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Abstract—The paper is devoted to the elementary discussion
on the triangles of Stirling numbers of the first kind and the r-
Stirling numbers as well. Aim of our investigations was to extract
the numerical sequences connected with these triangles, to verify
their presence in OEIS and to try to generate some properties
of these numbers. Moreover, we have supplemented with new
results the paper written by S. Falcon [4], the research object
of which was the triangle of numbers given by the binomial
transformations of k-Fibonacci numbers.

Index Terms—Pascal triangle, Stirling numbers of the first
kind, r-Stirling numbers of the first kind, Catalan numbers,
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I. INTRODUCTION

Creation of this paper was directly influenced by article [17]
which intrigued us and, in fact, imposed the subject of our
investigations. We became interested in the state of knowledge
concerning the Pascal triangles for the Stirling numbers of the
first kind and the r-Stirling numbers of the first kind. Thus, as
the goal of our research we took the extraction of numerical
sequences connected with these triangles (that is mainly the
sequences of sums of elements in the rows and along the
antidiagonals of the given triangle). Moreover, we verified the
presence of such sequences in OEIS and we undertook the
attempt to generate some properties of the investigated num-
bers. It is worth to emphasize that we have also supplemented
with completely new results the paper written by Sergio Falcon
[4] concerning the triangle of numbers given by the binomial
transformations of k-Fibonacci numbers.

II. THE STIRLING TRIANGLE

We begin by presenting the definition of Stirling numbers
of the first kind.

Definition 2.1: Stirling numbers of the first kind describe the
number of permutations on the n−element set possessing k
cycles (that is the permutations which may be decomposed into
exactly k separated cycles). There is no one standard notation
for these numbers and for denoting them one can use one of
the following symbols:
• s(n, k),
• S

(k)
n ,

• S1(n, k),

•

[
n
k

]
, where n ∈ N, k ∈ N0, k ≤ n.

In this elaboration we will use the last one from the above
listed notations.

We will use here one more, alternative, definition of the
Stirling numbers of the first kind

[
n
k

]
, it means:[n

k

]
= sum of all possible products of (n− k)

different integers taken from among
the n - initial nonnegative integers,
that is from among numbers 0, 1, . . . , n− 1.

So we have [n
0

]
≡ 0,

[n
1

]
≡ (n− 1)!,[

n

2

]
≡

n−1∑
k=1

∏
1≤i≤n−1

i6=k

i =
n−1∑
k=1

(n− 1)!

k
= (n− 1)!Hn−1,[

n

n− 1

]
=

1

2
n(n− 1) = A000217(n− 1), n = 1, 2, . . .[

n

n− 1

]2
=

n−1∑
k=1

k3,

where Hn−1 denotes the (n − 1)th harmonic number, that is
Hn :=

∑n
k=1

1
k . Moreover we take

[
n
n

]
:= 1 for every n ∈ N.

Let us notice that from this definition, almost immediately
after multiplication of the monomials located on the left hand
side, the following equality results

x (1 + x)(2 + x) . . . (n− 1 + x) = xn :=
n∑

k=0

[n
k

]
xk, (1)

which was taken originally by James Stirling in his monograph
Methodus Differentialis (1730) as the definition of Stirling
numbers of the first kind. Product of the monomials located
on the left hand side of equality (1) defines today the so called
Pochhammer symbol.

For comparison we have the following widely known New-
ton binomial formula

(1 + x)n =
n∑

k=0

(
n

k

)
xk, (2)

describing the generating function for the binomial coeffi-
cients.

Let us notice that by using definition 2.1 one can easily
derive the formula (recurrence relation for the Stirling numbers
of the first kind):[n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
. (3)
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In other words, the selections of (n−k) different numbers from
among n initial nonnegative integers correspond with the sum
of selections of (n− 1)− (k − 1) = n− k different numbers
from among (n−1) initial nonnegative integers and selections
of (n − 1) − k = n − k − 1 different numbers from among
(n − 1) initial nonnegative integers with the added number
n− 1.

