
Activity recognition in multiple contexts
for smart-house data

Kacper Sokol and Peter Flach

Intelligent Systems Laboratory, University of Bristol, UK,
{K.Sokol, Peter.Flach}@bristol.ac.uk

Abstract. Predicting human behaviour from smart-house data is an active and
challenging area of research. Applications include improving quality of life and
personal healthcare, e.g. smart thermostats and detecting falls. Smart-house tech-
nology is becoming increasingly popular and in many cases making a house
smarter is as simple as installing off-the-shelf devices. In this paper we focus
on predicting the future location of a person in a simulated smart-house envi-
ronment. We consider three different occupant types who exhibit various work-
ing patterns. We develop a versatile model capable of adjusting to significant
changes in a person’s behaviour without the need of model retraining. To this
end, we build a simple event calculus framework based on the Aleph Inductive
Logic Programming system. Event calculus helps to handle time and persisting
sensor states. Background knowledge encodes important information about the
smart-house that is otherwise difficult to learn; it also facilitates transferability of
the model to different house layouts. Moreover, rule models are white-box, hence
human-readable. Finally, we show that a versatile model performs significantly
better than other models that do not explicitly account for the context.

Keywords: location prediction, smart-house, versatile model, event calculus, Aleph

1 Introduction

We consider the problem of controlling a heating system in a living room based on
behaviour and location of a resident. We want to predict a resident’s location half-an-
hour in advance – the time needed to preheat the room. The majority of off-the-shelf
thermostats have a one-day resolution, with only two modes available: working day and
free day; where each setting allows two different temperature change points: present
and absent from the house. Companies such as Nest have built thermostats that “learn”
daily routines from repetitive, manual temperature adjustments. However, such systems
perform poorly on households with unstructured and irregular working patterns, which
are increasingly common these days. Hence there is a need for smart thermostats [4, 7].

In most cases, smart-house data appears in the form of a time series consisting of
sensor activations. The events are usually unevenly spaced through time, as they are
caused by a change in sensor state. This property of time in our data causes represen-
tational difficulties well-known in logic. To overcome this issue we use Simple Event
Calculus [9]: a logical formalisation of actions and their effects. This framework al-
lows for events (sensor state changes) occurring at a single time point to activate or

66



terminate fluents: properties of a system that persist through time. Additionally, event
calculus provides an approach to evaluate the model over time rather than events, which
facilitates finding the best performing model for given data [11].

In this paper we consider a simple scenario of a house with two rooms, referred to as
the ‘toy example’. We focus on predicting not being in a selected room, living_room,
during the next time block (as this would allow temporarily switching off the heating).
To this end, we build vanilla and versatile rule-based models and show that the lat-
ter achieves top-ranked performance regardless of context of operation (working pat-
tern) [6]. We use the Aleph Inductive Logic Programming system [13] to build our
models.

The remaining part of this work has the following structure. In Section 2 we present
related work. Section 3 gives mathematical definition of the problem. In Section 4 we
describe the data that we use, together with their generation, preprocessing and feature
construction steps. Section 5 presents trained models and discusses their performance.
Finally, Section 6 summaries our work and explores possibilities for future research.

2 Related literature

Developing models that recognise Activities of Daily Living in a smart-house setting is
a well studied subject. [14] uses a hybrid model for activity prediction in a smart-house.
Part of their system is a rule-based model, used for encoding background knowledge
and low-level signal extraction and analysis. Moreover, authors of [2] hand-craft a set
of rules in a forward-chaining system, to produce human-readable characteristics of a
smart-house. Another example of a rule-based system used in a slightly different but
related setting is [5]. The authors try to predict the type of a meeting from a video
recording, where multiple low-level features are extracted by a rule-based system. They
define an ontology of a meeting that consists of multiple tiers, where the higher layers
require predictions from the previous layers as an input. Reusing previously learnt pred-
icates in an automatic manner as shown by [10] could greatly benefit both our work and
[5]. Nevertheless, as we mainly reuse only one predicate, context, our work does not
implement the solution proposed there.

To summarise, most work done in the area of rule-based system applications share
one feature: the systems are hand-crafted. Moreover, none of them take context of op-
eration under consideration; this may result in poor performance during deployment,
if the problem setting has changed after the training data was collected. In this work
we build a solution taking the best of both worlds: it uses the richness of background
knowledge formulated by an expert (otherwise difficult to learn); and creates a universal
model using context awareness to get top-performing location prediction.

