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Abstract. The problem of optimal control of the hydraulic fracturing
process is set as the optimization problem of finding the input parameters
vector for the fracture propagation model that provides the minimization
of objective functions. Various objective functions based on the output
data of the fracture propagation model are considered. The problem is
formulated within the framework of multivariate and multiobjective op-
timization method, which is based on the combined features of fracture
propagation model and Genetic Algorithm. Plane radial model of frac-
ture propagation caused by Herschel-Bulkley fluid injection is used to
establish relationships between input parameters and fracture growth.
The potential of the proposed method for control of hydraulic fractur-
ing process is demonstrated by application to hydrocarbon reservoirs of
shallow bedding. Results show that the proposed methods for optimal
control of hydraulic fracturing process play the important role in maxi-
mization of the volume of mined hydrocarbon with significant decrease
of the costs for hydraulic fracturing execution.

1 Introduction

The goal of the optimization of the hydraulic fracturing process is the maxi-
mization of gas and oil production by maximization of the fractured reservoir
rock volume. The optimization of hydraulic fracturing is based on the model
of fracture propagation in elastic media caused by viscous fluid injection. In-
put parameters of fracture propagation model are: the surface of the cavity in
infinite elastic media; pumping pressure of fluid that causes fracture initiation
and propagation (or pumping schedule for fluid of given rheology); elastic me-
dia parameters. Output characteristics of the model are: the fracture surface;
fracture width distribution; speed of fracture front propagation. Calculation of
output characteristics using the input parameters is the direct problem of frac-
ture propagation. By solving it one can predict the geometry of forming fracture,
volume of hydrocarbon mined from the fracture, calculate costs of this process,
etc. The inverse problem is to find the vector of input parameters of fracture
propagation model that satisfies the given performance criteria of fracture forma-
tion and propagation processes. Optimal control of hydraulic fracturing process
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consists in the solution of the inverse problem. In this problem it is required to
find the parameters of rheological laws for fluid, pumping schedule (e.g. time
dependence of fluid injection rate), conditions of fracture initiation (geometry of
the cavity, its orientation against in-situ stresses of elastic media) that satisfy the
needed location of incipient fracture, linearity of fracture propagation trajectory,
uniformity of fracture width distribution along the trajectory, no sharp bends
along the fracture trajectory, minimal costs for hydraulic fracturing, maximal
volume of mined hydrocarbon.

In [1] the optimization of hydraulic fracturing process is carried out for the
PKN model. The model describes straight fracture propagation from the linear
source. It is supposed that the fracture is of constant height much lesser than the
fracture length. On this assumption the change of the parameters along fracture
height is negligible and the rock deformation can be considered as plain strain
state independently in each vertical section. In PKN model fracture toughness is
not taken into account. It is considered that the hydraulic fracturing fluid fills the
whole of the fracture, fracture tip mechanics is not considered. Filtration leakoff
to the rock is taken into account. Fracture geometry is considered as a func-
tion of the following parameters that influence the hydraulic fracturing process:
hydraulic fracturing fluid viscosity 𝜇, injection rate of fracturing fluid 𝑄in(𝑡),
injection time 𝑇 , proppant concentration 𝛿 and fracture half-length 𝑅frac. Frac-
ture height ℎfrac and width 𝑊 are calculated solving coupling relationships based
on fracture geometry and material balance. Optimization problem for hydraulic
fracturing process consists in maximization of total production over 10 years
with bound and design constraints. To solve the optimization problem the al-
gorithm INTEMOB (INTElligent Moving Object) is used. The main concept of
INTEMOB is based on the concepts of Genetic Algorithm, simplex-method and
EVOP-algorithm (EVolutionary OPeration).

In [2] the optimization of hydraulic fracturing process is carried out using
Pseudo-3D (P-3D) model of fracture propagation. P-3D model differs from PKN
model by taking into account variability of the parameters along fracture height
that influences fracture width. Problem statement and solution method for op-
timization problem are the same as in [1]. The results of [1] and [2] show that
the suggested method for solving of the stated optimization problems plays the
important role in hydraulic fracturing process improvement. Only a 12 % com-
promise with the production over 10 years saves about 44 % of the treatment
cost.

