=Paper=
{{Paper
|id=Vol-1818/paper4
|storemode=property
|title=Ontology-based Visual Querying with OptiqueVQS: Statoil and Siemens Cases
|pdfUrl=https://ceur-ws.org/Vol-1818/paper4.pdf
|volume=Vol-1818
|authors=Ahmet Soylu,Martin Giese,Ernesto Jimenez-Ruiz,Evgeny Kharlamov,Rudolf Schlatte,Christian Neuenstadt,Ozgur Ozcep,Hallstein Lie,Vidar Klungre,Sebastian Brandt,Ian Horrocks
}}
==Ontology-based Visual Querying with OptiqueVQS: Statoil and Siemens Cases==
Ontology-based Visual Querying with
OptiqueVQS: Statoil and Siemens Cases?
Ahmet Soylu1 , Martin Giese2 , Ernesto Jimenez-Ruiz2 , Evgeny Kharlamov3 ,
Rudolf Schlatte2 , Christian Neuenstadt4 , Özgür Özçep4 , Hallstein Lie5 , Vidar
Klungre2 , Sebastian Brandt6 , and Ian Horrocks3
1
Norwegian University of Science and Technology, Norway
ahmet.soylu@ntnu.no
2
University of Oslo, Norway
{martingi, ernestoj, rudi}@ifi.uio.no
3
University of Oxford, UK
{evgeny.kharlamov, ian.horrocks}@cs.ox.ac.uk
4
University of Lübeck, Germany
{neuenstadt, oezcep}@ifis.uni-luebeck.de
5
Statoil ASA, Norway
hali@statoil.com
6
Siemens AG, Germany
sebastian-philipp.brandt@siemens.com
Abstract. In this demo, we present an ontology-based visual query
system, namely OptiqueVQS, for querying static and dynamic data
sources. The demo will be based on industrial scenarios provided by
Statoil ASA and Siemens AG.
Keywords: Visual query formulation, Ontology, Stream, Sensors, OBDA
1 Motivation
The operational efficiency and effectiveness of business processes rely on domain
experts’ agility in interpreting data into actionable business information. In a
typical value creation scenario, domain experts depend on IT experts to extract
and deliver relevant data by translating their information needs into extract-
transform-load (ETL) processes. Such a workflow is too time intensive, heavy-
weight and inflexible; therefore, domain experts need to extract and analyse the
data of interest directly. Although querying is an essential instrument for meeting
ad hoc information needs, domain experts do not necessarily have technical
skills and knowledge on databases and formal query languages, such as SQL and
SPARQL, to extract data. In this context, visual methods for query formulation
undertake the challenge of making querying independent of users’ technical skills
and knowledge on the underlying textual query language and data structure [4].
To this end, we have developed an ontology-based visual query system, namely
OptiqueVQS [17,19,15,1], to enable domain experts to formulate queries on their
?
Copyright held by the author(s). NOBIDS 2016.
Fig. 1. OptiqueVQS interface – querying static data.
own with respect to an expressive and intelligible domain vocabulary provided by
an ontology. OptiqueVQS allows querying static and dynamic data (i.e., stream-
temporal) and has been developed within an industrial project, called Optique
[5,7,8,10,11]. Optique offers an end-to-end ontology-based data access (OBDA)
platform for Big Data. OBDA technologies [14] virtualise data sources into RDF
and enable in-place access to legacy data (e.g., relational) over ontologies without
duplicating or migrating data into triple stores.
In this demo, we present OptiqueVQS over two industrial scenarios, involving
static and dynamic data, provided by Statoil ASA [9] and Siemens AG [12,6]
respectively.
2 System Overview
OptiqueVQS is a visual query system (VQS), which is a system of interactions
rather than a visual query language (VQL) with a formal syntax and notation [16].
It combines multiple representation and interaction paradigms in a widget-based
architecture to address a broad range of user and task types. One can formulate
tree-shaped conjunctive queries with aggregation. Expressivity is intentionally
compromised for the sake of usability; more precisely, frequently used query types
presenting less complexity to the users are of priority.
