
Behavior analysis of executed and attacked
players in Werewolf game by ILP

Ema Nishizaki and Tomonobu Ozaki

Graduate School of Integrated Basic Sciences, Nihon University
3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

m6116m13@educ.chs.nihon-u.ac.jp, tozaki@chs.nihon-u.ac.jp

Abstract. Recently, the Werewolf game, one of multiplayer incomplete
information games, is recognized as a promising research testbed for arti-
ficial intelligence. In this work-in-progress paper, in order to obtain use-
ful knowledge on the Werewolf games, log analyses of human players in
the Werewolf BBS are conducted. By applying inductive logic program-
ming to the log data of six games in the BBS, we attempt to extract
classification rules on being attacked, executed and voted, whose bod-
ies compose predicates representing players’ past behaviors. In prelimi-
nary experiments, classification rules capturing characteristic behaviors
among multiple agents were successfully obtained.

Keywords: Werewolf game, behavior analysis

1 Introduction

The Werewolf game is one of conversation-based role-playing party games. The
game consists of two teams, werewolf team and villager team. Only werewolves
can recognize their teammates, while villagers are given no information to which
team each player belongs. Some villagers have a special role and they can obtain
additional information by their own ability. Such information heterogeneity is
one of main characteristics of the game. In the game, villagers try to find and
execute all werewolves, while werewolves try to deceive and eliminate villagers
by attacking them. The Werewolf game has two phases, day and night. These
two phases are iterated during the game. Players discuss to find out werewolves
or to deceive villagers in day phase. At the end of day phase, an executed player
is decided by majority voting. In night phase, werewolves select a villager and
attack him/her. Executed or attacked players get kicked out of the game.

The Werewolf game is recognized as a promising research testbed for artifi-
cial intelligence. Several research on the game have been reported recently. For
example, a method of game logs analysis based on attunements and rebuttals
is proposed to extract useful knowledge for the strategy construction[1]. In [2],
multimodal analysis was applied to the Werewolf games to detect deceptive roles.
A role estimation model is proposed based on the text analysis in [3].

In this work-in-progress paper, in order to obtain useful knowledge for build-
ing intelligent software agents for the Werewolf game, log analyses of human
players are conducted by using inductive logic programming.

48

2 Werewolf BBS

TheWerewolf BBS1 is an online community website for the Werewolf game where
a text-based chat system is provided for playing the games. The Werewolf BBS
is a real time communication system. One day in the Werewolf game corresponds
to one day in the real world. Players can communicate each other by text only.
No voice and video messages can be exchanged.

All conversations by players are recorded during the game. There are four
types of log data in the Werewolf BBS. We focus on the “white logs” which all
players can browse as a target of our analysis.

3 Analysis of Werewolf BBS using ILP

3.1 Selection of Games

We prepare six standard and average games for the analysis. Three of them
are the games werewolf teams won and the rests are the games villager teams
won. Fifteen players having enough experience participate in each game. While
werewolf teams consist of three werewolves and one lunatic, villagers teams have
eleven players including three villagers having special roles. Three games the
werewolf team won have eight days to the end. They contain 1234.0 records on
average. The rest three games the villager team won have seven days and contain
1166.6 records on average.

3.2 Background Knowledge

We prepare twelve predicates to represent players’ behaviors by considering the
Werewolf protocol[4]. The predicates are listed: ‘comingout’ (a coming-out of
the role), ‘estimate’ (an estimate of other player’s role), ‘divined’ (a report of
the divination), ‘inquested’ (a report of the inquest), ‘guarded’ (a report of the
guard), ‘question’ (a player’s question to other players), ‘answer’ (an answer of
question by a player), ‘agree’ (a player’s agreement to other players), ‘disagree’ (a
player’s disagreement to other players), ‘line’ (an estimation of that two players
belong to the same team), ‘unline’ (an estimation of that two players belong to
different team), and ‘disrelation’ (a backstabbing within werewolf teams). All
predicates have at least three arguments Game, Day, Player for representing
that a player Player takes the corresponding action on the Dayth day in a
game Game. The original log data which contains the contents of conversation
among players written in a natural language is converted into a set of facts
on the prepared predicates manually. Note that all players may tell a lie. For
example, a werewolf may behave like a seer to deceive players in the villager
team. The converted facts represent what each player says regardless of whether
the utterance is a lie or not.