In [3] the optimization of hydraulic fracturing process using 3D model is pre-
sented. Barnett Shale gas field is considered as the object of investigation. It is
characterized by 7 rock layers and 4 sets of joints per rock layer. The goal of the
optimization of the hydraulic fracturing procedure is maximizing the fractured
reservoir rock volume which results in the maximization of gas production. For
three dimensional modeling, analysis and post processing FEM simulator AN-
SYS is used. For fracturing process modeling the program multiPlas is used.
Optimization tool optiSLang is used for calibration of more than 200 parame-
ters of the reservoir production simulator. The main result of modeling is 3D
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fissured reservoir rock. In the calibration process, the physical parameters are
updated until time and location of seismic fracture measurements show reason-
able agreement with the simulation results. Correlation analysis of optiSLang
identifies the main reservoir parameter to additionally calibrate the mechanism
of how the fracturing design parameter effects the fracture growth. Among the
wide range of the varied parameters the most important are layer thickness and
its location, elastic properties of the rock, hydraulic parameters, bedding plane
of the shale, the location and frequency of the fractures in this plane. These
parameters are compared (correlated) with reservoir and well test data. The
advanced functionality of the software supports taking into account some ad-
ditional physical effects such as thermal effects. Calibrated model was used to
predict the gas production rate. The predicted gas production rate from the cali-
brated model showed very good agreement to the real production rate and much
better agreement than the estimated production rates with the help of seismic
fracture measurements only. With help of the optimization design an increase of
gas production of 25 % was possible with just an optimized well position in the
reservoir.

In [4] optimization pump flow rates scenarios has been performed for the
particular wellbore situated in Iranian Sand Stone Reservoir. Pump flow rates
scenario is characterized by two parameters in this study: pump rate that is
assumed to be constant and time of pumping that is replaced by the fracture
half length. These two parameters are varied to maximize wellbore productivity
over a period of one year. The parameters are varied independently and only
one parametric problem of minimization arises. So no optimization algorithm is
needed. But the feature of the paper is the fact that a few different models have
been applied: pseudo three dimensional model, PKN, KGD and radial ones.

In [5] 2-D hydraulic fracturing model GEOS-2D, is used to simulate dynamic
fracture propagation within a pre-existing facture network. Instead of integrat-
ing physical models and economic models to maximize net present value as the
objective function, or estimating the total production of the wellbore over any
time period the authors of [5] focus on physical criteria, that is, the optimal
hydraulic fracture propagation under uncertain natural conditions. The fractal
dimension of the connected fractures can be derived from the post-fracturing
network simulated by GEOS-2D to represent the network density and connec-
tivity. Therefore, the fractal dimension is chosen as the objective function to
optimize the hydraulic fracturing well design. BOBYQA, a derivative-free non-
linear optimization algorithm, is applied in [5] to drive a global search on the
modeled response surface.

In the present paper the problem of optimal control of the hydraulic frac-
turing process is formulated as the optimization problem of finding the input
parameters vector for the fracture propagation model that provides the mini-
mization of several objective functions. Various objective functions based on the
output data of the fracture propagation model are considered. The problem is
formulated within the framework of multivariate and multiobjective optimiza-
tion method, which is based on the combined features of fracture propagation
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model and Genetic Algorithm. Plane radial model of fracture propagation caused
by Herschel-Bulkley fluid injection is used to establish relationships between in-
put parameters and fracture growth. The capability of the proposed method for
control of hydraulic fracturing process is demonstrated by application to hydro-
carbon reservoirs of shallow bedding. Results show that the proposed methods
for optimal control of hydraulic fracturing process play the important role in
maximization of the volume of mined hydrocarbon with significant decrease of
the costs for hydraulic fracturing execution.

2 Direct problem of hydraulic fracture propagation

The construction of the methods for optimal control of hydraulic fracturing
is carried out using the plane radial model of fracture propagation caused by
Herschel-Bulkley fluid injection.

2.1 Radial or penny-shaped model for fluid-proppant slurry

Hydraulic fracture propagation is simulated by the classical penny shaped model
[6,7,8] improved by more complex model of slurry flow inside the fracture. New-
tonian fluid model is replaced by more general Hershel-Bulkley model [9] and the
variation of proppant concentration is taken into account by convection equa-
tion added into the model. The geometrical concept of the penny-shaped fracture
model is presented in Fig. 1. Rock deformation under axisymmetric pressure load
in fracture is given by the integral relation

