj of each

job vj ∈ pl corresponds to one of its mapping options, into a
network graph in RSP;

7: Use Alg. 1 to calculate the number Kj of tasks, sub-cluster

C(vj), and start and finish time, tSj and tFj , for each job vj ;

8: for vj+1 ∈ pl do

9: if tFj > t′LF (vj) or tFj < t′ES(vj+1) then

10: pl(1, j).est← pl.est;
11: if tFj > t′LF (vj) then

12: pl(1, j).lft← t′
LF

(vj);
13: else

14: pl(1, j).lft← min{t′ES(vj+1), t
′
LF (vj ), pl.lft};

15: return EEPM(pl(1, j), R({Cl}), T bl);
16: if ∃ Kj pairs of a CPU core and memory of size oj in

R(C(vj )) for ∀vj ∈ pl then

17: Map all Kj tasks onto C(vj) from tSj to tFj for ∀vj ∈ pl;

18: return True;
19: return False;

and

tLF
j =

{

d, if vj is the end job of workflow f,
min

vj′∈Succ(vj)
tAS
j′ , otherwise,

respectively. If there exist unmapped preceding and suc-
ceeding jobs of vj , its temporary earliest start time (TEST)
t′ES(vj) and temporary last finish time (TLFT) t′LF (vj) can
be calculated based on only its mapped preceding and suc-
ceeding jobs, respectively. The EST and LFT of a pipeline
are the EST of its first job and LFT of its end job, respec-
tively.

Each job vj is associated with a set of pairs of the num-
ber Kj,n of tasks and the used homogeneous sub-cluster
Cj,n. Each pair corresponds to a certain execution time
tj(Kj,n, Cj,n) and DEC ej(Kj,n, Cj,n) = P (Cj,n)wj(Kj,n)/p(Cj,n),
where p(Cj,n) and P (Cj,n) are the speed and the DPC of a
fully utilized CPU core on a machine in Cj,n, respectively,
and wj(Kj,n) is the workload of vj with Kj,n tasks. All the
quadruples {(tj(Kj,n, Cj,n), ej(Kj,n, Cj,n),Kj,n, Cj,n)} are sorted
in the ascending order of execution time as listed in Table 2,
and are referred to as the time-energy table (TET) Tblj of
job vj . Any quadruple with both execution time and DEC
larger (worse) than those of another will be deleted from
Tblj .

In Alg. 2, BAWMEE first builds a time-energy table for
each job by calling buildTET (). If the workflow cannot meet
its deadline with each job running the fastest, BAWMEE
performs energy-aware job mapping (EAJM) with minimum
finish time for each job in a topologically sorted order by
calling simplyMap(). Otherwise, BAWMEE employs itera-
tive CP selection to find a CP with the earliest LFT from
unmapped jobs, and performs EEPM or MDPM (if EEPM
fails) for the selected CP. If there is any job that cannot

38



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

Algorithm 4: MDPM

Input: a pipeline pl and an ART table R for {Cl}
Output: the first job that cannot be mapped
1: for all vj ∈ pl do
2: if EAJM(vj , R({Cl})) > t′

LF
(vj) then

3: Cancel the mapping of job vj ;
4: return vj ;
5: return Null.

Algorithm 5: EAJM

Input: a job vj and an ART table R for sub-clusters {Cl}

Output: the EFT tEF
j of job vj

1: Update the TEST t′
ES

(vj); tEF
j ← +∞;

2: for K ← 1, 2, 4, . . . 2

⌊

logK′

j

⌋

, K ′
j do

3: Calculate the EFT tEF
j (K) of job vj with K tasks by

minimizing the finish time of each task one by one;
4: if tEF

j > tEF
j (K) then

5: tEF
j ← tEF

j (K); Kj ← K;

6: Map job vj consisting of Kj tasks until tEF
j ;

7: return tEF
j .

be mapped in MDPM, we cancel the mapping of its down-
stream jobs. If it is the last job of the workflow, we perform
EAJM with minimum finish time.