3 Variable context time sequence completion

We assume that a smart-house fitted with n motion sensors at each time point t provides
a feed of boolean (on/off) data in the form of a binary vector xt = (xt1, . . . ,xtn), where
xti ∈ {0,1} represents the state of a sensor i at time t. These observable events xt for
t ∈ [1,T ] create a sequence [x1, . . . ,xt ] ∈X – a smart-house state over time.

67



Furthermore, this sequence can be divided into a series of consecutive non-obser-
vable blocks by a series of time points [m, . . . ,z]: B = [B1m, . . . ,BzT ] for 1 < m < z < T ;
where a block Bab is defined as Bab = [xa, . . . ,xb] for 1 < a < b < T . Each block can be
characterised by some unique label Lab = L(Bab) from a finite set of labels L . In the
toy example L = {sleep,work,leisure}.

Additionally, a sub-sequence of events [xr, . . . ,xs] for some 1 ≤ r < s ≤ T oc-
curs in an implicit, non-observable context Crs =C([xr, . . . ,xs]). We assume that every
complete sequence [x1, . . . ,xT ] is a mixture of several contexts. In our example, pos-
sible contexts are C = {working_day,working_night,working_morning,
working_afternoon,free_day}.

Due to the above property of our data, a naı̈vely fitted model would implicitly de-
pend on the sequence of contexts. Such a model is therefore ineffective, if in deploy-
ment the context is not as expected. To remedy this, we propose to use a versatile model
that can adapt to constantly changing contexts, therefore providing accurate predictions
throughout [1]. Example 2 shows a versatile rule. It predicts a person being absent in
the living room in the next time block if the person is currently not in the living room,
the current time block (hour of the day) is 6 and the current context is a working day. In
this case the context is defined as an additional feature.

Finally, we define the binary target variable to be yt ∈ {0,1} – where [y1, . . . ,yT ] ∈
Y ; and yt indicates not being in a selected room (living_room) in the next t + δ

time block, for δ > 0. In the toy example we fix δ = 1. With the input space X as
defined above, our data are represented as D⊆X ×Y and we want to learn a function
f : X → Y describing these data.

In the smart-house scenario presented above the versatile model output yt+1 =
f ([x1, . . . ,xt ]) = versatile model(Ctt , [x1, . . . ,xt ]), which is a function of partially
observed data sequence [x1, . . . ,xt ] and the current context Ctt . As we observe larger
parts of this sequence, our predictions should improve given that we have correctly
identified the context. This model requires two predictions: the current context Ctt , de-
pendent on the block structure in the data; and the label yt+1. As the latter is dependent
on the former it has to be learnt first, as a separate task. Once the context predicate
is in place, it is used together with the partial observations [x1, . . . ,xt ] to predict the
label yt+1. The two learning tasks are separate: they access the same information (back-
ground knowledge and features), but different examples are provided for each task: the
first one uses the day type, the latter requires the future location of a subject.

For the problem defined above we want to show that a vanilla model performs
quite well on the data whenever the implicit context does not change. However, once
it changes the vanilla model’s performance drops significantly, while a versatile model
performance is resistant to such variations.

4 Data

In this work, we build and evaluate our models using artificially generated data. This
choice is motivated by a wide range of issues – not directly related to the variable
context time series completion – that we experienced while working on real-life data
sets collected by the CASAS group [3]. These issues include incomplete, missing and

68



noisy data, as well as labelling inconsistencies and errors due to human annotators.
Using artificially generated data allows us to focus on the development of context-
aware rule-based location prediction system rather than addressing real-life data issues.
We use the toy example as a development test-bed, and plan to address more complex
smart-house simulations and real-life data in our future research.

To generate the datasets necessary for this study, we implemented a highly cus-
tomisable, stochastic smart-house simulator. The simulator takes house layout, sensors
location and configuration, and high-level description of actions for the simulated agent
as an input. This design guarantees each simulation to produce unique data for a strictly
defined smart-house setting [12]. Therefore, every realisation of the data for a given
working pattern results in slightly varying pattern from the same distribution. We gen-
erate multiple realisations of a week of data (Monday till Sunday), given each of the
three working patterns: normal (full-time), part-time and shifts work.

The toy example house has two rooms: living_room and bedroom, each one
fitted with a single motion sensor. Moreover, rather than using 24-hour day we discretise
each one into 12 distinctive time blocks. Then a week of data is generated for each of
the three working patterns. The data described here are simple to interpret and small
enough to facilitate quick model construction and evaluation, yet they exhibit all the
necessary characteristics of the variable context time sequence completion problem.