Let us construct now the Pascal triangle for the Stirling
numbers of the first kind which will be called henceforward
as the Stirling triangle of the first kind

[
0
0

]
:= 1[

1
0

] [
1
1

][
2
0

] [
2
1

] [
2
2

][
3
0

] [
3
1

] [
3
2

] [
3
3

]
. . . . . . . . . . . . . . .

that is the following numerical triangle

zero level −→ 1

first level −→ 0 0!=1

second level −→ 0 1!=1 1

third level −→ 0 2!=2 3 1

fourth level −→ 0 3!=6 11 6 1

fifth level −→ 0 4!=24 50 35 10 1

Hence, as well as on the basis of formula (3) and in view of
the alternative definition 2.1, the following summation formula
easily results

n∑
k=0

[n
k

]
= n! = (n− 1)

n−1∑
k=1

[
n− 1

k

]
+

n−1∑
k=0

[
n− 1

k

]
= n

n−1∑
k=0

[
n− 1

k

]
.

(4)
For contrast, from the Pascal triangle for the binomial coeffi-
cients (also called by us the classic Pascal triangle) we have
the following summation formula

n∑
k=0

(
n

k

)
= 2

n−1∑
k=0

(
n− 1

k

)
.

Obviously, the above formula also arises easily from the
classic recurrence relation (equivalent formula for (3) but for
the binomial coefficient):(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Executing in the classic Pascal triangle the summation over
the antidiagonals we obtain the next unexpected formula (see

[12], pages 155-157):

Fn+1 =

bn2 c∑
k=0

(
n− k
k

)
,

where Fn denotes the nth Fibonacci number.

1

1
���1

1

1
��
��1

2 1

1
��
��1

3
��

��1

3 1

1
��
��1

4
��
��1

6 4 1

1
��
��1

. . . . . . . . . . . . . . .

Next, by executing in the Stirling triangle of the first kind
the summation of elements along the antidiagonals, as it is
presented in the following scheme (the first column containing
zeros and one digit one at the zero level is omitted here):

1
1 �

��:
1

2 �
��:

3 1
6 �

��:
11 �

��:
6 1

24 �
��:

50 �
��:

35 �
��:

10 1
120 �

��:
274 �

��:
225 �

��:
85 15 1

720 �
��:

1764 �
��:

1624 735 175 21 1
5040 �

��:
. . . . . . . . . . . . . . . . . .

1 + 0 = 1,
2 + 1 = 3,
6 + 3 = 9,
24 + 11 + 1 = 36,
120 + 50 + 6 = 176,
720 + 274 + 35 + 1 = 1030,
5040 + 1764 + 225 + 10 = 7039,
etc.

we obtain the sequence of natural numbers labeled by symbol
A237653 in the Sloane’s OEIS encyclopaedia. In other words
we have[n
0

]
+

[
n− 1

1

]
+

[
n− 2

2

]
+ . . .+

 1, when n = 2r,
(r + 1)!,
when n = 2r + 1,

=A237653(n)

for every n = 1, 2, . . ..
Remark 2.1: In the classic Pascal triangle the numbers at

the given level n (starting with the zero level) represent the
coefficients in the expansion of number (b+ 1)n in the given
numerical base b (we assume that all the coefficients at level
n are ≤ b) which results from the binomial formula (2).

Whereas in the Stirling triangle of the first kind the numbers
at the given level n (starting with the zero level) represent the

36



coefficients in the expansion of number
n−1∏
k=0

(bk + 1) in the

given numerical base b (under the assumptions that that all the
coefficients at level n are ≤ b) which results from formula (1)
(one should substitute x = 1

b and multiply by 10n on both
sides).

What is interesting, Slone’s OEIS reports the sequences:

A144773(n) =
n−1∏
k=0

(10k + 1), A008548(n) =
n−1∏
k=0

(5k + 1),

A007559(n) =
n−1∏
k=0

(3k + 1).

Remark 2.2: Sergio Falcon in paper [4] considers the
triangle T of the polynomial coefficients

pn(k) :=
n∑

j=0

(
n

j

)
Fk,n−j , n ∈ N,

which form the binomial transforms of rows of the following
triangle of k-Fibonacci numbers where Fk,n, k ∈ R, k > 0,
and n ∈ N0 :

Fk,0

Fk,1 Fk,0

Fk,2 Fk,1 Fk,0

Fk,3 Fk,2 Fk,1 Fk,0

. . . . . . . . . . . . . . .

We have

Fk,n+1 = kFk,n + Fk,n−1, Fk,0 = 0, Fk,1 = 1,

for every n ∈ N. The following results give a supplement for
the Falcon’s paper [4]. We find that the polynomials pn(k)
satisfy the double recurrence relation{

pn+1(k) = (k + 1)pn(k) + qn(k),
qn+1(k) = pn(k) + qn(k),

for every n ∈ N, where p1(k) = q1(k) ≡ 1, p2(k) =
k + 2, q2(k) ≡ 2.