In Alg. 3 of EEPM, we reset the EST for the input pipeline
according to the earliest time such that enough resources
are made available to the first job. If the pipeline can-
not meet its LFT with each job running the fastest, we
exit EEPM; otherwise, the mapping of a pipeline with its
EST and LFT is converted into the RSP problem with a re-
laxed resource limit. Accordingly, we calculate the number
of tasks, the sub-cluster, and the start/finish time for each
job using Alg. 1. Then, we check if the start and finish time
of each job are between its TEST and TLFT in their execu-
tion order. If there exists a job that violates the precedence
constraint, we divide the pipeline at this job, and use Alg. 3
to compute the mapping of the upstream sub-pipeline with
an updated LFT constraint. We repeat this process until
we find a sub-pipeline whose mapping meets all precedence
constraints. If the cluster is able to provide each job in this
sub-pipeline with enough resources based on the mapping re-
sult of Alg. 1, we proceed with this mapping; otherwise, we
fail to find an EEPM and thus exit. In this case, BAWMEE
would proceed to search for an MDPM.

In Alg. 4 of MDPM, we search for the earliest finish time
(EFT) of each job using EAJM in their execution order,
and thus obtain the EFT of the entire pipeline. In Alg. 5 of
EAJM with minimum finish time under resource constraints,
we exponentially relax the limit on the maximum number
of tasks in a job to make a tradeoff between the optimality
and the time complexity of EAJM.

Since EEPM and MDPM are of O(J2K′L[log(K′L) +
1/ǫ]+M ′H) and O(M ′HJK′ logK′), respectively, the time
complexity of BAWMEE is O(J2K′[JL(1/ǫ + log(K′L)) +
M ′H logK′]). Here, M ′ is the number of machines; L is
the number of homogeneous sub-clusters, J is the number
of jobs; K′ is the maximum number of tasks in a job; and
H is the number of time slots in the ART table.

v1
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v7

v8

Figure 2: An example of a workflow structure G.

Table 3: Time-Energy Table in the Example
Time 3 2 5 4 2 3 5
Energy 6 8 5 8 ⇒ 8 6 5

# of Tasks 1 2 1 2 2 1 1
Sub-cluster C1 C1 C2 C2 C1 C1 C2
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Figure 3: Workflow mapping in the example: (a)
BAWMEE; (b) Optimal.

5.3 A Numerical Example
In this subsection, we use a simple example to illustrate

how BAWMEE achieves energy-efficient workflow mapping
without violating precedence constraints. We consider an
idle clusterM = C1∪C2 consisting of 4 single-core machines,
where C1 = {m1, m2} and C2 = {m3,m4}, and receives
a workflow f comprised of homogeneous jobs organized in
Fig. 2 with a deadline of 19 time units. The execution time
and DEC of a job with a different task partitioning on a dif-
ferent sub-cluster are calculated and listed on the left side of
Table 3. BAWMEE first builds a TET for each job on the
right side of Table 3. A pipeline {v1, v2, v4, v6, v8} is selected
as the initial CP. We assume that ǫ is set to be 0.02. In an
approximation solution of pipeline mapping with EST of 0
and LFT of 19, each job has only one task, and v1, v2 and
v6 are mapped onto machine m1 in C1 from 0 to 3, from
3 to 6, and from 11 to 14, respectively, and v4 and v8 are
mapped onto machine m3 in C2 from 6 to 11 and from 14
to 19, respectively. Then, the second pipeline {v3, v5, v7} is
selected as the CP in G− {v1, v2, v4, v6, v8}. In an approxi-
mation solution of pipeline mapping with EST of 3 and LFT
of 14, v3 intends to have one task and be mapped onto C2

