
An iStar 2.0 Editor Based on the
Eclipse Modelling Framework

Martin Liebenberg, Kerstin Roßmaier, and Gerhard Lakemeyer

Knowledge-Based Systems Group (KBSG), RWTH Aachen University,
Ahornstrae 55, D-52056 Aachen, Germany,

{liebenberg,gerhard}@kbsg.rwth-aachen.de

kerstin.rossmaier@rwth-aachen.de

https://www.kbsg.rwth-aachen.de/

Abstract. During the search for a replacement of our outdated OpenOME
editor to obtain a new editor for iStar 2.0, we became aware of certain
tools from the Eclipse Modeling Project. These tools provide the possi-
bility to build modern graphical editors in a convenient way with little
programming overhead. They also meet our requirements for an editor
which should be flexible in changing the metamodel of iStar and easy to
extend. In this paper, we report on our quest to find an Eclipse modelling
framework which makes it easy to create and adapt an up-to-date iStar
2.0 editor.

Keywords: iStar 2.0, Model-Driven Software Development, Eclipse Modeling
Project, iStar Tools

1 Introduction

For many years we have used an old version of the Eclipse-based OpenOME
[16] which was adapted by our group around 2009. Today, its code base is not
in a good shape and is based on old libraries. Nevertheless, in our project we
needed further adaptation of this code base for a multi-agent simulation [12] and
decided to get a new editor last year.

First of all, we looked for the newest OpenOME version. The SourceForge
page [1] and the Trac [2] of OpenOME showed that the last modifications were
made in 2011. The projects of Eclipse release a major version every year [3] and
adaptation to the new frameworks, libraries and even Java language features [5]
may be expensive. Furthermore, OpenOME has problems with maintainability
and stability [10]. Finally, we wanted to have an editor which supports the newest
version of iStar because recently the specification of iStar 2.0 had been released.

Starting from scratch with a new editor for the iStar 2.0 dialect we need [12]
has the promise of a code base which is better to maintain. Such an editor should
be light-weight and better to adapt to updates of libraries and language changes.
OpenOME was based on the Graphical Modeling Framework (GMF) which is
part of the Graphical Modeling Project [4]. To this project several frameworks are



related that generally follows the concept of Model-Driven Software Development
(MDSD) [11], where programs are automatically generated using a formal model.
In our case this would mean that the code for editors is generated equipped with
interfaces to embed them into other software. With these modelling techniques
we hoped to get a new editor fast. In the following sections we report our findings
about these frameworks and our choice of an iStar editor.

2 Searching for a Suitable Framework

As stated above, we want to use MDSD for the easy creation of an editor for
iStar 2.0 diagrams. To this end, we created a formal model of a fragment of
iStar 2.0 which is interesting for us. Then in a further step, we investigated
three different frameworks for creating graphical editors using this model. Here
we only consider Eclipse-based tools, because for us it is important that we can
connect the editor to other software which is quite easy to achieve within Eclipse.

Fig. 1. iStar 2.0 fragment in Ecore

All the frameworks we examined utilize an Ecore metamodel, which comes
from the Eclipse Modeling Framework (EMF) [14], to describe the metamodel
for the editors. Figure 1 shows our Ecore model of a fragment of iStar 2.0 as an
UML diagram that we used for editor generation. Due to lack of space, here we
concentrate on a fragment of the iStar 2.0 language as defined in [8] and omit
elements we are currently not using and additional elements we need for our
simulation. For instance, in our metamodel we need a link which indicates which
agent provides a resource.



In the following we present the three frameworks we looked at: the Graphical
Modeling Framework, Graphiti and Sirius. All three frameworks are based on
EMF and the Graphical Editing Framework (GEF) [13]. Ultimately, we chose
Sirius for our editor implementation, which is described in Section 3.

2.1 Graphical Modeling Framework

As the first of the three frameworks we considered GMF [4] because OpenOME
was based on it. It uses the Ecore model as base model and utilizes models
from EMF for describing the editor. The Graphical Definition Model contains
information about the representation of elements from our Ecore model. Further,
the Tooling Definition Model describes the behavior of tools available in the
editor. GMF uses other models as well as ones which depend on one another
and therefore require changes after changing one of these models. Finally, after
deriving several models with different purposes, GMF automatically generates
Java code for the defined editor.