Hence, after simple algebra we get the recursive relation for
polynomials pn(k) :

pn+1(k) = 1 + kpn(k) +
n∑

j=1

pj(k), n ∈ N,

and the recurence relation for pn(k)

pn+2(k) = (k + 2)pn+1(k)− kpn(k), n ∈ N.

The triangle T has the form
1
1 2
1 3 4
1 4 8 8
1 5 13 20 16
1 6 19 38 48 32
1 7 26 63 104 112 64
1 8 34 96 192 272 256 128
1 . . . . . . . . . . . . . . . . . . . . . . . .

We observe also that the sum of elements on antidiagonals of
T form three known sequences defined in the OEIS, that is
the sequence of all sums

{1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, . . .} = A006053

which satisfies the linear recurrence relation of the third order

an = an−1 + 2an−2 − an−3,

where A006053(n) := an, n = 1, 2, . . . And next the
following sequences obtained by bisection of {an} :

{a2n−1} = {1, 3, 9, 28, 89, 286, . . .} = A094790
{a2n} = {1, 4, 14, 47, 155, . . .} = A094789

which satisfy both the same recurrence relation of the third
order

an = 5an−1 − 6an−2 + an−3.

Let us set T 2 = [tkn]N×N. If n > k then tkn = 0. We also
verified that

n∑
k=1

tnk ≤ A030240(n− 1),

where equality holds only for n = 1, 2, 3, 4 and

5∑
k=1

t5k = A030240(4) + 1.

Remark 2.3: In the context of problems discussed in this
section it is also worth to mention the Narayana numbers
defined in the way given below (see [6]):

N(0, 0) = 1, N(n, 0) = 0,

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
, k, n ∈ N, k ≤ n.

Creating the Narayana triangle we find one more beautiful
result. The sums of elements in the rows of the Narayana
triangle are equal to the Catalan numbers

n∑
k=1

N(n, k) = Cn.

In result of summation over the antidiagonals of
Narayana triangle we get the generalized Catalan numbers

(C∗n+1 = C∗n +
n−1∑
k=1

C∗kC
∗
n−1−k, n ∈ N0, the sequence

A004148(n) in OEIS), i.e.

bn−1
2 c∑

k=0

N(n− k, k + 1) = C∗n.
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III. R-STIRLING TRIANGLE OF THE FIRST KIND

By using the analogical properties of r-Stirling numbers we
get a little bit more general results. The r-Stirling numbers of
the first kind are defined as follows

Definition 3.1: We take[
n

k

]
r

= 0, n < r,

[
n

k

]
r

= δk,r, n = r,[
n

k

]
r

= (n− 1)

[
n− 1

k

]
r

+

[
n− 1

k − 1

]
r

, n > r.

(5)

We also take
[
n
k

]
0
=
[
n
k

]
1
:=
[
n
k

]
.

The combinatoric description of these numbers is presented
in paper [1]. So, the number

[
n
k

]
r

denotes the number of per-
mutations of set {1, 2, . . . , n} possessing exactly k mutually
disjoint cycles and such that the numbers 1, 2, . . . , r belong to
different cycles.

The above description implies that

n∑
k=0

[n
k

]
r
= number of all permutations of set {1, 2, . . . , n}

so that the numbers 1, . . . , r are in different,
mutually disjoint cycles.

Moreover, by using the definition of r-Stirling numbers of the
first kind we easily derive the recurrence relation

n∑
k=0

[n
k

]
r
= (n− 1)

n−1∑
k=1

[
n− 1

k

]
r

+
n−1∑
k=0

[
n− 1

k

]
r

= n
n−1∑
k=0

[
n− 1

k

]
r

,

(6)

for every r ≥ 1, which is the generalization of identity (4).
One can check that we have then

n∑
k=0

[n
k

]
r
=
n!

r!
,

for n ≥ r. Broder in [1] gave the generating function for the
r-Stirling numbers of the first kind

n∑
k=0

[
n

k

]
r

xk =

{
xr(x+ r)n−r, n ≥ r ≥ 0,
0, otherwise,

(7)

where, let us recall, the Pochhammer symbol xn is applied.
This formula results from the alternative definition of the
r− Stirling numbers of the first kind, namely[n

k

]
r
= sum of all possible products of exactly

(n− k) different natural numbers from among
the numbers r, r + 1, . . . , n− 1.

