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Abstract. Educational research has demonstrated the importance of embodiment 
in the design of student learning environments, connecting bodily actions to 
critical concepts.  Gestural recognition algorithms have become important tools 
in leveraging this connection but are limited in their development, focusing 
primarily on traditional machine-learning paradigms. 
 We describe our approach to real-time learning analytics, using a gesture-
recognition system to interpret movement in an educational context. We train a 
hybrid parametric, hierarchical hidden-Markov model using a one-shot construct, 
learning from singular, user-defined gestures. This model gives us access to three 
different modes of data streams: skeleton positions, kinematics features, and 
internal model parameters. Such a structure presents many challenges including 
anticipating the optimal feature sets to analyze and creating effective mapping 
schemas. Despite these challenges, our method allows users to facilitate 
productive simulation interactions, fusing of these streams into embodied 
semiotic structures defined by the individual. This work has important 
implications for the future of multimodal learning analytics and educational 
technology. 
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1 Introduction 

The connection between embodiment and human cognition has become increasingly 
established within an array of academic domains [13][16][17][15][5][9]. Specifically, 
educational research has shown the importance of embodiment in designing effective 
student learning environments [10][19][11]. The idea that human cognition is 
embedded in our bodily interactions with our physical environment has provoked the 
need for technological tools that can explore, recognize, and apply users' movement in 
educational interventions. The ability to reinforce the embodied nature of cognition and 
to leverage it for effective learning has gained traction as the theoretical understanding 
and technical capabilities of motion-capture systems expand. With limiting factors 
eroding, we can start constructing models that fully take advantage of this developing 
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research and multimodal learning analytics (MMLA), creating applications that test the 
bounds of embodied learning with interactive visualization technologies. 

While the opportunity to create more advanced models that engage MMLA for 
embodied learning exists, the majority of interactive learning systems employ direct-
manipulation paradigms (i.e. pushing virtual buttons, grasping virtual objects) rather 
than empowering learners to use expressive gestures based on their own embodied 
intuitions [6][12].By using machine-learning algorithms, we are able to recognize and 
analyze symbolic gestures, mining parameters from users' movement, providing them 
with a rich and minimally constraining palate to interact and develop within systems. 

Systems which utilize gesture-based input seem like a natural way to strengthen the 
connection between body and mind in digital interaction yet many challenges remain 
for the user and designer of such systems. One of the most significant inhibitors to 
effective interaction is the cognitive load it takes to memorize and perform precise, pre-
defined inputs. Users are often forced to fit their movement into templates that have 
generalized any relatable physical nuance of their gesture. This prevents users from 
developing any kind of meaningful semiotic structure that gives them access to higher 
level relationships and more abstract concepts, often resorting to simple and direct 
connections between movement and ideas. In a fluid and dynamic interaction setting, 
especially where the development of a personalized language of movement would 
promote more established semiotic structures, this is not optimal. Users would be forced 
to learn a collective gesture library onto which they would have to project their 
expressions, remaining contained within impersonal constructs that are removed from 
their own conceptions. 

2 Proposed Model 

To empower users to define their own gestural relationships with symbols, we have 
implemented a novel system that nurtures an effective learning environment through 
real-time analytics, fostering embodied cognition. We train a hybrid hierarchical 
hidden-Markov model (HHMM) [8] with one-shot training [7] creating a system that is 
defined by and specific to the user. By specifying interaction to the individual, users 
are able to form stronger semiotic frameworks much quicker and with a greater level 
of satisfaction using our one-shot model in comparison to the same model that is 
traditional. 

In order to collect motion data, we use the Microsoft Kinect V2 [2] due to it's relative 
robustness-cost ratio and its portability.  The Kinect captures movement through the 
generation of depth maps, utilizing a camera and infrared sensor. From these depth 
maps a skeleton frame representing the spatial position of a subject can be extracted. 
Using the Kinect's application programming interface, our data collection software uses 
Open Sound Control [20] to send a `skeleton' of joint-positions to our feature analysis 
and gesture recognition components. This results in our first data stream, skeleton 
position. 
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Fig. 1. User interacting with our model through an educational simulation 

Our feature generation and data processing software is written in Max 6/Jitter [18], 
extracting an array of features including positional derivatives (i.e. velocity, 
acceleration, jerk), comparative features (i.e. relative positions and their derivatives, 
dot product between features), and statistical metrics (i.e. summation of speed across 
joints, analog for total body `energy', mean of feature windows) all at a variety of 
timeframes concurrently. This results in our second data stream, kinematic features. 

From these features, we train a HHMM to recognize and extract abstract model 
features from user gestures.  The user is able to define as many gestures as they wish, 
training each class in succession, using only one example for each class. Once the user 
has recorded their complete gesture space, an HHMM adapted from the IRCAM 
`MUBU' package [1] is trained. This model creates a machine-learned representation 
of the user's interaction, generating temporal, probabilistic parameters. This results in 
our third data stream, internal model parameters. 

After training, we combine these data streams create a hybrid model that classifies 
gestures, extracts abstract model parameters, defines kinematic features, and measures 
summary statistics. This model can then be used to recognize and analyze users' 
gestures, allowing them to begin developing semiotic structure between abstract 
concepts and their movement. While these streams all ultimately rely on a singular 
source, they provide unique analytic opportunities and are thus considered different 
modes. 

3 Model Challenges 

While we have shown that our model can be successful in experimental tasks, 
immersive simulation theatres, and several other applications [14][3], we continue to 
address a variety of challenges including discovering the optimal set of features and 
creating the most effective mapping schemas to benefit the learners.  
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The biggest challenge we face is determining the most relevant features that engage 
the user and provide analytic insight. While we can gather and analyze a multitude of 
features, determining the most prescient features and how those features interact is an 
opportunity for realizing a more effective model in performance and accuracy. For our 
initial work, we chose to create a robust model that incorporates as many features as 
we could collect in order to empirically determine the best feature set. We've 
experimented with variety of approaches to focusing our features including setting 
empirically determined thresholds, selecting only statistically significant features, and 
providing users with the agency to select features of their choosing. While we've found 
some success with these methods, more investigation needs to be done.  

While we are able to extract a variety of features, connecting them to the users 
beyond intuitive responses has proven elusive. The ability to adapt our analytics in real-
time relies heavily on an efficient mapping schema that takes full advantage of all of 
the features we are extracting, physical and abstract. Additionally, this is essential to 
creating a more intuitive and empowering interaction for the user. In order to address 
this, we've incorporated real-time, visual feedback into our training and simulations, 
reinforcing user interaction through performance. 

4 Conclusion 

The ability to ground abstract concepts in tangible, intuitive, embodied metaphors is a 
vital foray into advancing effective education and other application interventions. By 
creating a model in which the user can specifically and quickly define their interactions 
through the fusion of different data streams, we offer a novel tool that begins to explore 
one-shot learning as a means to real-time multimodal learning analytics. 
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