GMF works well for small Ecore models that result in simple editors so that
little customization of the EMF-based models is required. For larger domains,
like ours, for which we need to add constraints, such as tasks appearing only
inside agents, the Graphical and Tooling Definition Model, in addition to the
Mapping Model which links these two models, quickly become large and hard
to maintain. In addition, changing one model usually requires changes to others,
which makes GMF inflexible, especially when changing the metamodel. Since
flexibility is a requirement of ours, this makes GMF not a good fit for our pur-
pose. An advantage of GMF is, that advanced feature customization outside of
the framework’s options can simply be added to the Java code GMF creates.

2.2 Graphiti

In contrast to GMF, Graphiti [9] does not provide code generation. Instead
developers have to write code using a Java API that hides the complexities
of working with EMF and GEF. Same as GMF the Ecore model is the base
of Graphiti and we can describe an editor by implementing so called Diagram
Type Agents for all elements required in our editor. These contain the behavior
of that element described through features such as create, delete, or resize. The
Graphiti Rendering Engine takes care of the graphical representation that we
can customize in a Pictogram Model.

Because Graphiti does not provide automatic code generation, it loses an
advantage of MDSD. Standard code, for example the feature delete, has to be
rewritten for every Diagram Type Agent. In addition, Graphiti requires more
knowledge of Java and plug-in development with Eclipse compared to GMF.
But it is more flexible than GMF, since it is not based on a complex network
of models. Changes to the metamodel only require changes to our code, and
Graphiti allows incremental development of an editor. It is also very customiz-
able, since we can add additional functionality to our code. Developers might
prefer Graphiti over GMF, because it is more similar to conventional coding.



2.3 Sirius

The third framework we considered is Sirius [15] which differs from the first two,
since it does not use automatic code generation like GMF or require manual
coding like Graphiti. Instead the Ecore model and a Viewpoint Specification
Model (VSM) have to be specified in the Sirius Tooling framework; no code is
written or automatically created. The Sirius Runtime, which is independent from
the tooling framework, then interprets the XML-like VSM at runtime. When
describing the VSM, we can access the Ecore model through a Domain-specific
language (DSL) that is updated automatically after changes to the metamodel
happen. Using the DSL and the Acceleo Query Language (AQL) [7], we can
define elements of the editor and specify their appearance and behavior. Because
the Sirius Runtime automatically updates the editor while changes are made to
the VSM, it is possible to simultaneously work on the description of an editor
and create diagrams with that editor.

Because Sirius does not require any code for an editor and allows changing the
editor while using it, it is the most flexible out of the three frameworks. Therefore
Sirius allows changes to the Ecore model more easily than GMF and Graphiti.
The VSM has an intuitive structure, so it does not require much practice to
work with. A risk of the lack of code generation might be that we have to rely
on Sirius for many customization options. But so far the limitations seem to be
only of a visual nature, as we discuss in the next section. For the reasons listed
above, we decided on the Sirius framework for an implementation of our editor.

3 Implementation in Sirius

As stated in the last section, creating an editor with Sirius requires little famil-
iarization with the framework. We simply linked our Ecore model to a new Sirius
project and accessed all its elements through a Domain-specific language (DSL).
After that we defined the node and link types needed in our editor. For example,
we specified a task as a node-type by setting its Domain Class to istarmodel.Task.
This description refers to the class Task in our Ecore model called istarmodel
from Figure 1. Then we set a relation between Task and the IstarDiagram class
through the expression feature:elements, which refers to the reference elements
in Figure 1 that Task inherits from the class IntentionalElement. Links between
nodes are defined similarly, by referring to the Ecore model and the node types
to which they belong; for example the link neededBy has to reference the Task
and Resource node types. Next, we specified creation tools that allow users the
construction of diagrams with the editor. For example, the Task Creation Tool
assigns the new task a name and links it to an actor. Figure 2 shows the editor
that we created with Sirius. In the center the editor displays the current dia-
gram, while all diagrams and their elements are listed on the left. Creation tools
for all elements are listed on the right side and the bottom shows properties of
the currently selected element, such as references to other elements.

