
Reduction of ILP Search Space with Bottom-Up
Propositionalisation

Hadeel Al-Negheimish1,2 and Alessandra Russo1

1 Imperial College London, United Kingdom
2 King Saud University, Saudi Arabia

Abstract. This paper introduces a method for algorithmic reduction
of the search space of an ILP task, omitting the need for explicit lan-
guage bias. It relies on bottom-up propositionalisation of examples and
background knowledge. A proof of concept has been developed for ob-
servational learning of stratified normal logic programs.

1 Introduction

Machine learning can be defined as automatic program improvement in certain
tasks through experience [8]. One such task is defining a concept based on exam-
ples labelled according to their membership. When examples along with back-
ground knowledge are expressed as logic programs, its related task is seen as an
inductive logic programming task. Learning with ILP leverages existing domain
knowledge, and produces hypotheses that are understandable and expressive due
their logical form.

Most ILP tasks take as input a tuple: positive examples, negative examples,
background knowledge and language bias. Language bias serves to restrict the
search space, as it defines which predicates can appear in the hypotheses, in
addition to any constraints that may apply. Specification of language bias ar-
guably requires prior knowledge of the form the hypothesis should be in, which
may not always be available. On the other hand, the size of an unconstrained
search space makes an unguided traversal intractable. One way to reduce the
search space is by propositionalisation. Propositionalisation techniques aim to
transform the task from a relational to an attribute-value form, which makes it
easier to learn, but possibly loses some information [2].

This work aims at restricting the search by finding clues of relevance that
are inherent in the examples and background knowledge, utilising a combination
of incremental propositionalisation and extended set operations, omitting the
need for language bias. Our contribution is two-fold: a definition of bottom-up
propositionalisation for first-order logic programs, and an algorithmic mechanism
for generating ILP-hypotheses that uses these propositional features. A brief
background is presented in the next section. We describe the workings of our
approach in section 3, along with an illustrative example. A discussion of related
work is presented in section 4.

1



2 Background

Before delving into learning with bottom-up propositionalisation, it is useful to
first formally define an ILP task and present an overview of how ILP learners
typically work.

Definition 1. Let L be a language and let T be the learning task of our approach,
where T=〈M,B,E+, E−〉, defined in L, where:

M Mode declarations, where LM is the language restricted by M .
B Background knowledge, a logic program.
E+ Positive examples, a set of ground atoms of the same predicate.
E− Negative examples, also a set of ground atoms of the same predicate as E+

A solution H is a (set of) clause(s) such that:

1. H ∈ LM

2. ∀e+ ∈ E+ : B ∪H |= e+

3. ∀e− ∈ E− : B ∪H 6|= e−

The hypotheses space of an ILP problem has a lattice structure, with partial
ordering based on hypothesis generality and subsumption. (We say that H �
H ′ ⇔ H |= H ′). Existing systems vary on how they traverse this search space;
with a top-down approach, overly general hypothesis are refined until they are
consistent with negative examples, and branches that do not cover some of the
positives are pruned. With a bottom-up, only clauses that do not cover any
negatives are generalised, until a solution to the task is found.

We take a different approach towards finding a solution, which does not
traverse the hypotheses space one-step at a time. Propositional features are
constructed bottom-up, and then a subset of these is selected -depending on
their coverage of examples- to find a solution. Since all examples are considered
at each step, it allows for learning normal logic programs.

3 Learning with Bottom-Up Propositionalisation

Given a set of examples, it is intuitive to try to define them by discerning which
characteristics they have in common, which separate them from the instances
that are known not to belong to that concept. How can we identify these char-
acteristics in ILP tasks? This is the basis upon which this work is held.

Propositionalisation is done bottom-up in the sense that instead of starting
out with templates of the features and checking which of them are satisfied, we
generalise the existing atoms. The atoms that are generalised are the ones in the
model of the background program and are relevant to some given example, with
respect to how that example maps to the target hypothesis head. We present a
few definitions before explaining the approach step by step.