Figure 1 and Figure 2 are examples for querying static [18] and dynamic data
[19] sources respectively. OptiqueVQS generates SPARQL for static data and
STARQL [13] for dynamic data. Users formulate queries by selecting concept-
relationship pairs from a menu-based widget, and constraining and selecting
Fig. 2. OptiqueVQS interface – querying dynamic data.
attributes from a form-based widget (see Figure 1). Formulated queries are
presented as trees, where typed variables appear as nodes and object properties
appear as arcs. Dynamic properties are coloured in blue and when one is selected
users could provide parameters such as slide and window and can select predefined
templates (see Figure 2).
The main component of OptiqueVQS’s backend is a graph projector [19].
This component uses a technique to extract a suitable graph-like structure from
a set of OWL 2 axioms [3,2] and feeds OptiqueVQS’s widgets in order to enable
a graph-based navigation over an ontology during query formulation. A data
sampler component is used to enrich the underlying ontology with additional
axioms to capture values from data that are frequently used and rarely changed.
This allows presenting attributes in different types, such as sliders, multi-select
boxes, date pickers etc, with respect to the underlying data. Moreover, backend
harvests the query log for ranking and suggesting query extensions as a user
formulates a query [15].
Finally, a set of user experiments with casual users [17] and domain ex-
perts [18,19] has been conducted. The results have revealed high efficiency and
effectiveness.
3 Demonstration Scenario
This demo will be based on anonymised Siemens relational stream sensor data
gathered from different appliances, such as steam turbines and generators, and
on a public fragment of Statoil data regarding the petroleum activities.
Acknowledgments. This work was funded by the EU FP7 Grant “Optique”
(agreement no. 318338).
References
1. A. Soylu, M. Giese, E. Jiménez-Ruiz et al.: Why not simply Google? In: Proceed-
ings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast,
Foundational (NordiCHI 2014). pp. 1039–1042. ACM (2014)
2. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuska, S., Zheleznyakov, D.:
Faceted Search over Ontology-Enhanced RDF Data. In: Proceedings of the 23rd
ACM International Conference Information and Knowledge Management (CIKM
2016). pp. 939–948. ACM (2014)
3. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuska, S., Zheleznyakov, D.:
Faceted search over RDF-based knowledge graphs. Web Semantics: Science, Services
and Agents on the World Wide Web 37-38, 55–74 (2016)
4. Catarci, T., , Costabile, M.F., Levialdi, S., Batini, C.: Visual Query Systems for
Databases: A Survey. Journal of Visual Languages and Computing 8(2), 215–260
(1997)
5. Giese, M., Soylu, A., Vega-Gorgojo, G., Waaler, A., Haase, P., Jimenez-Ruiz, E.,
Lanti, D., Rezk, M., Xiao, G., Ozcep, O., Rosati, R.: Optique: Zooming in on Big
Data. IEEE Computer Magazine 48(3), 60–67 (2015)
6. Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Kotidis, Y., Lamparter,
S., Mailis, T., Neuenstadt, C., Özçep, O., Pinkel, C., Soylu, A., Svingos, C.,
Zheleznyakov, D., Horrocks, I., Ioannidis, Y., Möller, R., Waaler, A.: Enabling
semantic access to static and streaming distributed data with optique: demo. In:
Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems (DEBS 2016). pp. 350–353. ACM (2016)
7. Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Kotidis, Y., Lamparter,
S., Mailis, T., Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Soylu, A., Svingos, C.,
Zheleznyakov, D., Horrocks, I., Ioannidis, Y.E., Möller, R., Waaler, A.: Scalable
Semantic Access to Siemens Static and Streaming Distributed Data. In: Proceedings
of ISWC 2016 Posters & Demonstrations Track. CEUR Workshop Proceedings, vol.
