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Abstract—This paper studies analytically the dynamics of the
opinion in multi-agent systems where two classes of agents
coexist. The fact that the population of considered multi-agent
systems is divided into two classes is meant to account for agents
with different propensity to change their opinions. Skeptical
agents, which are agents that are not inclined to change their
opinions, can be modeled together with moderate agents, which
are agents that are moderately open to take into account the
opinions of the others. The studied analytic model of opinion
dynamics involves only compromise, which describes how agents
change their opinions to try to reach consensus. The adopted
model of compromise is stochastic in order to give agents
some level of autonomy in their decisions. Presented results
show, analytically, that after a sufficient number of interactions
consensus is reached, regardless of the initial distribution of the
opinion. Analytic results are confirmed by simulations shown in
the last part of the paper.

I. INTRODUCTION

This paper discusses an analytic framework that can be
used to study collective and asymptotic properties of multi-
agent systems. The properties of studied multi-agent systems
evolve because of binary interactions among agents, where
the term (binary) interaction is used here to denote a message
exchange among two agents. Each interaction identifies a
single step of the evolution of the systems, regardless of how
often interactions occur. Note that studied multi-agent systems
are completely decentralized and that they involve no form
of supervised coordination. In particular, in this paper we
assume that each agent is associated with a scalar property,
which changes because of interactions with other agents, and
we assume that such a property represents the opinion of the
agent on a given topic. Notably, we remark that the proposed
approach can be used to study other collective and asymptotic
properties of multi-agent systems, and that it is not limited to
the study of the opinion, even if the development of specific
analytic results is needed if different properties are considered.

We start by considering proper rules that describe the effects
of interactions among agents on their opinions at a microscopic
level. Then, the dynamics of macroscopic properties of the
considered multi-agent system are analytically derived, taking
inspiration from physical models. In detail, the proposed
framework is related to the kinetic theory of gases, a branch of
physics which studies the temporal evolution of macroscopic
properties of gases starting from the description of micro-
scopic collisions among molecules. The idea of generalizing

the framework of kinetic theory of gases to study social
phenomena relies on a proper parallelism between molecules
and their collisions in gases, and agents and their interactions
in multi-agent systems. Such an idea is not new and it
recently gave birth to a discipline called sociophysics (see,
e.g., [1]). Note that the details of collisions among molecules
are different from the details of interactions among agents
and, hence, analytic results obtained at the macroscopic level
for the dynamics of the properties of multi-agent systems
are significantly different from those of kinetic theory of
gases. For the specific case of the study of opinion dynamics,
the major advantage of the proposed approach consists in
the derivation of analytic results, in contrast with simulation
results that are typically studied in the literature on the subject.
While the validity of simulations depends on the specific tool
adopted, and on the choice of the parameters of simulated
models, analytic results are valid as long as the hypothesis
used to derive them are valid.

We have already applied the proposed approach to the
study of various models of opinion dynamics (see, [2]–[9]),
and analytic results were always confirmed by independent
simulations. In this paper, we enrich previous studies on the
subject by considering multi-agent systems where two types of
agents, grouped into two disjoint classes, coexist. Each class
is associated with different parameters, such as a different
number of agents, a different initial distribution of the opinion,
and a different inclination of contained agents at changing
their opinions. Results concerning a similar model, where
only deterministic interactions among agents are considered,
have already been presented in [10]. Here, we extend those
results by adding stochastic parameters in order to describe
the behavior of agents that exhibit some level of autonomy.
Moreover, we concentrate on the impact of the presence of
skeptical agents in the multi-agent system. Note that, in order
to account for the existence of two classes of agents, we take
inspiration from kinetic theory of gas mixtures, which is used
to study gases composed of different types of molecules.