The entire details of the work and reasoning behind some design decisions,
along with proofs on correctness and minimality are in [1].

2



3.1 Definitions

We extend set operations to account for generality ordering between atoms, by
checking θ − subsumption. Below are the definitions for these extended opera-
tions:

Definition 2 (∩∗). Let A,B be sets of (possibly ground) atoms and a be one
such atom,
a ∈ A ∩∗ B iff either

• a ∈ A ∧ (a ∈ B ∨ ∃a′ ∈ B s.t. a |= a′)

• a ∈ B ∧ (a ∈ A ∨ ∃a′ ∈ A s.t. a |= a′)

If we assume that sets A and B do not contain predicates in multiple levels of
generality in the same set, keeping only the most specific form, then A ∩∗ B will
contain only the predicates common to both sets, in the most general form.

Definition 3 (\∗). Let A,B be sets of (possibly ground) atoms and a be one
such atom, a ∈ A \∗ B iff a ∈ A ∧ (a 6∈ B∧ 6 ∃a′ ∈ B s.t. a |= a′)

Definition 4 (Target atom). Let T=〈B,E+, E−〉, a target atom is an un-
ground atom such that target = lgg(e1, . . . , en) ∀e ∈ E+.

Example 1. Let E+ = {p(a), p(b), p(c)..} then target= p(X)

The target atom represents the head of the main clause in the hypothesis; us-
ing least-general-generalisation helps identify constants, and eliminates negative
examples that are not subsumed by the target atom.

Definition 5 (M(e)). Let e be an example, M(e) is a mapping of terms in e
to head (universally quantified) variables, more formally:
M(e) = {ti 7→ Vi where Vi 7→ ti ∈ θ ∧ targetθ = e}

M(e) can be seen as the inverse of the substitution θ in targetθ = e. Instead
of matching each variable with a term, we match each term with the variable’s
symbol, to be used in generalising atoms later.

Example 2. Let target be p(X, Y), e1 = p(a,b), and e2 = p(c,c), then M(e1) =
{a 7→ X, b 7→ Y } and M(e2) = {c 7→ {X,Y }}

Definition 6 (Links(term)). Let t be a constant term, B some logic program,
links(t) is a set of all atoms in the model of B that contain the term t, more
formally:
links(t) = {p(t1, . . . , tn)|p(t1, . . . , tn) ∈ model(B)∧ t = ti for some i 1 ≤ i ≤ n}

For each example, we construct sets of relevant atoms entailed by the background
program. To know which atoms are relevant to each example, we link the atoms
based on the terms that occur in both of them.

Example 3. Let B = {q(a).s(b).r(a, b).s(a).} then links(a) = {q(a), r(a, b), s(a)}

3



Definition 7 (Generalise(a, M(e))). Let a be a ground atom, M(e) is a
mapping as defined in definition 5, Generalise(a, M(e)) is a set of unground
atoms where terms are replaced by their mapping in M(e), and terms not in
M(e) are replaced with a new skolem variable.

Generalisation of an atom is an ungrounding process that is a direct substitution
of the ground term to the variable symbol it maps to in M(e). The same atom
can be generalised to different features depending on the mapping it uses, which
in turn depends on the example used.

3.2 Algorithm and Implementation

Our work takes on a more algorithmic approach to solving an ILP problem, the
basic steps of Bottom-up Propositionalisation ILP are outlined below:

Algorithm 1: BPILP: Bottom-up Propositionalisation ILP

Input: B: Background Program, E+: Positive Examples
and E−: Negative Examples
Output: HMin: Minimal hypothesis

1 M ← model(B)
2 Target← lgg(e1, e2, . . . en) ∀ei ∈ E+

3 foreach e in E+and E− do
4 M(e)← term to variable mapping wrt Target
5 Links(e)← all atoms in M with at least one term in e
6 Feats(e)← Generalise(a, M(e)) ∀a ∈ Links(e)
7 body+ ←