𝑊 (𝑟) =
8

𝜋𝐸′

𝑅frac∫︁

𝑟

⎛
⎝

𝜁∫︁

0

𝑝net(𝜉)𝜉√︀
𝜁2 − 𝜉2

√︀
𝜁2 − 𝑟2

𝑑𝜉

⎞
⎠𝑑𝜁, 𝐸′ =

𝐸

1 − 𝜈2
, 𝑝net = 𝑝−𝜎min,

(1)
where 𝑝 is absolute pressure of the slurry of fracturing fluid and proppant flow,
𝑅frac = 𝑅frac(𝑡) is fracture front position defined from the well-known criterion
of brittle fracture propagation

𝐾𝐼 =
2√

𝜋𝑅frac

𝑅frac∫︁

0

𝑝net(𝜉)𝜉√︀
𝑅2

frac − 𝜉2
𝑑𝜉 = 𝐾𝐼𝑐. (2)

Slurry flow in the fracture is described by continuity equation of fluid phase

𝜕(𝑟𝑊𝛼)

𝜕𝑡
+

1

2𝜋

𝜕(𝑄𝛼)

𝜕𝑟
+

1

2𝜋
𝛼𝑄𝐿(𝑟, 𝑡) = 0, (3)

where

𝑄 = 2𝜋𝑟𝑊𝑢, 𝑄𝐿(𝑟, 𝑡) =
4𝜋𝑟𝐶𝐿√︀
𝑡− 𝑡exp(𝑟)

, (4)
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continuity equation of proppant phase

𝜕(𝑟𝑊𝛿)

𝜕𝑡
+

1

2𝜋

𝜕(𝑄𝛿)

𝜕𝑟
= 0, (5)

and the momentum equation of slurry flow

𝜕𝑝net
𝜕𝑟

= −2𝐾

(︂
2𝑛+ 1

𝜋𝑛

)︂𝑛
𝑄𝑛

𝑊 2𝑛+1𝑟𝑛
+

(︂
4𝑛+ 2

𝑛+ 1

)︂
𝜏0
𝑊
, (6)

where 𝐾, 𝑛 and 𝜏0 are slurry parameters. In the considered model the rheology
of Herschel-Bulkley fluid is taken into account. In Herschel-Bulkley fluid shear
stress 𝜏 is expressed from yield stress 𝜏0, power law fluid rheology consistency
coefficient 𝐾, power law fluid rheology behavior index 𝑛 and the shear rate �̇� by
the formula

𝜏 = 𝜏0 +𝐾�̇�𝑛. (7)

Volume concentrations of the fluid 𝛼 and the proppant 𝛿 for all possible 𝑟
and 𝑡 are connected by the relation

𝛼(𝑟, 𝑡) + 𝛿(𝑟, 𝑡) = 1. (8)

The slurry viscosity is determined from the proppant concentration using
Maron-Pierce [10] relationship

𝐾(𝛿) = 𝐾(0)

(︂
1 − 𝛿

𝛿*

)︂−2

, (9)

where 𝛿* is the critical concentration of proppant. According to the experimen-
tal study performed by Mueller [11], this relationship can be used to calculate
viscosity of suspensions of solid particles. Yield stress 𝜏0 and behaviour index 𝑛
correspond to the used hydraulic fracture fluid.

On the wellbore the boundary condition for the slurry pumping rate

𝑄(𝑅w, 𝑡) = 𝑄in(𝑡) (10)

and for one of the two concentrations, e.g. for proppant,

𝛿(𝑅w, 𝑡) = 𝛿in(𝑡) (11)

is set. The fluid front 𝑅fluid is supposed to lag the fracture front 𝑅frac

𝑅frac −𝑅fluid > 0. (12)

On fluid front 𝑅fluid Stefan condition

𝜕𝑅fluid

𝜕𝑡
= 𝑢(𝑅fluid, 𝑡) =

𝑄(𝑅fluid)

2𝜋𝑅fluid𝑊 (𝑅fluid)
(13)

and the condition of zero absolute pressure 𝑝

𝑝net(𝑅fluid, 𝑡) = −𝜎min (14)
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Fig. 1: Plane radial model of fracture propagation.

are set. Net pressure 𝑝net on the interval from fluid front 𝑅fluid to fracture front
𝑅frac is also supposed to be −𝜎min. From (3) taking into account (10) one can
derive the equation of slurry balance at any time moment 𝑇

𝑇∫︁

0

𝑄in(𝑡)𝑑𝑡 = 2𝜋

𝑅fluid(𝑇 )∫︁

𝑅w

𝑟𝑊 (𝑟, 𝑇 )𝑑𝑟 + 2𝜋

𝑇∫︁

0

𝑅fluid(𝑇 )∫︁

𝑅w

𝑟𝑄𝐿(𝑟, 𝑡)𝑑𝑟𝑑𝑡. (15)