Let us notice that

[
n

n− 1

]
2

=
n−1∑
k=2

k =
1

2
(n− 2)(n+ 1),

= A000096(n− 2), n = 3, 4, . . .[
n

n− 1

]
3

=
n−1∑
k=3

k =
1

2
(n− 3)(n+ 2)

= A055998(n− 2), n = 4, 5 . . .[
n

n− k − 1

]
2

= A00170k(n− k − 1),

for every k = 1, 2 and n = k + 3, k + 4,

[
n

n− k + 1

]
3

= A02418k(n− k − 1),

for every k = 3, 4, 5 and n = k + 2, k + 3, . . .. On the basis
of formula (5) we can construct the r-Stirling triangle of the
first kind [

0
0

]
r[

1
0

]
r

[
1
1

]
r[

2
0

]
r

[
2
1

]
r

[
2
2

]
r[

3
0

]
r

[
3
1

]
r

[
3
2

]
r

[
3
3

]
r

. . . . . . . . . . . . . . .

Let us consider the case for r=2, that is

0
0 0
0 0 1
0 0 2 1
0 0 6 5 1
0 0 24 26 9 1
0 0 120 154 71 14 1
0 0 720 1044 580 155 20 1
0 0 . . . . . . . . . . . . . . . . . . . . .

Now, by summing the elements along the antidiagonals in the
above triangle

0 + 0 = 0,
0 + 0 = 0,
0 + 0 + 1 = 1,
0 + 0 + 2 = 2,
6 + 1 = 7,
24 + 5 = 29,
120 + 26 + 1 = 147,
720 + 154 + 9 = 883,
etc.

38



we obtain the sequence of natural numbers not existing in
OEIS. We have

[
n

0

]
2

+

[
n− 1

1

]
2

+

[
n− 2

2

]
2

+ . . .+


1, when n = 2m,

1

2
(m− 1)(m+ 2),

when n = 2m+ 1,

= A∅∅∅∅∅1(n),

for every n = 2, 3 . . .. Notation A∅∅∅∅∅k, k ∈ N, k ≤ 9,
with the empty sets, is the notation invented by us to denote
the sequences {A∅∅∅∅∅k(n), n ∈ N, }, k ∈ N, k ≤ 9 not
included in OEIS.

We have verified numerically (although basing on premises
resulting from the algebraic estimation) that for 5 ≤ n ≤ 500
the above sequence satisfies the following inequalities

(n− 2)!

n
< A∅∅∅∅∅1(n) < (n− 2)!

2
.

Next we construct the analogical triangle for the case r = 3.
Thus we have

0
0 0
0 0 0
0 0 0 1
0 0 0 3 1
0 0 0 12 7 1
0 0 0 60 47 12 1
0 0 0 360 342 119 18 1
0 0 0 2520 2754 1175 245 25 1
0 0 0 . . . . . . . . . . . . . . . . . . . . .

Summing the elements along the antidiagonals in the above
triangle we get

0
0 + 0 = 0,
0 + 0 + 0 = 0,
0 + 0 + 0 + 1 = 1,
0 + 0 + 0 + 3 = 3,
12 + 1 = 13,
60 + 7 = 67,
360 + 47 + 1 = 408,
and so on.

The obtained sequence of natural numbers is not included
either in OEIS. We have

[
n

0

]
3

+

[
n− 1

1

]
3

+

[
n− 2

2

]
3

+ . . .+


1, when n = 2m,

1

2
(m− 2)(m+ 3),

when n = 2m+ 1

= A∅∅∅∅∅2(n),

for every n = 3, 4 . . ..
We have verified numerically (but again, basing on premises

resulting from the algebraic estimation) that this sequence
satisfies for 7 ≤ n ≤ 500 the following inequalities

(n− 5)! < A∅∅∅∅∅2(n) < (n− 4)!.

Remark 3.1: In case of the r-Stirling numbers the numbers
at one level n represent the coefficients in the expansion of

number
n−1∏
k=r

(bk+1) in the given numerical base b (under the

assumption that all the coefficients at level n are ≤ b) which
results from formula (7) (analogically like in the previous
case).