This paper is organized as follows. Section II describes the
details of the proposed kinetic framework. Section III derives
relevant analytic results concerning the average opinion in
the multi-agent system. Section IV shows simulation results
that are used to confirm analytic results. Finally, Section V
concludes the paper.
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II. A KINETIC FRAMEWORK OF OPINION DYNAMICS

In kinetic theory of gases, each molecule of a gas is
associated with specific physical quantities, such as its po-
sition and its velocity, and the macroscopic features of gases,
concerning, for example, its temperature and pressure, are
derived on the basis of a proper balance equation known
as Boltzmann equation. Similarly, in the context of opinion
dynamics, we assume that each agent is associated with a
single scalar value which models its opinion, and macroscopic
characteristics of the considered multi-agent system, such as
the average opinion and the standard deviation of the opinion,
are studied analytically using a proper balance equation, whose
formulation is inspired by the Boltzmann equation.

Opinion is modeled as a continuous variable v, which is
defined in a closed interval Iv . Without loss of generality [11],
interval Iv is typically set to

Iv = [−1, 1] (1)

where values close to 0 represent moderate opinions while
values close to −1 or to +1 correspond to extremal opinions.

The first step to derive analytic results consists in the
definition of the microscopic rules that govern the effects of
an interaction among two agents. As detailed in the introduc-
tion, we assume that two classes of agents characterize the
considered multi-agent system. Let us consider an interaction
between an agent of class s ∈ {1, 2} and an agent of class
r ∈ {1, 2}. Denoting as v the pre-interaction opinion of the
agent of class s, and as w the pre-interaction opinion of the
agent of class r, we assume that the post-interaction opinions
of the two interacting agents can be computed according to
the following rules

{
v∗ = v − Γsr(v − w)

w∗ = w − Γrs(w − v)
(2)

where v∗ and w∗ are the opinions of the two agents after
the interaction, and {Γsr}2s,r=1 are four mutually independent
random variables.

Assuming that the support of random variables {Γsr}2s,r=1

is a subset of (0, 1), then it is guaranteed that the post-
interaction opinions v∗ and w∗ still belong to Iv . In addi-
tion, this choice of the support of random variables allows
using interaction rules (2) to model compromise, which is
the sociological phenomenon that describes the tendency of
agents to change their opinions towards those of the agents
they interact with. In fact, considering, for instance, the first
rule, it can be observed that if the value of Γsr is close to 0,
then the post-interaction opinion v∗ of the first agent is close
to its pre-interaction opinion v. At the opposite, if the value
of Γsr is close to 1, then the post-interaction opinion v∗ of
the first agent is close to the pre-interaction opinion w of the
second agent. Hence, it can be concluded that Γsr measures the
propensity of an agent of type s to change its opinion in favor
of that of an agent of type r after an interaction. In addition,
in order to properly model the sociological characteristics of

compromise, we also aim at reproducing the fact that the post-
interaction opinion of an agent is closer to its pre-interaction
opinion than to the pre-interaction opinion of the other agent.
This phenomenon can be reproduced in terms of the following
inequalities

|v∗ − v| < |v∗ − w|
|w∗ − w| < |w∗ − v|. (3)

Simple algebraic manipulations show that a sufficient condi-
tion for (3) to hold is that the support of random variables
{Γsr}2s,r=1 is restricted to a subset of

IΓ =

(
0,

1

2

)
. (4)

This is the reason why, in the remaining of this paper, we
assume that the supports of random variables {Γsr}2s,r=1 are
subsets of IΓ.

The expected value of the sum of post-interaction opinions
of two interacting agents can be computed from (2) as

E[v∗ + w∗] = v + w + (Γrs − Γsr)(v − w) (5)

where Γsr denotes the average value of random variable Γsr,
and Γrs is the average value of random variable Γrs. Observe
that (5) shows that the opinion is not conserved through single
interactions. Actually, the average value of the sum of the
opinions of two interacting agents can increase or decrease
depending on the sign of (Γrs − Γsr)(v − w). Note that if
the two random variables Γsr and Γrs have the same average
value, then opinion is conserved, on average, after single
interactions. Similarly, the difference between post-interaction
opinions of two interacting agents is

v∗ − w∗ = εrs(v − w). (6)

where εrs = 1−(Γrs+Γsr) and, according to (4), εrs ∈ (0, 1).
From (6) it can than be concluded that the difference be-
tween post-interaction opinions is smaller than the difference
between pre-interaction opinions. According to these consider-
ations, it is reasonable to expect that, after a sufficiently large
number of interactions, all agents would eventually end up
with the same opinion, regardless of their classes.