Initial data is set

𝑅frac(0) = 𝑅0, 𝑅fluid(0) = 𝑅0,

𝑊 (𝑟, 0) = 0, 𝑅w ≤ 𝑟 ≤ 𝑅0.
(16)

2.2 Direct problem solution

The hydraulic fracturing process lasts 𝑇 seconds. In Fig. 2 the flowchart of nu-
merical solution of incorporated to the model subproblems is presented. Let it be
the fracture with front 𝑅𝑛frac at the timestep 𝑛. Fracture front at (𝑛+1) timestep
is defined by the increment 𝛥𝑅frac to fracture front 𝑅𝑛frac. Fracture increment
𝛥𝑅frac has the fixed value for all timesteps of the problem. The fluid front posi-
tion is set 𝑅𝑛+1

fluid < 𝑅𝑛+1
frac . For the given fluid front position the equations (1), (2),

(3), (4), (5), (6), (10), (11), (13) of the “hydrodynamics-elasticity” problem are
solved numerically. After the convergence of pressure 𝑝net distribution is achieved
fulfillment of the condition (14) is checked. If this condition is not fulfilled the
fluid front position is corrected and the “hydrodynamics-elasticity” problem is
solved again. The process continues until the pressure on fluid front reaches the
value −𝜎min. Note that the time needed for the given fracture increment 𝛥𝑅frac

is calculated from (13).
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Fig. 2: The flowchart of direct problem solution.
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2.3 Production model

The primary goal of hydraulic fracturing is to increase the productivity of a well
by superimposing a highly conductive structure onto the formation. One of the
objective functions that are maximized in present paper is productivity index
(PI) 𝐽 . This index comes from the linear relation between the production rate
𝑄oil and the driving force (pressure drawdown) 𝛥𝑝 [12]

𝑄oil = 𝐽𝛥𝑝. (17)

To find PI the problem of non-stationary oil filtration from the reservoir to
the fracture and through the fracture to the wellbore is solved. The scheme of
this problem is presented in Fig. 3.

Filtration of the fluid in the fracture filled by proppant
The process of non-stationary oil filtration in plane radial fracture with faces

closed on the proppant at the moment 𝑡p and then having the fracture opening
distribution

𝑊p(𝑟) = 𝛿(𝑟, 𝑡p)𝑊 (𝑟, 𝑡p), (18)

is described by the convection-diffusion partial differential equation

𝜕𝑝p
𝜕𝑡

− 𝑘p
𝛽*𝑊p𝜇𝑟

𝜕

𝜕𝑟

(︂
𝑟𝑊p

𝜕𝑝p
𝜕𝑟

)︂
+

2𝑤res

𝛽*𝑊p
= 0 (19)

and the equation of Darcy’s law

𝑤p = −𝑘p
𝜇

𝜕𝑝p
𝜕𝑟

. (20)

In (19), (20) 𝑝p(𝑟, 𝑡) is pressure in the fracture; 𝑘p is fracture permeability; 𝑤p

is Darcy flux in the fracture; 𝑤res is Darcy flux of the oil from the reservoir to
the fracture; total system compressibility 𝛽* is defined as

𝛽* = 𝑚p(𝛽oil + 𝛽p), (21)

where 𝑚p is the porosity of the proppant in the fracture, 𝛽oil and 𝛽p are the
coefficients of oil and proppant compressibility correspondingly. It is supposed
that oil is a newtonian fluid with the coefficient of dynamic viscosity 𝜇.

The following boundary conditions are set on the wellbore

2𝜋𝑅𝑤
𝑘p
𝜇

𝜕𝑝p
𝜕𝑟

⃒⃒
⃒
𝑟=𝑅w

= 𝑄oil(𝑡), (22)

and at the fracture front
𝑝p(𝑅frac, 𝑡) = 0. (23)

Here 𝑄oil(𝑡) is debit of the wellbore. The initial condition for (19) is established

𝑝p(𝑟, 0) = 0, 𝑅w ≤ 𝑟 ≤ 𝑅frac. (24)
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Fig. 3: The scheme of non-stationary oil filtration in the reservoir and the frac-
ture.