⋂∗
(Feats(e+i )) ∀e+i ∈ E+

8 body− ← {f |f ∈
⋃

(Feats(e−j )) \∗
⋃

(Feats(e+i ))

∧ 6 ∃V ∈ args(f) s.t. is skolem(V ) ∀e+i ∈ E+ ∀e−j ∈ E−}
9 H ← {Target:- b+1 , . . . , b+n ,not b−1 , . . . ,not b−m.|b+i ∈ body+ ∧ b

−
j ∈ body−}

10 if H is a solution then
11 HMin ← reduce(H)

12 else
13 expand skolem variables in body+ (by repeating steps 3, 4 and 5) or

add auxiliary predicate definitions until a solution is found
14 HMin ← reduce(H)

15 return HMin

First, we get the unique model of the background program by feeding it to an
ASP solver3. We then find the target atom which will represent the head of main
clause of the hypothesis, by finding the lgg of positive examples. Afterwards a
set is constructed for each given example in the ILP task, containing the links
for all terms in that example. These sets are then generalised relative to the

3 We assume B is a stratified normal logic program, with no occurrence of the target
predicate

4



example and the target hypothesis head (using the mapping as defined in def 5),
only the most specific generalisations are kept as features.

The importance of bottom up propositionalisation lies in the reduction of
propositional features to work with; if we have t variables in the clause head,
an n-ary predicate can be generalised in (t+ 1)n ways (since each argument can
take any one of the head variables or a new skolem). By simply generalising
our links, we obviate the need to construct all of these feature templates and
check for their satisfaction. BPILP produces a way that is able to compare
the generalisations between the example feature sets in order to easily find the
features that discriminate positive from negative examples.

We test the resulting hypothesis, if it satisfies the problem we reduce it by
removing redundant literals based on their coverage. Otherwise, we repeat the
linking and generalising step for the features in body+ which contain skolem vari-
ables, such that propositionalisation is incremental. This is currently constrained
by setting a finite length for the depth of skolem variable expansion.

If the previous step does not result in satisfying features, the algorithm adds
a new predicate, not in L. This invented predicate can be defined by multiple
clauses, each containing complementary features, or by a negative feature with
a skolem variable.

Example 4. A demonstration of BPILP on a full task, where:

T = 〈B = {q(X) : −w(X),not t(X). t(a). t(b). t(c). w(c). w(d).},
E+ = {p(a). p(b).}, E− = {p(c). p(d).}〉

1. Get model M = {q(d). t(a). t(b). t(c). w(c). w(d).}
2. Find target Target = lgg(p(a), p(b)) = p(X)

e1 e2 e3 e4

3. Get Links {t(a).} {t(b).} {t(c). w(c).} {q(d). w(d).}
4. M(e) {a 7→ X} {b 7→ X} {c 7→ X} {d 7→ X}
5. Generalise Links {t(X).} {t(X).} {t(X). w(X).} {q(X). w(X).}
6. Saturated Hypothesis p(X) : −t(X),not w(X),not q(X).

7. Reduce Hypothesis p(X) : −not w(X).

4 Related Work

We introduced an algorithmic approach to tackle ILP tasks without the need
for explicit language bias to restrict the search space, by powering bottom-up
propositionalisation.

There is some work into trying to learn the language bias, McCreath and
Sharma[7] extract meta knowledge that would be fed into an existing ILP sys-
tem to restrict its search. It works on extensional examples and background

5



knowledge, finding type assignments, functional constraints and symmetry. It
is limited due to its assumption of a complete list of positive examples, with a
closed world assumption, and its restriction to the vocabulary of the language,
no predicate invention is made.