Spatio-temporal data generated by a smart-house pose representation issues, mainly
due to the time variable being unbounded and sensor events occurring in a single time
point, but causing a change persisting through time. These properties lead naturally to
the use of Simple Event Calculus, which addresses all of the above issues [8]. Therefore,
the data have to be formatted using event calculus syntax, as well as being preprocessed
for the Aleph framework. The raw data i.e. sensor activations are interpreted as events
affecting the state of fluents encoded with holdsAt predicate, which evaluates to true
for each sensor during the period between its activation and deactivation. Additionally,
Aleph’s background knowledge encodes bindings between sensors and their room lo-
cations as well as room interconnections. Positive and negative examples are generated
alongside the raw data during simulation, what guarantees perfect labelling accuracy.

Rules extracting features from the raw sensor state data are the most important
building block of any rule-based system. Most of our features are location-based: either
current or one of the previous locations, e.g. being present or absent in a room, visiting a
room in a fixed length sliding time window or a sequence of visited rooms. Time-based
features extract useful information from a UNIX timestamp e.g. date, time, time of the
day, day of the week and season of the year.

Finally, we use five different contexts: working_day, working_night, wor-
king_morning, working_afternoon and free_day. They indicate different
types of a day, mixture of which creates one of the three different working patterns. In
the normal (full-time) pattern a typical working day consists of basic morning activities,
8 hours of work, followed by a leisure time and 8 hours of sleep. A typical free day
consists mainly of leisure activities and having a night out. In the part-time pattern the
free days are exactly the same as above, but working days are either working mornings
or working afternoons where the work period is reduced to 4 hours and the remaining 4
hours are allocated with leisure activities. In the shifts pattern the free days are again the

69



Rules: Normal Shift Part Merged Versatile Majority

To
y

da
ta

: Normal 89.29 72.62 76.19 90.48 96.43 75.00
Shift 80.95 82.14 67.86 89.29 90.48 66.67
Part 80.95 77.38 85.71 97.62 88.10 63.10
Merged 83.73 77.38 76.59 92.46 91.67 68.25
Shuffled 83.73 77.38 75.40 74.21 84.76 68.25

Table 1. Accuracies (in %) averaged over 3 realisations of given dataset for vanilla (normal,
shift, part and merged), versatile, and majority class approaches for the toy dataset. Rows are
data and columns are rule sets. Normal, shift and part correspond to data generated in particular
context. Merged is a dataset constructed by combining 1 week of data from each context. Shuffled
is merged dataset with randomly reordered days from each context. Italic numbers indicate best
rule set for given dataset; bold figures indicate training set accuracies.

same as above, however they can appear during the weekdays. Additionally, there are
two types of work patterns: working days which are exactly the same as in the normal
working schedule and working nights – mirror image of working days.

5 Results

The main goal of our work is to show the importance of versatile models in complex
scenarios like smart-house location and activity prediction. Non-versatile models learn
and use implicit information about the house layout, number of residents and lifestyle
patterns. A model performing well on one person’s house is not guaranteed to have sim-
ilar performance on a different house. A versatile model can handle multiple contexts
without retraining – features in such models need to generalise well by using markers
specific to given routines rather than fixed time points.

A major advantage of ILP rule-based systems is the white-box nature of the pro-
duced model. This gives the user a chance to understand his behaviour by simply in-
specting the model, or tweak it whenever necessary by changing the background knowl-
edge. If a person moves from one house to another and does not change living habits,
a model once learnt can be reused in the new environment by simply changing sensors
bindings in the background knowledge file. Additionally, background knowledge can
be used to “inform” the model about the learning problem properties, which with any
other learning system would have to be inferred first.

Below we present two model types: vanilla and versatile; we also compare and
contrast them against majority class classification. For comparison, we use data for all
3 working patterns as well as merged: 3-weeks long data where each week comes from
a different working pattern. Additionally, we use 3-weeks long data where number of
days from every context is the same as in merged data but the order is shuffled – we call
it shuffled. Results for the toy example are presented in Table 1; they give accuracies
(in %) averaged over 3 different realisations of given working pattern under the same
distribution (the agent script and the house layout).

A vanilla (non-versatile) model does not use latent contextual information encoded
in the data. Each of Normal, Shift and Part models were trained on a single context
data; Merged rule list was train with the data containing all 3 contexts (see merged data
description).

70



Given our features, the most basic vanilla model learnt by Aleph is highly dependent
on the time structure of the series (Example 1). Due to the repetitive patterns in the data,
the model memorises what happened during each day of the week at given time of the
day therefore performing well on the data from the same working pattern distribution.
However, this model does not perform equally well when working patterns change e.g.
Monday for the normal working person is no longer a working day but it is a free day.
Example 1. Example rule used by the vanilla model.
not_visiting_room_in_the_next_time_block(living_room,A):-

holdsAt(day_number(1),A),
holdsAt(time_block(3),A),
holdsAt(in_room(bedroom),A).