We now describe the kinetic framework which allows deriv-
ing analytic results starting from microscopic rules (2). As in
kinetic theory of gas mixtures, we need a distribution function
fs(v, t) for each class s ∈ {1, 2}, where fs(v, t)dv represents
the number of agents of class s with opinion in (v, v + dv).
Observe that, using this notation, the number of agents of class
s at time t, denoted as ns(t), can be computed as

ns(t) =

∫

Iv

fs(v, t)dv s ∈ {1, 2}. (7)

We also denote the total number of agents at time t as n(t),
which can be computed as

n(t) = n1(t) + n2(t). (8)
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In analogy with the kinetic theory of gas mixtures, the tem-
poral evolution of each distribution function is described by

∂fs
∂t

(v, t) = Is s ∈ {1, 2} (9)

where Is can be computed as

Is =
2∑

r=1

Qsr(fs, fr) s ∈ {1, 2}, (10)

and Qsr(fs, fr) is a proper operator that depends on distribu-
tion functions fs(v, t) and fr(v, t). Equation (9) is a balance
equation that plays in the described framework the same role
that the Boltzmann equation plays in kinetic theory of gas
mixtures. For this reason, we use the same nomenclature and
we call such an equation Boltzmann equation, and its right-
hand size collisional operator relative to class s. However,
note that the explicit expression of the collisional operator
in kinetic theory of gas mixtures depends on the details
of interactions among molecules, which are different from
the details of interactions among agents, expressed in (2).
Hence, the explicit expression of the collisional operator (10)
is different from that of kinetic theory, leading to different
developments of analytic results.

In order to obtain analytic results, the weak form of the
Boltzmann equation needs to be considered. Just like in kinetic
theory of gas mixtures, the weak form of the Boltzmann
equation is obtained by multiplying (9) by a test function φ(v),
a smooth function with compact support, and by integrating
the result with respect to v (see, e.g., [12]). Hence, the weak
form of Boltzmann equation (9) is

∫

Iv

∂fs
∂t

φ(v)dv =
2∑

r=1

∫

Iv

Qsr(fs, fr)φ(v)dv. (11)

By generalizing the results in [1] and in [10], the right-hand
side of (11) can be rewritten as

2∑

r=1

∫

Iv

∫

Iv

∫

Bsr

∫

Brs

βΘsr(Γsr)Θrs(Γrs)

· fs(v)fr(w)(φ(v∗(v, w))− φ(v))dvdwdΓrsdΓsr

(12)

where
1) Θsr(·) and Θrs(·) are the distributions of random vari-

ables Γsr and Γrs;
2) Bsr and Brs are the support of Γsr and Γrs, respec-

tively; and
3) β is the probability that two agents interact.

Note that using the fact that the integral with respect to v and
the derivative with respect to t commute, the left-hand side of
(11) can be rewritten as

d

dt

∫

Iv

fs(v, t)φ(v)dv. (13)

Proper choices of the test function φ(v) can be used to
study macroscopic properties of the system, as shown in the
following section.

III. ANALYTIC STUDY OF MACROSCOPIC PROPERTIES

In this section, we show how the weak form of the
Boltzmann equation can be used to derive collective and
asymptotic properties of considered multi-agent systems. First,
we set φ(v) = 1, so that the weak form of the Boltzmann
equation with respect to such a test function becomes

d

dt

∫

Iv

fs(v, t)dv = 0 s ∈ {1, 2}. (14)

Recalling (7), it is possible to observe that the left-hand side of
(14) represents the time derivative of the number of agents of
class s. Hence, it can be concluded that the number of agents
of any class s ∈ {1, 2} is constant, and, therefore, also the
total number of agents in the system is constant.