IV. TRIANGLES FOR THE POWERS OF STIRLING NUMBERS
AND THE BINOMIAL COEFFICIENTS

Properties of the classic Pascal triangle are studied in [8]
together with the presentation of Fibonacci sequence with the
aid of binomial coefficients. Let us turn our attention into the
Pascal triangle for the powers of binomial coefficients. For
example, for the squares of binomial coefficients we receive

(
0
0

)2
(
1
0

)2 (
1
1

)2
(
2
0

)2 (
2
1

)2 (
2
2

)2
(
3
0

)2 (
3
1

)2 (
3
2

)2 (
3
3

)2
. . . . . . . . . . . . . . .

or directly

1
1 1
1 4 1
1 9 9 1
1 16 36 16 1
1 25 100 100 25 1
1 36 225 400 225 36 1
1 . . . . . . . . . . . . . . . . . . . . .

Summing the elements along the antidiagonals we find

1,
1 + 4 = 5,
1 + 9 + 1 = 11,
1 + 16 + 9 = 26,
1 + 25 + 36 + 1 = 63,
1 + 36 + 100 + 16 = 153,
etc.
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This is the sequence labeled by symbol A051286 in the
Sloane’s OEIS encyclopaedia. In other words we have(

n

0

)2

+

(
n− 1

1

)2

+

(
n− 2

2

)2

+ . . .

+


1, when n = 2m,

(m+ 1)2,

when n = 2m+ 1,

= A051286(n).

Summing the elements along the antidiagonals in the ana-
logical triangle for the cubes of binomial coefficients we
obtain 1, 2, 9, 29, 92, 343, 1281, 4720, . . ., that is the sequence
denoted by A181545 in Sloane’s OEIS encyclopaedia. In other
words(

n

0

)3

+

(
n− 1

1

)3

+

(
n− 2

2

)3

+ . . .

+


1, when n = 2m,

(m+ 1)3,

when n = 2m+ 1,

= A181545(n).

Let us consider now the analogical triangles for the Stirling
numbers of the first kind. For the start we take the squares of
these numbers

1
0 1
0 1 1
0 4 9 1
0 36 121 36 1
0 576 2500 1225 100 1
0 14400 75076 50625 7225 225 1
0 . . . . . . . . . . . . . . . . . . . . .

Executing the summation of elements over the antidiagonals,
similarly as in the cases of previous numerical triangles, we
get the sequence

0 + 1 = 1,
0 + 1 = 1,
4 + 1 = 5,
36 + 9 = 45,
576 + 121 + 1 = 698,
14400 + 2500 + 36 = 16936,
and so on,

that is the sequence not included in OEIS[
n

0

]2
+

[
n− 1

1

]2
+

[
n− 2

2

]2
+ . . .+

 1, when n = 2r,
((r + 1)!)2,
when n = 2r + 1,

= A∅∅∅∅∅3(n),

for every n = 1, 2, . . ..
Moreover, we have checked numerically that for 4 ≤ n ≤

500 the above sequence satisfies the inequalities

n!

5
< A∅∅∅∅∅3(n) <

(
n!

5

)2

.

Next, by summing the elements along the antidiagonals in
the Pascal triangle for

[
n
k

]3
we receive the sequence

0 + 1 = 1,
0 + 1 = 1,
8 + 1 = 9,
216 + 27 = 243,
13824 + 1331 + 1 = 15156,
and so on,

that is[
n

0

]3
+

[
n− 1

1

]3
+

[
n− 2

2

]3
+ . . .+

 1, when n = 2r,
((r + 1)!)3,
when n = 2r + 1,

= A∅∅∅∅∅4(n),

again not present in OEIS.
As before we have checked numerically that for 4 ≤ n ≤

500 the above sequence satisfies the inequalities

n!

3
< A∅∅∅∅∅4(n) <

(
n!

3

)3

.

V. CONCLUSION

In the paper the number of elementary properties of the
numerical triangles connected with the Stirling numbers and
the k-Fibonacci numbers is presented. We linked the discussed
sequences with the sequences included in OEIS. The obtained
results summarize some state of research. In the future we
intend to refer to these numerical triangles from the algebraic
side, similarly like, among others, the authors of papers [2],
[3], [9], [10] and [14] did it in case of the classic Pascal
triangle. In the future we also plan to analyze paper [13] and
the drawn conclusions will be included in our next publication.
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