
Statistical Detection of Downloaders in Freenet

Brian N. Levine, Marc Liberatore, Brian Lynn, Matthew Wright†
College of Information and Computer Sciences, University of Massachusetts Amherst, MA, USA

†Department of Computing Security, Rochester Institute of Technology, NY, USA

Abstract—Images posted to file-sharing networks without a
person’s permission can remain available indefinitely. When the
image is sexually explicit and involves a child, the scale of
this privacy violation grows tremendously worse and can have
repercussions for the victim’s whole life. Providing investigators
with tools that can identify the perpetrators of child pornog-
raphy (CP) trafficking is critical to addressing these violations.
Investigators are interested in identifying these perpetrators on
Freenet, which supports the anonymous publication and retrieval
of data and is widely used for CP trafficking. We confirmed
that 70,000 manifests posted to public forums dedicated to
child sexual abuse contained tens of thousands of known CP
images including infants and toddlers. About 35% of traffic
on Freenet was for these specific manifests. In this paper, we
propose and evaluate a novel approach for investigating these
privacy violations. In particular, our approach aims to distinguish
whether a neighboring peer is the actual requester of a file or
just forwarding the requests for other peers. Our method requires
only a single peer that passively analyzes the traffic it is sent by
a neighbor. We derive a Bayesian framework that models the
observer’s decision for whether the neighbor is the downloader,
and we show why the sum traffic from downloaders relayed by
the neighbor is not a significant source of false positives. We
validate our model in simulation, finding near perfect results,
and we validate our approach by applying it to real CP-related
manifests and actual packet data from Freenet, for which we
find a false positive rate of about 2%. Given these results, we
argue that our method is an effective investigative method for
addressing privacy violations resulting from CP published on
Freenet.

I. INTRODUCTION

Images are posted to the Internet every day without the
consent of the persons captured. In cases where the images
are sexually explicit, this represents a tremendous violation of
privacy. Recently, popular services such as Reddit1 and Twitter2

changed their privacy policies to thwart this practice. This
problem is many times worse when images capturing the sexual
exploitation of very young children (i.e., child pornography, or
CP) are posted to unmanaged forums, such as file-sharing
networks. Unfortunately, CP can remain available on the
Internet for many years [1], extending the privacy violation
potentially throughout a victim’s whole life. For example,
victims report ongoing psychosis, anxiety, and other disorders
decades after the abuse has ended [2], in part from knowing that
the images have been viewed widely [3]. Providing investigators

1See https://www.reddit.com/r/announcements/comments/2x0g9v/from 1
to 9000 communities now taking steps to/.

2See http://money.cnn.com/2015/03/12/technology/twitter-revenge-porn/.
© 2017 Copyright held by the authors.
From Proc. IEEE International Workshop on Privacy Engineering, May 2017.

with tools that can identify the perpetrators of CP file trafficking
is critical to addressing these privacy violations.

In this paper, we focus on the investigation of such privacy
violations on the Freenet [4] peer-to-peer system, which is itself
a privacy enhancing technology supporting the anonymous
publication and retrieval of data. Freenet, whose development
began in 2001 [5,6], does not serve as an anonymous conduit to
the Internet, unlike Tor; only previously published content can
be retrieved. Documents published to Freenet are fragmented
into small, encrypted blocks that are dispersed randomly
throughout the network of peers. A manifest key is a URI
necessary to retrieve and reconstruct the original document.
Many manifest keys for files are broadcast via open, public
forums, including for content that is illegal in many countries.

By searching Freenet’s freesites and Usenet-like Frost system,
we found a number of areas explicitly and openly dedicated to
child sexual exploitation. We harvested 70,000 manifest keys
from these areas and examined block requests in real Freenet
traffic. Law enforcement confirmed to us that the manifests
contained tens of thousands of child pornography images
of which one-third were of infants and toddlers; additional
previously unknown images were also present. We found that
requests for documents using these manifest keys account for
about 35% of Freenet traffic.

To deter these ongoing privacy violations and catch the
perpetrators, investigators may be interested in finding persons
who publish and request this data. Prior work has revealed
some vulnerabilities in Freenet’s approach [7,10,11,12,13] that
investigators might try to apply to de-anonymize requesters of
CP. These are relatively heavy-weight approaches that require
active maneuvering of the investigator’s position, the use of
active probing traffic, or the use of multiple peers. Further, the
Freenet developers have largely addressed these vulnerabilities.

In this paper, we design and evaluate a method for investi-
gation of CP-based privacy violations on Freenet. Our findings
also provide lessons for the design and implementation of
anonymous file-sharing systems. In particular, we present a
novel approach to distinguishing whether a neighboring peer
is the actual requester of a document, with potential for real-
world application by investigators. Our algorithm requires only
a single peer and the passive analysis of the traffic that is sent to
it by the neighbor. The method is based on a surprisingly simple
observation. Because blocks are evenly distributed around the
network, an observer who is one of g neighbors of the original
downloader can expect to receive about 1

g of all requests. If the
observer is actually the neighbor of a neighbor of the original
downloader, then only about (1g)

2 will be received, assuming

1

https://www.reddit.com/r/announcements/comments/2x0g9v/from_1_to_9000_communities_now_taking_steps_to/
https://www.reddit.com/r/announcements/comments/2x0g9v/from_1_to_9000_communities_now_taking_steps_to/
http://money.cnn.com/2015/03/12/technology/twitter-revenge-porn/

the requestor has the same number of neighbors. Given the
manifest key, an observing peer can determine the number of
requests expected. Accordingly, given the number of requests
received, the observer can quantify the probability of whether
the requests were relayed by or originated with its neighbor.