1 http://www.wolfg.x0.com/

49

In addition to the facts, we prepare twelve intensional rules for handling
behaviors in previous days as background knowledge in ILP. All rules have the
form of

Pred(Game:Day, N, Player, Args · · ·) :-

prev days(N), PDay is Day - N,

Pred(Game:PDay, Player, Args · · ·).
and represent that a player Player took an action Pred N days ago from

Dayth day in a game Game. The predicate prev days/1 is an auxiliary predicate
defined as prev days(N):- member(N, [0,1,· · ·,X]) where X is a parameter to
control the maximum time difference. We set X to 3 in the experiments. The
predicate Pred is instantiated by twelve predicates for the facts. For example,
by using ‘comingout’, we obtain a rule for the past (and current) behavior on
comingout as

comingout(Game:Day, N, Player, Role) :-

prev days(N), PDay is Day - N,

comingout(Game:PDay, Player, Role).

where an argument Role shows the role a player Player claims. The rule which
captures past behaviors on ‘line’ is shown below.

line(Game:Day, N, Player, A, B) :-

prev days(N), PDay is Day - N,

line(Game:PDay, Player, A, B).

This rule states that a player Player estimated that two players A and B

belong to the same team N days ago from Dayth day in a game Game.

3.3 Positive and Negative Examples

In this work-in-progress paper, three classification tasks are treated.
The first task is to derive classification rules which characterize the behaviors

of executed players. A predicate executed(Game:Day, Player) is used for
this task, which represents a player Player was executed on the Dayth day in a
game Game. From the log data, 39 positive examples and 528 negative ones are
extracted.

As a second task, we try to obtain classification rules for the behaviors of at-
tacked players. We prepare a predicate attacked(Game:Day, Player) which
indicates that the werewolf team succeeded in attacking a player Player on the
Dayth day in a game Game. Note that, while executed players are selected from
all participants by voting, attacked players must be members of villager team or
a lunatic. In addition, hunters sometimes guard the villagers from the attack by
werewolves. Thus, positive examples for this task are less than those in the first
task. Only 27 positive examples and 505 negative ones are used.

The third task is to obtain rules on a voting behavior. A predicate voted(

Game:Day, Player) states that a player Player got a vote on the Dayth day
in a game Game. In total, the log data contains 89 positive and 478 negative
examples, respectively.

50

4 Results

An inductive logic programming engine Aleph2 is employed to solve the classi-
fication problems shown in the previous section. We used three commands for
theory construction (induce/0, induce cover/0 and induce max/0) in order to
extract classification rules as many as possible. In the following subsections, the
results of each classification task are described.

4.1 Execution

The Aleph system extracts 28 classification rules on the execution. An example
of derived rule is shown below. The corresponding graphical representations is
shown in Fig.1(a). In the figure, each node corresponds to a player. Directed
edges represent predicates in the rule body and they show relationships among
agents. A number n in the parenthesis means that the corresponding behavior
to the edge is observed n days before from when the action in the rule head
occurred.

executed(Game:Day, X) :-

estimate(Game:Day, 0, Y, X, wolf),

estimate(Game:Day, 1, X, Y, not(wolf)),

agree(Game:Day, 2, X, Z).

This rule says that: (1)a player Y believes that a player X is a werewolf on
the execution day, and (2)the executed player X estimated that a player Y is not
a werewolf one day ago, and (3)he/she agreed with a player Z two days ago. We
believe that this rule captures an appropriate situation in selecting players to
be executed because the executed player X is suspected as a werewolf by other
player Y.

This rule can be instantiated by substituting two villagers for X and Z and a
lunatic or a werewolf for Y in plural games irrespective of the winning team. In
addition, X is never instantiated by a player in the werewolf team. We can infer
from the above situation that this rule shows the behavior of a villager targeted
by the werewolf team.

4.2 Attack

We obtain 23 classification rules on “being attacked” by the werewolf team.
Within the 23 rules, 15 rules have predicates question, answer, agree or disagree,
which show communications with other players. An example of obtained rules,
depicted in Fig.1(b), is explained below.

attacked(Game:Day, X) :-

estimate(Game:Day, 3, Z, X, not(wolf)),

estimate(Game:Day, 0, Y, X, not(wolf)),

agree(Game:Day, 0, Y, Z).