1690. CEUR-WS.org (2016)
8. Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Lamparter, S., Neuenstadt,
C., Özçep, Ö.L., Pinkel, C., Soylu, A., Zheleznyakov, D., Roshchin, M., Watson, S.,
Horrocks, I.: Semantic Access to Siemens Streaming Data: the Optique Way. In:
Proceedings of the ISWC 2015 Posters & Demonstrations Track. CEUR Workshop
Proceedings, vol. 1486. CEUR-WS.org (2015)
9. Kharlamov, E., Hovland, D., Jiménez-Ruiz, E., Lanti, D., Lie, H., Pinkel, C., Rezk,
M., Skjæveland, M.G., Thorstensen, E., Xiao, G., Zheleznyakov, D., Horrocks, I.:
Ontology Based Access to Exploration Data at Statoil. In: Proceedings of the 14th
International Semantic Web Conference (ISWC 2015). LNCS, vol. 9367, pp. 93–112.
Springer (2015)
10. Kharlamov, E., Jimenez-Ruiz, E., Pinkel, C., Rezk, M., Skjæveland, M.G., Soylu,
A., Xiao, G., Zheleznyakov, D., Giese, M., Horrocks, I., Waaler, A.: Optique:
Ontology-Based Data Access Platform. In: Proceedings of the ISWC 2015 Posters
& Demonstrations Track. CEUR Workshop Proceedings, vol. 1486. CEUR-WS.org
(2015)
11. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bilidas, D., Giese, M., Haase,
P., Horrocks, I., Kllapi, H., Koubarakis, M., Özçep, Ö., Rodrı́guez-Muro, M., Rosati,
R., Schmidt, M., Schlatte, R., Soylu, A., Waaler, A.: Optique: Towards OBDA
Systems for Industry. In: Proceedings of the ESWC 2013 Satellite Events. LNCS,
vol. 7955, pp. 125–140. Springer (2013)
12. Kharlamov, E., Solomakhina, N., Özçep, Ö.L., Zheleznyakov, D., Hubauer, T.,
Lamparter, S., Roshchin, M., Soylu, A., Watson, S.: How Semantic Technologies Can
Enhance Data Access at Siemens Energy. In: Proceedings of the 13th International
Semantic Web Conference (ISWC 2014). LNCS, vol. 8796, pp. 601–619. Springer
(2014)
13. Neuenstadt, C., Moller, R., Ozcep, O.: OBDA for Temporal Querying and Streams
with STARQL. In: Proceedings of the First Workshop on High-Level Declarative
Stream Processing (HiDeSt 2015). CEUR Workshop Proceedings, vol. 1447, pp.
70–75. CEUR-WS.org (2015)
14. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking Data to Ontologies. Journal on Data Semantics X 10, 133–173 (2008)
15. Soylu, A., Giese, M., Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks,
I.: Towards Exploiting Query History for Adaptive Ontology-Based Visual Query
Formulation. In: Proceedings of the 8th Research Conference on Metadata and
Semantics Research (MTSR 2014). CCIS, vol. 478, pp. 107–119. Springer (2014)
16. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks,
I.: Ontology-based End-user Visual Query Formulation: Why, what, who, how, and
which? Universal Access in the Information Society (in press)
17. Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing
OptiqueVQS – a multi-paradigm and ontology-based visual query system for end-
users. Universal Access in the Information Society 15(1), 129–152 (2016)
18. Soylu, A., Giese, M., Schlatte, R., Jimenez-Ruiz, E., Ozcep, O., Brandt, S.: Domain
Experts Surfing on Stream Sensor Data over Ontologies. In: Proceedings of the 1st
International Workshop on Semantic Web Technologies for Mobile and Pervasive
Environments (SEMPER 2016). CEUR Workshop Proceedings, vol. 1588. CEUR-
WS.org (2016)
19. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks,
I.: Ontology-based Visual Query Formulation: An Industry Experience. In: Pro-
ceedings of the 11th International Symposium on Visual Computing (ISVC 2015).
LNCS, vol. 9474, pp. 842–854. Springer (2015)