from 3 to 8, and v5 and v7 intend to have one task and be
mapped onto C1 from 8 to 11 and from 11 to 14, respectively.
Since v3 misses its TLFT of 6, the first sub-pipeline {v3} of
{v3, v5, v7} is extracted and the approximation solution of
sub-pipeline mapping with EST of 3 and LFT of 6 is that v3
has one task and is mapped onto a machine m2 in C1 from 3
to 6. Subsequently, the third pipeline {v5, v7} is selected as
the CP in G− {v1, v2, v3, v4, v6, v8}, and the approximation
solution of its mapping with EST of 6 and LFT of 14 is that
v5 intends to have one task and be mapped onto C2 from 6
to 9 and v7 intends to have one task and be mapped onto C1

from 9 to 14. Since v7 starts before its TEST of 11, the first
sub-pipeline {v5} of {v5, v7} is extracted and the approxi-
mation mapping solution of the sub-pipeline with EST of 6
and LFT of 11 is that v5 has one task and is mapped onto a
machine m4 in C2 from 6 to 11. Finally, the fourth pipeline
{v7} is selected as the CP in G − {v1, v2, v3, v4, v5, v6, v8},

39



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

The Number of Map Tasks
22 29 51 96 187

E
x
e

c
u

ti
o

n
 T

im
e

 (
in

 M
in

u
te

s
)

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 4: The execution time of a MapReduce job
versus the number of tasks.

and the approximation solution of its mapping with EST of
11 and LFT of 14 is that v7 has one task and is mapped onto
machine m2 in C2 from 11 to 14. Specifically, the mapping
result of BAWMEE is shown in Fig. 3(a), and its DEC is 45
units. The optimal mapping is shown in Fig. 3(b), and the
minimum DEC is 44 units.

6 Performance Evaluation

We conduct experiments to illustrate the effect of task
partitioning on job workload and conduct simulations to
evaluate the performance of BAWMEE in comparison with
two existing algorithms adapted from different scenarios: i)
pSciMapper adapted from a workflow mapping algorithm
in [28] by applying the interference avoidance to MapRe-
duce mapping, and ii) EEDA adapted from a MapReduce
job mapping algorithm integrated with algorithms in [9]
and [10].

6.1 Performance Model Validation
We consider a computing performance model where the

total workload of a moldable parallel job increases and the
execution time of each task decreases as the number of tasks
increases. For model validation, we conduct an experiment
to illustrate the effect of task partitioning on job workload
for big data applications, which is the foundation of this
research. Towards this goal, we implement a MapReduce
program to find out the most common reason for flight can-
cellations based on the airline on-time performance data set
from [1] and run this program on a computer server equipped
with 2 processors of Intel(R) Xeon(R) CPU E5-2630 with 6
cores of 2.30GHz and 64GB memory. The program execu-
tion time is measured and plotted in Fig. 4, which shows
that the execution time of this MapReduce job increases as
the number of tasks increases when the server is fully uti-
lized during execution, which means that the total workload
increases with the number of tasks.

6.2 Simulation Settings
We generate a series of random workflows as follows: (i)

randomly select the length L of the critical path of a work-
flow (no less than 3) and divide the workflow into L layers,
in each of which every job has the same length of the longest
path from the start job; (ii) randomly select the number of
jobs in each layer except the first and last layers, in which
there is only one job; (iii) for each job, add an input edge
from a randomly selected job in the immediately preceding
layer, if absent, and an output edge to a randomly selected
job in its downstream layer(s); (iv) randomly pick up two
jobs in different layers and add a directed edge from the job
in the upstream layer to the job in the downstream layer
until we reach the given number of edges. The number of