2 http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

51

�

�

�
���������
	������	��

��� 	���� ��� � �

(a) Execution (b) Attack (c) Vote

Fig. 1. Graphical representations of extracted rules

This rule shows the following situation : (1)a player Z estimated that an
attacked player X is not a werewolf three days before, (2)a player Y also believes
that X is not a werewolf and agree with Z on the attacked day. We can easily
imagine a basic strategy of the werewolf team from the rule. The team selects a
player X to be attacked, who is less likely to be executed by villagers because X

is not suspected by other two players Y and Z.

4.3 Vote

In total, we obtain 53 classification rules showing the behavior of players who
get a vote. An example is shown graphically in Fig.1(c) and explained below.

voted(Game:Day, X) :-

disagree(Game:Day, 1, X, Y),

question(Game:Day, 0, Z, Y),

comingout(Game:Day, 1, Z, hunter).

This rule says that : (1)a player Z, who claimed that he/she is a hunter one
day ago, asks a player Y some questions, and (2)a player X, who disagreed with
the player Y one day ago, got a vote. By applying this rule to the log data, we
confirm that this rule fits well into the players getting a few votes.

5 Conclusion and Future Direction

In this work-in-progress paper, by applying inductive logic programming to three
classification problems, we succeeded in obtaining rules which capture charac-
teristic behaviors among multiple players in the Werewolf BBS.

As one of future works, we plan to incorporate certain predicates representing
each player’s view and intention. In the Werewolf game, players having different
roles have different information. For example, wolves can recognize teammates,
but others cannot. Seer players can perceive spurious seers easily because other
player must not be a seer. By utilizing these heterogeneities effectively and by
preparing certain mechanisms to estimate other players intention, we can expect

52

to develop sophisticated and accurate classification rules for each role. For this
purpose, we plan to employ the framework of answer set programming and its
induction algorithm[5] as well as meta-interpretive learning[6] in higher order
logic. Since players behaviors are not deterministic, another promising research
direction is uncertainty handling. We also investigate to utilize probabilistic logic
programs such as PRISM[7] to build probabilistic models for players behaviors.

Acknowledgements We heartily thank Mr. Ninjin for allowing us to use the
log data in the Werewolf BBS. We have deep regards to Professor Fujio Toriumi
at the University of Tokyo for providing us the Werewolf databases. A part of
this work was supported by JSPS KAKENHI Grant Number JP26330262.

References

1. Michimasa Inaba, Fujio Toriumi, Hirotaka Osawa, Daisuke Katagami, Kosuke
Shinoda and junji Nishino: Werewolf Game Analysis based on Attunements and
Rebuttals, The 28th Annual Conference of the Japanese Society for Artificial In-
telligence, 2014 (in Japanese)

2. Gokul Chittaranjan and Hayley Hung: Are You A Werewolf? Detecting Decep-
tive Roles and Outcomes in a Conversational Role-Playing Game, Proc. of the
2010 IEEE Internation Conference on Acoustics，Speech and Signal Processing,
pp.53345337, 2010

3. Masaki Sakamoto, Atsushi Ueno and Tomohito Takubo: A Method for Estimating
Roles in the Werewolf Game Based on Dialogue Data from a Game BBS, IPSJ
SIG Technical Report, Vol.2016-GI-35, No.12, 2016 (in Japanese)

4. Hirotaka Osawa: Communication Protocol for the ”Werewolf” game, Human-Agent
Interaction Symposium, 2013 (in Japanese)

5. Mark Law, Alessandra Russo and Krysia Broda: Inductive Learning of Answer Set
Programs, Proc. of the 14th European Conference on Logics in Artificial Intelli-
gence, pp.311-325, 2014.

6. Stephen H. Muggleton, Dianhuan Lin and Alireza Tamaddoni-Nezhad: Meta-
interpretive Learning of Higher-order Dyadic Datalog: Predicate Invention Revis-
ited, Journal of Machine Learning,Volume 100, Issue 1, pp.49-73, 2015.

7. Taisuke Sato and Yoshitaka Kameya: New advances in logic-based probabilistic
modeling by PRISM, In Probabilistic Inductive Logic Programming, LNCS 4911,
Springer, pp.118155, 2008.

53