Let us now consider the test function φ(v) = v in (12),
which leads to simplify the right-hand side of (12) as

2∑

r=1

∫

Iv

∫

Iv

∫

Bsr

∫

Brs

βΘsr(Γsr)Θrs(Γrs)

· fs(v)fr(w)Γsr(w − v)dvdwdΓrsdΓsr.

(15)

Observe that (15) can be used to study the temporal evolution
of the average opinion of agents of class s. Actually, recalling
the definition of the distribution function fs(v, t), the average
opinion of agents of class s at time t can be computed as

us(t) =
1

ns

∫

Iv

fs(v, t)vdv s ∈ {1, 2}. (16)

Note that the average opinion of the entire multi-agent system
is computed as the following weighed sum of average opinions

u(t) =
1

n
(n1u1(t) + n2u2(t)) . (17)

Using (15) and (16), we can write

ns
d

dt
us(t) = β

2∑

r=1

Γsr

∫

Iv2

fs(v)fr(w)(w − v)dvdw. (18)

From (18), it is evident that also its right-hand side can
be expressed in terms of average opinions. Simple algebraic
manipulations show that the following equalities hold

d

dt
us(t) = β

2∑

r=1

Γsrnr (ur(t)− us(t)) s ∈ {1, 2}. (19)

The two equations (19) form a homogeneous system of
first-order linear differential equations, which can be solved
analytically. In order to simplify notation, let us introduce the
following parameters

a1 = βΓ12n2 a2 = βΓ21n1. (20)

Then, (19) can be written as
{
u̇1(t) = −a1(u1(t)− u2(t))

u̇2(t) = a2(u1(t)− u2(t)).
(21)

Introducing the auxiliary function

x(t) = u1(t)− u2(t) (22)

45



and subtracting the second equation from the first equation in
(21), we obtain the following differential equation

ẋ(t) = −(a1 + a2)x(t) (23)

whose solution is

x(t) = Ce−(a1+a2)t (24)

where C is a constant. Recalling (22), the following relation
between u1(t) and u2(t) can be found

u1(t) = u2(t) + Ce−(a1+a2)t. (25)

Using this result in the second equation of system (21), the
following differential equation for u2(t) is found

u̇2(t) = Ca2e−(a1+a2)t (26)

and, hence, u2(t) can be expressed as

u2(t) = −C a2

a1 + a2
e−(a1+a2)t +K, (27)

where K is a constant. Finally, inserting the expression of
u2(t) in (25), we obtain

u1(t) = C
a1

a1 + a2
e−(a1+a2)t +K (28)

where K is the same constant used in (27). The two constants
C and K can be found by imposing that initial conditions are
satisfied. Simple algebraic manipulations show that

C = u1(0)− u2(0)

K = u1(0)
a2

a1 + a2
+ u2(0)

a1

a1 + a2

(29)

where {us(0)}2s=1 are the initial average values of the opinions
of the two classes of agents.

Therefore, it can be concluded that the solution of (21) can
be expressed in closed form as





u1(t) = C
a1

a1 + a2
e−(a1+a2)t +K

u2(t) = −C a2

a1 + a2
e−(a1+a2)t +K

(30)

where C and K are computed in (29) using the initial
distributions of the opinion of the two classes of agents. From
(30), it can be observed that since a1 > 0 and a2 > 0, the
following equalities hold

lim
t→+∞

u1(t) = lim
t→+∞

u2(t) = K. (31)

Observe that, according to (20) and (29), K depends on the
average initial opinions {us(0)}2s=1, on the number of agents
{ns}2s=1 in each class, and on Γ12 and Γ21.