Oil filtration from the reservoir to the fracture
The process of non-stationary oil filtration from the reservoir to the fracture

is described by the convection-diffusion equation [13], [14]

𝜕𝑝res
𝜕𝑡

− 𝑘res
𝛽**𝜇

𝜕2𝑝res
𝜕𝑧2

= 0 (25)

and the equation of Darcy’s law

𝑤res = −𝑘res
𝜇

𝜕𝑝res
𝜕𝑧

. (26)

In (25), (26) 𝑝res(𝑟, 𝑧, 𝑡) is reservoir pressure on the cylindrical surface of radius
𝑟 (see. Fig. 3); 𝑘res is permeability of the reservoir; 𝑤res is Darcy flux of the oil
along the cylinder surface; total compressibility 𝛽** is defined by the formula

𝛽** = 𝑚res(𝛽oil + 𝛽res), (27)

where 𝑚res is reservoir porosity, 𝛽res is reservoir compressibility.
At the distance 𝑧res from the fracture the condition is set

𝑝res(𝑟, 𝑧res, 𝑡) = 0, (28)

and at the fracture the following condition is set

𝑝res(𝑟, 0, 𝑡) = 𝑝p(𝑟, 𝑡). (29)

Initial data for (25) is established

𝑝res(𝑟, 𝑧, 0) = 0, 0 ≤ 𝑧 ≤ 𝑧res. (30)
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Coupled solution of the production model equations

The stated two subproblems of the production model are solved iteratively
by means of interchange of parameters 𝑤res(𝑟, 0, 𝑡) and 𝑝p(𝑟, 𝑡). Differential equa-
tions (19) and (25) are solved numerically using the finite difference methods.

3 Inverse problem of hydraulic fracture propagation

3.1 Problem statement

Variables

Penny-shaped fracture model parameters

The vector of free design variables x (which have been independently varied
in this study to find an optimum design) includes injection rate of fracturing fluid
𝑄in(𝑡), injection proppant concentration (volume fraction) 𝛿in(𝑡), fracturing fluid
parameters 𝐾, 𝑛, 𝜏0, the Young’s modulus 𝐸 and the Poisson’s ratio 𝜈 of the
rock, the Carter’s leak-off coefficient 𝐶𝐿. In that way

x = (𝑄in(𝑡), 𝛿in(𝑡),𝐾, 𝑛, 𝜏0, 𝐸, 𝜈, 𝐶𝐿). (31)

Production model parameters

The vector of free variables y includes debit of the wellbore 𝑄oil(𝑡), oil vis-
cosity 𝜇, fracture 𝑘p and reservoir 𝑘res permeability, fracture 𝑚p and reservoir
𝑚res porosity, compressibility coefficients of proppant 𝛽p, oil 𝛽oil and reservoir
𝛽res. In that way

y = (𝑄oil(𝑡), 𝜇, 𝑘p, 𝑘res,𝑚p,𝑚res, 𝛽p, 𝛽oil, 𝛽res). (32)
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Constraints

Bound constraints

The design variables are constrained within lower and upper bounds as fol-
lows:

𝑥l𝑖 ≤ 𝑥𝑖 ≤ 𝑥u𝑖 , 𝑖 = 1, . . . , 𝑁. (33)

Design constraints

Design constraints are formulated to prevent uncontrolled fracture growth,
multiple secondary fracture initiation, excessive fluid loss, to ensure that the
designed treatment program can be executed in the field using specified surface
equipment and downhole tubing, to ensure adequate fracture width, fluid effi-
ciency and desired geometric proportions. Design constraints are stated as the
inequalities:

𝜑𝑘(x) ≤ 0, 𝑘 = 1, . . . ,𝐾. (34)

For example, to constrain below the minimal fluid discharge to the fracture
in (34) the following function is assigned

𝜑1(x) = 𝑄min
in − min

𝑡
𝑄in(𝑡). (35)

Objective functions

The objective of the hydraulic fracturing is the increase of reservoir pro-
ductivity. Therefore in optimization problem it is reasonable to maximize the
cumulative production over time 𝑇prod years by means of minimization of the
major design objective

𝐹1(x,y) = −
𝑇prod∫︁

0

𝑄oil(𝑡)𝑑𝑡. (36)