Table 4: Specifications for Four Types of Machines
Mach. CPU Models # of Freq. DPC per Mem.
Type cores (GHz) core (W) (GB)
1 6-core Xeon E7450 18 2.40 90 64
2 Single Core Xeon 6 3.20 92 64
3 2-Core Xeon 7150N 12 3.50 150 64
4 Itanium 2 9152M 8 1.66 104 64

precedence constraints of the workflow is set to 1.5 times
of the number of jobs, if possible. The maximum possible
number of tasks for each job is randomly selected between
12 and 48. The workload of a job is randomly selected be-
tween 0.6× 1012 and 21.6× 1012 CPU cycles when running
in serial. The workload w(k) of a job with k > 1 tasks is
randomly selected between w(k − 1)[1 + 0.2/(k − 1)] and
w(k − 1)[1 + 0.6/(k − 1)]. We calculate the sum t1 of the
average execution time of the serial jobs on the critical path
and the sum t2 of the average execution time of all serial
jobs according to the CPU speeds of all types of machines,
and randomly select a workflow deadline baseline from the
time range [t1, t2]. The percentage of execution time for
CPU-bound instructions of a task in each job on each type
of machine is randomly selected between 0.1 and 1.0. The
memory demand of a task in each job is randomly selected
from 0.5GB to 4GB at an interval of 0.5GB.

We evaluate these algorithms in a heterogeneous clus-
ter consisting of machines with four different specifications
listed in Table 4, based on 4 types of Intel processors. Each
homogeneous sub-cluster has the same number of machines.
Each scheduling simulation lasts for 3 days and is repeated
20 times with different workflow instances, whose arrivals
follow the Poisson distribution. In the performance evalua-
tion, each data point represents the average of 20 runs with
a standard deviation. The parameter ǫ in BAWMEE is set
to 0.2. By default, the workflow size is randomly selected
between 40 and 60 jobs; the cluster size and the average ar-
rival interval of workflows are set to be 128 machines and 30
minutes, respectively; the deadline factor, which is a coef-
ficient multiplied by the deadline baseline to determine the
actual workflow deadline, is set to 0.1.

The dynamic energy consumption reduction (DECR) over
the other algorithms in comparison is defined as

DECR(Other) =
DECOther −DECBAWMEE

DECOther

· 100%,

where DECBAWMEE and DECOther are the average DEC
per workflow achieved by BAWMEE and the other algo-
rithm, respectively. The deadline missing rate (DMR) is de-
fined as the ratio of the number of workflows missing their
deadlines to the total number of workflows. The unit run-
ning time (URT) is measured as the average simulation run-
ning time for computing the mapping scheme of each work-
flow. The simulation runs on a Linux machine equipped
with Intel Xeon CPU E5-2620 v3 of 2.4 GHz and a memory
of 16 GB.

6.3 Simulation Results

6.3.1 Problem Size

For performance evaluation, we consider 20 different prob-
lem sizes from small to large scales, indexed from 1 to 20 as
tabulated in Table 5. Each problem size is defined as a
quadruple (|V |, |M |, 1/λ, T ), where 1/λ is the average ar-
rival interval of workflow requests in minutes, and T is the
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Figure 5: DECR vs. problem sizes.
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Figure 6: DMR vs. problem sizes.
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Figure 7: URT vs. problem sizes.
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Figure 8: DEC vs. deadlines.

Deadline Factor
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

a
d

lin
e

 M
is

s
in

g
 R

a
te

 (
%

)

0

10

20

30

40

50

60

70

80

90

100
pSciMapper
EEDA
BAWMEE

Figure 9: DMR vs. deadlines.
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Figure 10: URT vs. deadlines.
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Figure 11: DECR vs. workflow
sizes.
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Figure 12: DMR vs. workflow
sizes.
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Figure 13: URT vs. workflow sizes.
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Figure 14: DEC vs. cluster sizes.
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Figure 15: DMR vs. cluster sizes.