A versatile model identifies patterns and parametrises them based on the context.
Most of the patterns in our data are variations in time structure of the same events.
Therefore, such model learns structure of sequences in given context, rather than its
detailed dependence on time. The versatile model always outperforms self-learnt rules
for each of the 3 working patterns. Additionally, it performs very close to the Vanilla
model on merged data and it does not suffer significant loss in accuracy for the shuffled
data. This 7% drop in performance is mostly caused by the context rule not always
correctly recognising the type of the day from the partial data it gets.
Example 2. Example rule used by the versatile model.
not_visiting_room_in_the_next_time_block(living_room,A):-

context(working_day,A),
holdsAt(time_block(6),A),
holdsAt(not_in_room(living_room),A).

Wilcoxon signed-rank test comparing the versatile with merged and self-learnt mod-
els for the toy dataset shows that the versatile model significantly outperforms the other
two. The test rejects the null-hypothesis that the results come from the same distribution
with p-values 10−18 for versatile vs. merged, and 10−52 for versatile vs. self-learnt.

6 Conclusions and future work

The work presented in this paper shows the importance of (often implicit) context in
which our data is collected. Moreover, we showed that context is not always a mono-
lithic object: it can usually be divided into smaller entities. Furthermore, we demon-
strated the utility of the event calculus framework in logic when handling spatio-temporal
data, and that it can be implemented in Aleph. We also presented the design of a simple
versatile model. Finally, we showed that by recognising context, the model does not
suffer significant loss in performance when the operating context changes, therefore
avoiding time and resources expensive retraining phase.

In future work we plan to study the variable context time sequence completion prob-
lem in more detail using real-life datasets. While working with real data we aim to ad-
dress the issues identified and described in Section 4. This will enable us to evaluate
both vanilla and versatile models on these large scale datasets and further investigate
the advantages of our approach. Last but not least, we will compare our rule-based
approach with any state-of-the-art propositional learner.

71



References

1. Al-Otaibi, R., Prudêncio, R.B., Kull, M., Flach, P.: Versatile decision trees for learning over
multiple contexts. In: Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases. pp. 184–199. Springer (2015)

2. Baryannis, G., Woznowski, P., Antoniou, G.: Rule-based real-time adl recognition in a smart
home environment. In: Rule Technologies. Research, Tools, and Applications: 10th Inter-
national Symposium. pp. 325–340. Springer (2016), http://dx.doi.org/10.1007/
978-3-319-42019-6_21

3. Cook, D.J., Schmitter-Edgecombe, M.: Assessing the quality of activities in a smart environ-
ment. Methods of information in medicine 48(5), 480 (2009)

4. Diethe, T., Twomey, N., Flach, P.: Active transfer learning for activity recognition. In: Eu-
ropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (2016)

5. Hakeem, A., Shah, M.: Ontology and taxonomy collaborated framework for meeting clas-
sification. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on. vol. 4, pp. 219–222. IEEE (2004)

6. Hernndez-Orallo, J., Martinez-Uso, A., B.C. Prudencio, R., Kull, M., Flach, P., Ahmed, C.,
Lachiche, N.: Reframing in context: A systematic approach for model reuse in machine
learning. AI Communications 29(5), 551–566 (11 2016)

7. Kafalı, Ö., Romero, A.E., Stathis, K.: Activity recognition for an agent-oriented personal
health system. In: International Conference on Principles and Practice of Multi-Agent Sys-
tems. pp. 254–269. Springer (2014)

8. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with in-
ductive logic programming. Machine Learning 100(2-3), 555–585 (2015)

9. Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Foundations of knowledge
base management, pp. 23–55. Springer (1989)

10. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.H.: Bias reformulation for
one-shot function induction (2014)

11. Shanahan, M.: The event calculus explained. In: Artificial intelligence today. Springer (1999)
12. Sokol, K.: Shgen: v1.0 (Dec 2015), http://dx.doi.org/10.5281/zenodo.

34710
13. Srinivasan, A.: The Aleph manual, http://www.cs.ox.ac.uk/activities/

machinelearning/Aleph/aleph
14. Storf, H., Becker, M., Riedl, M.: Rule-based activity recognition framework: Challenges,

technique and learning. In: 2009 3rd International Conference on Pervasive Computing Tech-
nologies for Healthcare. pp. 1–7. IEEE (2009)

72