As shown above, providing basic functionality for an editor is very simple
with Sirius. Adding more complex features, such as the capability for roles to



Fig. 2. Diagram Editor for iStar dialect, created with Sirius

contain elements or adding validation of the diagram, does not require much work
either, thanks to the DSL and the query language AQL. Eclipse extension points
and the ability to call custom Java functions allow even more customizations.
The only limitations we found are of a visual nature, for example adding custom
edge decorators outside of the ones supplied by Sirius would require code changes
in the Sirius core [6]. Because of that, the AND-refinement has a different end
decoration, namely an arrow instead of the T-shaped arrowhead, than in the
iStar 2.0 documentation [8]. Apart from that, Sirius’ advantage is that it does not
have any code generation, which makes the editor creation very easy and flexible.
Making changes to the Ecore model requires only a few minor adjustments to
definitions we wrote with the DSL. The VSM has a good structure that speeds up
work. In addition, Sirius saves created models in two files, thus separating visual
from semantic information. This gives us easy access to the model which we
require for translating iStar models into other languages [12]. These advantages
make Sirius a good choice for our project.

4 Conclusion

In this paper, we investigated three Eclipse-based frameworks that generally
follow the concept of Model-Driven Software Development. For our purposes
we hoped to find a framework which makes creating an editor for an iStar 2.0
fragment easy and flexible. We think that we have found a suitable framework
with the Sirius framework. The only drawback so far is that the AND-refinement
can not have the right T-shaped arrowhead in its representation in the editor.
To make this possible one has to change the core of the frame work. But this
would not be a good option if we want a maintainable solution.



At the moment we only have a basic stand-alone editor. In future work, we
need to connect our Sirius-based editor with other tools needed for multi-agent
simulation.

References

1. OpenOME SourceForge Files. https://sourceforge.net/projects/openome/files,
2011. Accessed 23-April-2017.

2. OpenOME Trac Source Browser. https://se.cs.toronto.edu/trac/ome/browser,
2011. Accessed 23-April-2017.

3. Eclipse Version History. https://wiki.eclipse.org/Simultaneous Release, 2017. Ac-
cessed 23-April-2017.

4. GMF-Graphical Modelling Framework. http://www.eclipse.org/modeling/gmp,
2017. Accessed 23-April-2017.

5. What’s new in JDK 8. http://www.oracle.com/technetwork/java/javase/8-whats-
new-2157071.html, 2017. Accessed 23-April-2017.

6. Florian Barbin. Bug: Custom ”Source Arrow” and ”Target Arrow” for an edge
style. https://bugs.eclipse.org/bugs/show bug.cgi?id=484508, 2016. Accessed 23-
April-2017.

7. Stephane Begaudeau. Acceleo Query Language - Query and navigate in EMF
models. https://www.eclipse.org/acceleo/documentation/aql.html, 2015. Accessed
23-April-2017.

8. Fabiano Dalpiaz, Xavier Franch, and Jennifer Horkoff. iStar 2.0 Language Guide.
arXiv preprint arXiv:1605.07767, 2016.

9. Markus Gerhart and Marko Boger. Concepts for the model-driven generation of
graphical editors in eclipse by using the graphiti framework. International Journal
of Computer Techniques, 3(4), 2016.

10. Tong Li, Alicia M. Grubb, and Jennifer Horkoff. Understanding Challenges and
Tradeoffs in iStar Tool Development. Proceedings of the Ninth International i*
Workshop (iStar 2016), 1674:49–54, 2016.

11. Stephen W Liddle. Model-Driven Software Development. In Handbook of Concep-
tual Modeling, pages 17–54. Springer, 2011.

12. Martin Liebenberg, Victor Mataré, Klaus Baier, and Gerhard Lakemeyer. Towards
Using i* for Modeling Mega-Urban Processes. In CEUR Proceedings of the Seventh
International i* Workshop (iStar14), volume 1157, 2014.

13. Dan Rubel, Jaime Wren, and Eric Clayberg. The Eclipse Graphical Editing Frame-
work (GEF). Addison-Wesley Professional, 2011.

14. Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
Eclipse Modeling Framework. Pearson Education, 2008.

15. Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. Sirius: A rapid devel-
opment of DSM graphical editor. In Intelligent Engineering Systems (INES), 2014
18th International Conference on, pages 233–238. IEEE, 2014.

16. Yijun Yu and Jennifer Horkoff an Eric Yu. OpenOME, An Open-source Goal and
Agent-Oriented Model Drawing and Analysis Tool. CEUR Proceedings of the 5th
International i* Workshop (iStar 2011), 766:154–156, 2011.