To build the functional (36) one should solve all the problems formulated
above: fracture propagation during the time 𝑇 caused by the pumping of the
fluid-proppant mixture; non-stationary oil filtration from the reservoir to the
fracture closed on the proppant and through the fracture to the wellbore during
the period of time 0 ≤ 𝑡 ≤ 𝑇prod. It is quite complicated even if the considered 1D
problem statement is used. Therefore some simplifications are implemented. E.g.,
in [1], [2] instead of solving the filtration problem numerically its approximate
closed-form solutions are used for transient period [13], [14] and pseudo-steady-
state [15], derived with the assumption of the constant pressure in the wellbore
and using the empirical relations between flow rate and pressure gradient in
the near-wellbore zone. In practice even simpler formulation is often used. E.g.,
according to [12] in terms of productivity the optimal fracture closed on the
proppant can be considered the one for which the following relation is fulfilled

𝑊p(0)

𝑅frac(𝑇 )
= 1.6

𝑘res
𝑘p

. (37)
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Then the maximization of cumulative production during the time 𝑇prod can be
carried out by means of the minimization of the functional

𝐹2(x) =

⃒⃒
⃒⃒ 𝑊p(0)

𝑅frac(𝑇 )
− 1.6

𝑘res
𝑘p

⃒⃒
⃒⃒ , (38)

for which one need to solve just the problem of fracture propagation during the
time 𝑇 caused by the pumping of the fluid-proppant mixture.

As far as treatment cost of hydraulic fracturing is quite high, it also should
be considered during design work. One of the ways of reduction of the treatment
cost is the increase of fluid efficiency, i.e. the relation between the final fracture
volume and the volume of the fluid pumped into the fracture. The maximization
of fluid efficiency corresponds to minimization of the fluid leakoff total volume
that is achieved by using the functional

𝐹3(x) =

𝑇∫︁

0

𝑅fluid(𝑡)∫︁

𝑅w

𝑄𝐿(𝑟, 𝑡)𝑑𝑟𝑑𝑡. (39)

For low-permeable reservoirs with low value of 𝑘res in (37), such as shale, it
is urgent to create the fractures of large radius. The problem of radius maxi-
mization can be reformulated as the problem of minimization of fracture width
after the pumping stops

𝐹4(x) = 𝑊 (𝑅w, 𝑇 ), (40)

and the problem of average fracture front velocity maximization can be refor-
mulated as the problem of averaged fracture width opening minimization.

𝐹5(x) =
1

𝑇

𝑇∫︁

0

𝑊 (𝑅w, 𝑡)𝑑𝑡. (41)

To demonstrate the possibilities developed methods for multiobjective design
optimization of hydraulic fracturing in this study these functionals are consid-
ered.

General mathematical problem statement
It is necessary to find the parameter vector

x = (𝑥1, . . . , 𝑥𝑁 ) ∈ X, (42)

providing the minimums for the functionals

min
x∈X

𝐹1(x), . . . ,min
x∈X

𝐹𝑀 (x) (43)

in the presence of bound (33) and design (34) constraints. In (43) the numeration
of the functionals is not linked with the numeration of the particular functionals
defined above. It is supposed to consider 𝑀 ≥ 1 abstract functionals.
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3.2 Solution method

Since in general case it is impossible to find the vector x minimizing two or
more functionals at the same time, the solution of the problem is Pareto front.
In [1], [2] building Pareto front is carried out by solving the series of one-objective
optimization problems with freezing one of the functionals by means of the design
constraint. The technique used in our paper allows building Pareto front directly.
In case of multi-objective optimization Pareto front allows choosing compromise
between several performance criteria. Optimization problem (42), (43), (33),
(34) was solved by Genetic Algorithm that was used earlier by the authors for
multi-objective shape optimization of hydraulic turbines [16].
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Fig. 4: Fracturing fluid discharge laws for 𝑇 = 300 s: 𝑄in(𝑡) = 0.1 m3 / s (1); (44),
(45) with 𝑄0

in = 0.022 m3 / s and 𝑄𝑇in = 0.350 m3 / s, obtained from the solution
of 4.1 (2).

3.3 Fracturing fluid discharge law

For fracturing fluid discharge law variation during the time interval from 0 to 𝑇
we used its representation in the form of second order polynomial