Some ILP learning frameworks do not require language bias in their task
definition, such as FOIL[10] and Meta-Interpretive Learning [9]. FOIL is a key
framework to compare with, as it too uses an algorithmic approach to generate
hypotheses, utilising no notion of proof. It builds one clause at a time, exploit-
ing an information-based heuristic similar to ID3, to guide its search for simple,
general clauses. FOIL may sometimes exhibit a short-sightedness, when all pos-
sibilities for the next literal to add have the same heuristic value. Our approach
is safe from this limitation, since adding a literal with a skolem variable only
occurs after that skolem has been expanded. Additionally, because of the ASP
solver preprocessing step in our approach, we are not constrained to learning
programs with purely extensional definitions as FOIL is.

The latter framework, MIL, boasts suitability for recursive definitions and
predicate invention. It works by augmenting the background program with a
meta-interpreter, which abduces higher order definite clauses, known as meta
rules. However, it requires a total ordering over the predicate and object symbol
sets to guarantee termination. Moreover, the current implementation constrains
the language to a subset of H2

2 , which may compromise intuitive formulation of
the problem. It does not learn normal logic hypotheses.

Propositionalisation is done in our work in a bottom-up manner to make it
more tractable, hence not all propositional templates (top-down) are considered,
as in the widely-known LINUS [6], which does not allow for skolem variables.
SINUS, a later generation, allows skolem variables and is able to find propo-
sitionalisation to predicates that bind to more than one atom (multi-instance
problems) only if the data is individual centred [11], which is too heavy a con-
straint.

Franca et. al.[3] use bottom clause propositionalisation for fast learning using
neural networks. Like our work, propositionalisation is central to guiding the
search for a valid hypothesis. However, BCP is dependent on mode declarations
to construct bottom clauses, whilst our main objective is to obviate the need for
explicit language bias.

5 Conclusion

We have introduced a novel approach to solving observational ILP tasks in which
language bias is omitted in favour of algorithmic bias, by utilising incremen-
tal, bottom-up propositionalisation. It supports predicate invention to facilitate
learning in some cases. It is able to learn normal logic program hypotheses for
problems with stratified background programs, and has proved to work well on
common problems, such as the Eastbound Trains [5] and Kinship [4] datasets.

6



6 Acknowledgements

This work was funded by a postgraduate scholarship awarded by King Saud
University.

References

1. Al-Negheimish, H.: Towards an Inductive Logic Programming Approach with Hid-
den Bias. Master’s thesis, Imperial College London (2015), unpublished

2. Deroski, S., Lavra, N. (eds.): Relational data mining. Springer, Berlin ; New York
(2001)

3. França, M.V., Zaverucha, G., D’avila Garcez, A.S.: Fast relational learning using
bottom clause propositionalization with artificial neural networks. Mach. Learn.
94(1), 81–104 (Jan 2014)

4. Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings of
the eighth annual conference of the cognitive science society. vol. 1, p. 12. Amherst,
MA (1986)

5. Larson, J., Michalski, R.S.: Inductive inference of vl decision rules. ACM SIGART
Bulletin (63), 38–44 (1977)

6. Lavrač, N., Džeroski, S., Grobelnik, M.: Learning nonrecursive definitions of rela-
tions with linus. In: Proceedings of the European Working Session on Learning on
Machine Learning. pp. 265–281. EWSL-91, Springer-Verlag New York, Inc., New
York, NY, USA (1991)

7. McCreath, E., Sharma, A.: Extraction of meta-knowledge to restrict the hypothesis
space for ILP systems. In: AI-CONFERENCE-. pp. 75–82. Citeseer (1995)

8. Mitchell, T.M.: Machine Learning. McGraw-Hill Education, New York, 1 edn. (Mar
1997)

9. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach Learn pp. 1–25
(Mar 2015)

10. Quinlan, J.R.: Learning logical definitions from relations. Machine learning 5(3),
239–266 (1990)

11. Raedt, L.D. (ed.): Logical and Relational Learning. Cognitive Technologies,
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

7