The Number of Machines
64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
n

in
g

 T
im

e
 p

e
r 

W
o

rk
fl
o

w
 M

a
p

p
in

g
 (

s
)

0

1

2

3

4

5

6

7
pSciMapper
EEDA
BAWMEE

Figure 16: URT vs. cluster sizes.

time period in unit of days for accepting workflow requests in
each simulation. As the workflow size and arrival frequency
increase from index 1 to 20, we increase the resources cor-
respondingly to meet tight deadlines with factor 0.1. We
plot the DECR, DMR, and URT of pSciMapper, EEDA,
and BAWMEE in Figs. 5-7, respectively, which show that
BAWMEE saves 58.1% to 67.3% DEC and 22.1% to 40.1%
DEC in comparison with pSciMapper and EEDA, respec-
tively, and the DMR of pSciMapper (or EEDA) minus that
of BAWMEE is in the range of 42.6% to 93.4% (or 4.1% to

59.7%). Furthermore, the URT of BAWMEE is on the same
order of magnitude as those of pSciMapper and EEDA and
is less than 7.4 seconds even for problem index 20.

6.3.2 Deadline Constraint

We evaluate the performance of pSciMapper, EEDA, and
BAWMEE in terms of DEC, DMR, and URT under differ-
ent deadline constraints obtained from the deadline base-
line multiplied by a factor from 0.05 to 1 with an interval
of 0.05. The DEC, DMR, and URT of these algorithms
are plotted in Figs. 8-10, respectively. These measurements
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Figure 17: DEC vs. workflow
structures.
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Figure 18: DMR vs. workflow
structures.
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Figure 19: URT vs. workflow
structures.

Table 5: Problem Sizes.
Index (|V |, |M|, 1/λ, T ) Index (|V |, |M|, 1/λ, T )

1 (3-7, 4, 240, 7) 11 (53-57, 192, 30, 1)
2 (8-12, 8, 200, 7) 12 (58-62, 256, 25, 1)
3 (13-17, 12, 160, 7) 13 (63-67, 384, 20, 1)
4 (18-22, 16, 150, 7) 14 (68-72, 512, 15, 1)
5 (23-27, 24, 120, 7) 15 (73-77, 768, 12, 1)
6 (28-32, 32, 105, 3) 16 (78-82, 1024, 10, 1/3)
7 (33-37, 48, 90, 3) 17 (83-87, 1536, 8, 1/3)
8 (38-42, 64, 60, 3) 18 (88-92, 2048, 6, 1/3)
9 (43-47, 96, 45, 3) 19 (93-97, 3072, 5, 1/3)
10 (48-52, 128, 30, 3) 20 (98-102, 4096, 4, 1/3)

show that BAWMEE saves 56.7% to 71.0% DEC and 8.8%
to 43.1% DEC as the deadline increases, and reduces DMR
from 99.8% and 90.4% to 54.2% with a deadline factor of
0.05 in comparison with pSciMapper and EEDA, respec-
tively. The DMR of BAWMEE is close to zero when the
deadline factor is larger than 0.1. Additionally, the URT of
BAWMEE is less than 0.6 second and is 89.1% to 1.2 times
and 6.6 to 13.2 times of those of pSciMapper and EEDA,
respectively. It is worth pointing out that as the deadline
increases, the DEC and URT of BAWMEE decrease, be-
cause EEPM plays a more significant role than MDPM in
BAWMEE. Hence, BAWMEE makes a better tradeoff be-
tween DEC and DMR than the other algorithms in compar-
ison at an acceptable cost of running time.

6.3.3 Workflow Size

For scalability test, we run these three algorithms under
different average workflow sizes with 5 to 100 jobs per work-
flow at a step of 5, where the maximum and minimum work-
flow sizes are 2 jobs more and less than the average work-
flow size, respectively. We plot the DECR, DMR, and URT
of these algorithms in Figs. 11-13, respectively, where we
observe that BAWMEE achieves an increasing DECR be-
tween 54.8% and 73.2% in comparison with pSciMapper,
and between 8.2% and 49.3% in comparison with EEDA.
Moreover, BAWMEE only misses less than 3.0% deadlines
while pSciMapper and EEDA miss 77.9% to 97.6% and 9.6%
to 69.6% deadlines, respectively. For large workflow sizes
with 80 to 100 jobs per workflow that impose high resource
demands, BAWMEE achieves a DECR between 8.2% and
11.5%, because it significantly reduces DMR (the first ob-
jective) from over 54.3% to less than 0.1%, in comparison
with EEDA. The DMR of EEDA experiences a slump under
the medium workflow sizes because a higher accuracy could
be achieved on the execution progress of a smaller workflow
than a larger one, while a further increase in the workflow
size may lead to a more severe shortage of computing re-

sources. In addition, the URT of BAWMEE is 75.5% to
3.6 times and 1.3 to 10.2 times of those of pSciMapper and
EEDA, respectively.