𝑄in(𝑡) = 𝑎𝑡2 + 𝑏𝑡+ 𝑐, 0 ≤ 𝑡 ≤ 𝑇, (44)

which coefficients are found from the conditions

𝑄in(0) = 𝑄0
in, 𝑄in(𝑇 ) = 𝑄𝑇in,

𝑇∫︁

0

𝑄in (𝑡) 𝑑𝑡 = 𝑄*
in𝑇 (45)

and have the following representation

𝑎 =
(︀
−6𝑄*

in + 3𝑄𝑇in + 3𝑄0
in

)︀
/𝑇 2, 𝑏 =

(︀
6𝑄*

in − 2𝑄𝑇in − 4𝑄0
in

)︀
/𝑇, 𝑐 = 𝑄0

in.
(46)
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The parameter 𝑄*
in in (45) defines the volume of the pumped hydraulic frac-

turing fluid at constant injection rate 𝑄in(𝑡) and is set as non-varied parameter.
Parameters 𝑄0

in and 𝑄𝑇in are the first components of the vector x: 𝑥1 and 𝑥2
correspondingly. In Fig. 4 two fracturing fluid discharge laws at 𝑇 = 300 s are
presented: 𝑄in(𝑡) = 𝑄*

in with 𝑄*
in = 0.1 m3 / s and (44), (45) with 𝑄0

in = 0.022
and 𝑄𝑇in = 0.35, obtained from the solution of the problem 4.2 with bound
constraints 0.02 ≤ 𝑥1 ≤ 0.1, 0.1 ≤ 𝑥1 ≤ 0.5.

4 Results

4.1 One-objective optimization

In is necessary to find vector

x = (𝑥1, 𝑥2) = (𝑄0
in, 𝑄

𝑇
in), (47)

providing the minimum for the functional

min
x∈X

𝐹3(x) (48)

with bound

0.02 ≤ 𝑥1 ≤ 0.1, 0.1 ≤ 𝑥2 ≤ 0.5 (49)

and design

𝜑1(x) = 0.002 − min
𝑡
𝑄in(𝑡) ≤ 0 (50)

constraints. The values of the rest parameters are shown in Tab. 1.

Table 1: Parameters of the problem 4.1

Name Nomenclature Value Unit

Young modulus 𝐸 20 GPa

Poisson ratio 𝜈 0.2 –

In-situ stress 𝜎min 10 MPa

Fracture toughness 𝐾𝐼𝑐 1 MPa ·√m

Consistency coefficient 𝐾 1 Pa · s𝑛

Flow index 𝑛 1 –

Yield stress 𝜏 0 MPa

Carter leakoff coefficient 𝐶𝐿 10−4 m /
√
s

Wellbore radius 𝑅w 0.1 m

Pumping period 𝑇 300 s

Average discharge 𝑄*
in 0.1 m3 / s
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The solution of the problem is the vector

x = (0.022, 0.35), (51)

providing minimum 𝐹3 equal to 9.5 m3 and corresponding to fracturing fluid
discharge law shown in Fig. 4 under number 2. If one uses four parameters

x = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑄0
in, 𝑄

𝑇
in,𝐾, 𝑛) (52)

instead of two (47) with bound constraints

0.02 ≤ 𝑥1 ≤ 0.1, 0.1 ≤ 𝑥2 ≤ 0.5, 0.5 ≤ 𝑥3 ≤ 2, 0.8 ≤ 𝑥4 ≤ 1 (53)

then the better minimal value of 𝐹3 equal to 8.4 m3 for the solution vector

x = (0.022, 0.36, 2, 1) (54)

is obtained. It should be noted that the fracturing fluid discharge law is the
same for solutions (51) and 54. Also there is insignificant difference between the
dependences 𝑅frac(𝑡) and 𝑊 (𝑟, 𝑇 ) in the solutions of two- and four-parameter
problems shown in Fig. 5.

If one minimizes 𝐹4 instead of 𝐹3 in (48)

min
x∈X

𝐹4(x) (55)

with the same constraints then two-parameter problem statement gives x =
(0.1, 0.1) with minimal value of 𝐹4 equal to 8.4 mm, and four-parameter state-
ment gives x = (0.1, 0.1, 0.5, 0.8) with minimal value of 𝐹4 equal to 5.4 mm.
The dependencies of the direct problem solution for this vectors x are shown
in Fig. 6. Finally, the solutions of minimization problems for 𝐹5 are the vectors
x = (0.022, 0.35) and x = (0.02, 0.348, 0.53, 0.81) in cases of two (47) and four
(52) parameter optimization. In the first case the minimum is 6.1 mm, in the sec-
ond case – 3.9 mm. Corresponding dependencies of the direct problem solution
for this x are presented in Fig. 7.

4.2 Two-objective optimization

Let us find the vector (47) providing the minimum for the functionals

min
x∈X

𝐹3(x), min
x∈X

𝐹4(x) (56)

with bound (49) and design (50) constraints. The solution of this problem is
Pareto front presented in Fig. 8 with extreme points 1 and 2 marked. This
points correspond to the vectors x1 = (0.1, 0.1) and x2 = (0.022, 0.35). In Fig. 9
the solutions of direct problem for this vectors are shown.