TABLE I
THE CONSIDERED VALUES OF THE PARAMETERS FOR THE TWO CLASSES
OF AGENTS IN SIMULATIONS: NUMBER OF AGENTS, n1 AND n2 ; INITIAL

DISTRIBUTIONS OF THE OPINION, f1(v, 0) AND f2(v, 0); AND
DISTRIBUTION OF RANDOM VARIABLES, Γ12 AND Γ21 .

n1 n2 f1(v, 0) f2(v, 0) Γ12 Γ21

900 100 U(−1,1) U(3/4,1) U(0,2/10) U(0,2/100)

990 10 U(−1,1) U(3/4,1) U(0,2/10) U(0,2/100)

IV. VERIFICATION OF RESULTS BY SIMULATION

In this section, we show analytic results obtained according
to the framework outlined in previous sections for proper
choices of parameters. In order to confirm the validity of
such results, we compare them against those obtained by
simulating a system composed of 103 agents, which interact
according to (2). We remark that simulations are performed by
randomly choosing two interacting agents at each step and by
implementing interaction rules (2), independently of analytic
results. Table I shows the values of the parameters relative to
the two classes of agents that are considered to derive analytic
and simulation results. In particular, different values of the
parameters are considered for:

1) The number of agents {ns}2s=1;
2) The initial distribution of the opinion; and
3) The distribution of random variables {Γsr}2s,r=1.
First, we consider the parameters shown in the first row

of Table I. In this case, n1 = 900 and n2 = 100, meaning
that 90% of the agents belong to class 1 and only 10% of
the agents belong to class 2. Initial opinions of agents of
class 1 are uniformly distributed in interval Iv , as shown
in the third column. Therefore, the initial average opinion
of agents of class 1 is 0. Initial opinions of agents of class
2, instead, are uniformly distributed in the smaller interval
(3/4; 1). This choice implies that agents of class 2 have
extremal opinions and that their initial average opinion is
u2(0) = 7/8. Another feature that distinguishes the agents in
the two classes concerns their inclination to change opinion.
The distributions of random variables Γ12 and Γ21 are related
to such an inclination. As shown in Table I, we assume that Γ12

has uniform distribution in interval (0, 2/10), corresponding
to an average value Γ̄12 of 1/10, and that Γ21 has uniform
distribution in interval (0, 2/100), corresponding to an average
value Γ̄21 of 1/100. According to such choices, Γ̄12 = 10Γ̄21,
which means that the propensity of agents of class 2 to change
their opinions in favor of those of agents of class 1 is much
lower than the propensity of agents of class 1 to change
their opinions in favor of those of agents of class 2. For
this reason, agents of class 2 can be considered skeptical.
Fig. 1 shows the average opinion u1(t) of the agents of class
1 (blue line) and the average opinion u2(t) of the agents of
class 2 (red line). As expected from (31), u1(t) and u2(t)
converge to the same value, which, according to this choice
of parameters, corresponds to K ' 0.46. Fig. 1 also shows
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Fig. 1. Average opinions u1(t) (blue line) and u2(t) (red line) derived
analytically, and average opinions ũ1(t) and ũ2(t) (dotted black lines)
obtained by simulation, all computed with values in the first row of Table I.

the values of {ũs(t)}2s=1 obtained by simulation (dashed black
lines), showing that analytic results are in agreement with
those obtained by simulation.

We now consider the parameters shown in the second row
of Table I, which differ from those in the first row only for
{ns}2s=1. The initial distributions of opinion {fs(v, t)}2s=1

and, hence, the initial values of the average opinion of the
two classes of agents, are the same as in the first scenario.
This means that agents of class 2 still have extremal opinions.
Also the distributions of random variable Γ12 and Γ21 are the
same as in the first scenario, so that agents of class 2 can
still be considered skeptical. The only difference is that, in
this case, skeptical agents are only 1%. In fact, 990 agents,
corresponding to 99% of the total number of agents, belong
to class 1, and only 10 agents, corresponding to 1% of the
total number of agents, belong to class 2. Fig. 2 shows the
average opinion u1(t) of the agents of class 1 (blue line) and
the average opinion u2(t) of the agents of class 2 (red line).
As expected from (31), the values of u1(t) and u2(t) converge
to the same value, which now corresponds to K ' 0.08. The
values of ũ1(t) and ũ2(t) (dotted black lines) obtained by
simulation with the parameters in the second row of Table I
are also shown. As in the first scenario, simulation results are
in agreement with analytic ones.