6.3.4 Cluster Size

We run these three algorithms under different cluster sizes
of 64 to 256 machines at a step of 16 for scalability test. The
DEC, DMR, and URT of these algorithms are plotted in
Figs. 14-16, respectively, where we observe that as the num-
ber of machines increases, BAWMEE consumes 54.2% to
69.3% and 6.6% to 43.9% less DEC than pSciMapper and
EEDA, respectively, hence exhibiting a satisfactory scala-
bility property with respect to the cluster size. Further-
more, DAWMEE only misses 0.1% to 4.0% deadlines while
pSciMapper and EEDA miss 77.9% to 98.9% and 7.7% to
78.3% deadlines, respectively. The increase in the cluster
size results in a relatively looser deadline and a more flex-
ible workflow mapping, as a result of which, the DMRs of
these three algorithms drastically decrease, and BAWMEE
has more chances to save energy. Moreover, the URT of
BAWMEE is less than 6.4 seconds and is comparable with
those of pSciMapper and EEDA.

6.3.5 Workflow Structure

We further investigate these three algorithms with vari-
ous workflow structures, including a random shape, a chain,
a tree, a reverse tree, and a diamond. The DEC, DMR,
and URT are plotted in Figs. 17-19, respectively, which
show that BAWMEE reduces DEC by 63.6%, 56.6%, 86.3%,
86.5% and 86.2% as well as by 27.6%, 14.7%, 72.1%, 72.5%
and 72.2% in comparison with pSciMapper and EEDA in
random, chain, tree, reverse tree and diamond structured
workflows, respectively. Further, BAWMEE saves less en-
ergy in chain-structured workflows than others, because the
deadline baseline is set to be the tightest for this struc-
ture based on our deadline generation method. BAWMEE
only misses 0.2%, 0%, 1.6%, 0% and 0% deadlines, while
pSciMapper and EEDA miss 89.7%, 100%, 58.0%, 71.9%
and 61.6% deadlines, and 12.3%, 32.8%, 3.2%, 4.6% and
3.4% deadlines in random, chain, tree, reverse tree and dia-
mond structured workflows, respectively. Besides, the URT
of BAWMEE is less than 0.6 second, and is 1.0 times, 4.5
times, 1.1%, 0.4% and 0.4%, as well as 9.4 times, 12.7 times,
16.5%, 9.1% and 6.4% of those of pSciMapper and EEDA
in random, chain, tree, reverse tree and diamond structured
workflows, respectively.

7 Conclusion

We investigated the property of moldable jobs and formu-
lated a workflow mapping problem to minimize dynamic en-
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ergy consumption under deadline and resource constraints.
We designed an FPTAS for a special case with a pipeline-
structured workflow on a homogeneous cluster, which was
proved to be NP-complete, and a heuristic for a general-
ized problem with an arbitrary workflow on a heterogeneous
cluster. The performance superiority of the proposed heuris-
tic in terms of dynamic energy saving and deadline miss-
ing rate was illustrated by extensive simulation results in
Hadoop/YARN in comparison with existing algorithms.

Our work reveals that the energy-efficient and deadline-
aware mapping algorithms tailored to big data workflows
could lead to significant energy savings and a higher level of
Quality of Service. It is of our future interest to incorporate
the proposed mapping algorithms into the existing workflow
engines in the Hadoop ecosystem including Oozie [2] and
Tez [3], and evaluate the performance of energy saving for
real-life big data workflows.
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