Using four parameters (52) instead of two (47) with bound constraints (53)
gives Pareto front presented in Fig. 10. Points 1 and 2 on the front correspond to
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Fig. 5: Minimization of 𝐹3: two-parameter (curves 2) and four-parameter
(curves 4)
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Fig. 6: Minimization of 𝐹4: two-parameter (curves 2) and four-parameter
(curves 4).
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Fig. 7: Minimization of 𝐹5: two-parameter (curves 2) and four-parameter
(curves 4)
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Fig. 9: Distributions 𝑄in(𝑡) (a), 𝑅frac(𝑡) (b), 𝑊 (𝑅w, 𝑡) (c), 𝑊 (𝑟, 𝑇 ) (d), obtained
from the solution of direct problem for x1 (curves 1) and x2 (curves 2) solutions
of two-parameter optimization problem 4.2.
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Fig. 11: Distributions 𝑄in(𝑡) (a), 𝑅frac(𝑡) (b), 𝑊 (𝑅w, 𝑡) (c), 𝑊 (𝑟, 𝑇 ) (d), obtained
from the solution of direct problem for x1 (curves 1) and x2 (curves 2) solutions
of four-parameter optimization problem 4.2.
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Fig. 12: Pareto fronts in two-parameter (solid) and four-parameter (dashed) two-
objective optimization problems with extreme points 1, 1’, 2, 2’ correspondingly.
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the solution vectors x1 = (0.1, 0.1, 0.5, 0.8) and x2 = (0.022, 0.36, 2, 1). In Fig. 11
the solutions of direct problem obtained with this two vectors are shown.

In Fig. 12 Pareto fronts obtained from the solutions of two- and four-
parameter two-objective optimization problems are compared. In tab. 2 the
summary data for two- and four-parameter optimization problems is brought
together. The parameter vectors x and minimal values for the functionals 𝐹
from the solutions of one-objective optimization problems and from the extreme
points of Pareto fronts are compared.

Note that the extreme points 1 and 2 on Pareto front of the absolute minimum
for functionals 𝐹4 and 𝐹3 correspondingly give the values of this functionals close
to the ones obtained in one-objective optimization problem in which only one
functional is minimized while the other is not taken into account. Hence the
solutions obtained in 4.1 are the particular cases of the solution of two-objective
optimization problem or the extreme points of Pareto front.

Table 2: Summary data for optimization problems.

min
x
𝐹3(x) min

x
𝐹4(x)

𝐹

1-obj
2-par 9.5 8.4

4-par 8.4 5.4

2-obj
2-par 9.5 8.4

4-par 8.4 5.4

x

1-obj
2-par (0.022, 0.35) (0.1, 0.1)

4-par (0.022, 0.36, 2, 1) (0.1, 0.1, 0.5, 0.8)

2-obj
2-par (0.022, 0.35) (0.1, 0.1)

4-par (0.022, 0.36, 2, 1) (0.1, 0.1, 0.5, 0.8)

5 Conclusion

The methods for optimal control of hydraulic fracture are proposed. The proce-
dure consists of the following parts.

– The simulation of hydraulic fracture propagation caused by the pumping of
Herschel-Bulkley fluid and proppant slurry.

– The computation of productivity of the fracture filled with proppant based
on the combination of the models of plane-parallel and plane-radial filtration
for the simultaneous description of fluid filtration in the reservoir and the
fracture.

– Genetic algorithm for solution of multi-objective optimization problem and
building of Pareto front.
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The method capabilities are demonstrated on the proposed functionals that
have practical value and are used in non-automatic hydraulic fracturing design.
By means of choosing the discharge law of the fluid pumping and its rheological
parameters the following problems have been solved.

– Leakoff minimization.
– Fracture width on the wellbore minimization (or maximization of its radius).
– Time-averaged fracture width minimization (or maximization of fracture

propagation velocity).

It has been shown that while solving multi-objective optimization problem
the obtained Pareto front includes the solutions of one-objective optimization
problems as particular cases.

It has been shown that if only fluid discharge law is varied the it is impossible
to reduce the fracture width and fluid leakoff simultaneously. But if the variation
of fluid rheological parameters is allowed then it is possible to decrease fracture
width and leakoff volume simultaneously opposing to the case of fixed fluid
rheology.
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