In order to improve the analysis of considered scenarios,
Fig. 3 shows the distributions f1(v, t) (solid blue lines) and
f2(v, t) (dashed red lines) of the opinions of the two classes
of agents obtained by simulating the multi-agent system with
the parameters in the first row of Table I. In detail:

1) Fig. 3(a) shows the distributions fs(v, t) after 5 · 104

interactions, which corresponds to 100 interactions per
agent on average;

2) Fig. 3(b) shows the distributions fs(v, t) after 105 inter-
actions, which corresponds to 200 interactions per agent
on average;
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Fig. 2. Average opinions u1(t) (blue line) and u2(t) (red line) derived
analytically, and average opinions ũ1(t) and ũ2(t) (dotted black lines)
obtained by simulation, all computed with values in the second row of Table I.

3) Fig. 3(c) shows the distributions fs(v, t) after 1.5 · 105

interactions, which corresponds to 300 interactions per
agent on average; and

4) Fig. 3(d) shows the distributions fs(v, t) after 2 · 105

interactions, which corresponds to 400 interactions per
agent on average.

From Fig. 3 it can be observed that not only the average
opinions us(t) converge to the same value K ' 0.46, as
already shown in Fig. 1, but also that consensus among agents
is reached, since the opinions of all agents tend to the same
value, as expected from the analytic model. Similar diagrams
can be drawn using the parameters in the second row of
Table I, obtaining similar results.

V. CONCLUSIONS

This paper presented an analytic model of opinion dynamics
which assumes that the agents in the studied multi-agent
system can be grouped into two classes on the basis of their
characteristic parameters. Such classes can be used to model
agents with different propensity to change their opinions after
interactions, and they are used here to model the presence
of skeptical agents in the multi-agent system. Among the
sociological phenomena that can be used to describe the
dynamics of the opinion, the presented model considers only
compromise, which is the phenomenon that describes interac-
tions that tend to consensus. The characteristic autonomy of
agents is modeled in terms of random variables used at the
microscopic level to perturb the classic model of compromise,
which is deterministic. Analytic results ensure that the average
opinion of the multi-agent system is conserved, and that
consensus is always reached for a sufficiently large number of
interactions. Simulations shown in the last part of the paper
confirm such properties.

Ongoing research involves the extension of the presented
model to account for major sociological phenomena (see,
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Fig. 3. The distributions f1(v, t) (blue line) and f2(v, t) (red line) obtained by simulation using the parameters in the first row of Table I for: (a) t = 5 ·104;
(b) t = 105; (c) t = 1.5 · 105; (d) t = 2 · 105.

e.g., [8]). Among considered phenomena, ongoing research
includes stochastic models for:
• Diffusion, the phenomenon according to which the opin-

ion of agents is influenced by the social context [13];
• Homophily, the process according to which agents interact

only with those with similar opinions [14];
• Negative influence, the idea according to which agents

evaluate their peers, and they only interact with those
with positive scores [15];

• Opinion noise, the process according to which a random
additive variable may lead to arbitrary opinion changes
with small probability [16]; and

• Striving for uniqueness, the phenomenon according to
which agents want to distinguish from others [17].

Preliminary results on the deterministic study of such phenom-
ena for multi-agent systems with multiple classes of agents
are encouraging (see, e.g., [9]), and they show that major
collective and asymptotic properties of multi-agent systems
can be fruitfully studied analytically.
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