Our contributions are as follows. We first derive a Bayesian
framework that models the investigator’s decision for whether
the neighbor is the downloader. Based on this framework, we
show why the traffic of downloaders that passes through the
neighbor is not a significant source of false positives. We
validate our model through simulation and show that our
approach is very accurate. In practice, some false positives
may result due to details of Freenet’s operation and use that
are hard to model. We thus apply our approach to real public
manifests and actual packet data from Freenet, and we show
that our false positive rate is about 2% in practice. Given these
results, we argue that this investigative technique is a highly
accurate, efficient, and effective method of addressing privacy
violations resulting from CP published on Freenet. Finally, we
discuss redesigns of Freenet that may allow downloaders to
avoid detection.

II. BACKGROUND

We now briefly describe Freenet’s overall design and
operation. The original Freenet papers [5,6] provide many other
details, and the Freenet wiki (https://wiki.freenetproject.org)
and source code (https://github.com/freenet/fred) are also
valuable resources.

Each Freenet node connects to other Freenet nodes, the set
of which we call its peers. Each node contributes storage to
the network. Files are inserted into the network and stored in
the storage contributed by other nodes. After a file is inserted,
a URI known as a manifest key is returned to the user. Anyone
with knowledge of the manifest key can retrieve the file.

Before Freenet inserts a file into the network, it encrypts and
divides the file into 32KB blocks. A node distributes blocks to
its peers. A peer may place the block in its own storage, and
it may also send the block to its own peers. Blocks are stored
using a key-value pair, with the key being the SHA256 hash
of the block, and value being the data.

Freenet has two operational modes: opennet and darknet.
In opennet, nodes connect to other opennet nodes, discovered
from well-known seed nodes or other peers. Freenet allows
for opennet nodes to exchange peers, and form new links to
peers, in order to better organize the network as a distributed
hash table. In darknet, Freenet nodes connect only to peers for
which the user has explicitly given permission. We consider
only opennet, though our technique should work for either.
Manifests. When a file is inserted into the network, a manifest
block is also inserted. The manifest key contains the decryption
key, and the block’s hash, necessary for retrieval. The manifest
block contains the hashes and decryption keys of each content
block. If the manifest block cannot reference all of the content
blocks, it will reference another level of manifest blocks.

Retrieving a file is the reverse process of inserting a file. The
downloading node retrieves the manifest block(s). Once the

file’s content blocks have been identified, they can be retrieved.
Retrieving a file does not result in a file’s blocks being placed
into the downloading node’s local storage.

If the peer receiving a request has the block in its Freenet
storage, it returns the block. Otherwise, the peer forwards the
request to one of its peers. This process will continue from
peer to peer. When found, the block is returned in reverse
order through the chain of peers and cached. If a selected peer
fails to find the block, a node may forward the request to other
peers before returning a result of not found.

Hops-to-Live. To prevent block requests from propagating in-
definitely, Freenet uses a hops-to-live (HTL) counter. Generally,
the HTL begins at 18 and is decremented by each relay node
until it is zero, in which case a not-found error is returned.

The downloader would be obvious if Freenet were to always
start with an HTL of 18. To avoid detection, the downloading
node will randomly choose whether to start at 18, or to
immediately decrement the HTL to 17. Once the decrement
decision is made, it is permanent for all originating requests
sent to that peer. Further, the same decision applies when
relaying a request with an HTL of 18 to that peer; the node
will only decrement the HTL if a new request would also be
decremented. As a result, if a peer receives a request with an
HTL of 18 or 17, its originator is ambiguous. Note that blocks
are not cached by relayers if the request HTL was 18 or 17.

Data and FEC blocks. The number of blocks Freenet inserts
into the network is considerably larger than the file size divided
by 32KB. In addition to the data blocks, Freenet uses Reed-
Solomon codes to generate forward error correction (FEC)
blocks. These check blocks provide redundancy and the ability
to recreate missing blocks. Freenet subdivides a file into
segments. For each n data blocks in a segment, Freenet inserts
n + 1 check blocks. Each segment cannot reference more
than 256 total blocks. To recreate the data represented by a
segment, Freenet must successfully fetch n blocks, using any
combination of data or check blocks.

After a segment has been successfully retrieved, the node
will regenerate and insert each block in the segment that it
had requested but failed to fetch. To have more nodes store
a file’s blocks, Freenet will randomly re-insert a block that
it has successfully fetched, with a 0.5% probability of being
selected for re-insertion.

Peer selection and routing. A persistent location is randomly
assigned to each opennet node. A location is a 64-bit floating
point number between 0 and 1. Locations are points on a
circular space, with 0 and 1 being the same point. A distance
can be calculated between any two locations. Each block’s
SHA256 hash can be deterministically converted to a location;
and a distance can be calculated between a node and a block.

An opennet node attempts to have the majority of its peers’
locations close to its own location, with the remaining peers
distributed throughout the circle. When sending a request, a
node attempts to send it in the direction of the node closest to
the block’s location. Freenet performs friend of a friend routing:
nodes have visibility to their immediate peers’ locations, as

https://wiki.freenetproject.org
https://github.com/freenet/fred

well as the locations of their peers’ peers. All locations are
considered when selecting a recipient peer. At any given instant,
some peers of a node are responsible for larger parts of the
location space than others. But over time as peers come and go,
each peer accounts for a roughly equal fraction of the location
space visible to a node. We have verified this intuitive fact in
simulations of the Freenet routing protocol.

III. INVESTIGATIVE TECHNIQUE AND ANALYSIS

In this section, we discuss an investigative model for
identifying whether a Freenet peer is a downloader of a given
manifest. We then show that our approach is resistant to
false positives potentially caused by a node relaying multiple
concurrent downloaders.

A. Assumptions and Model

The goal of the investigator is to identify whether a neighbor
sending requests is the downloader of a file in a set of files
of interest, or instead relaying the requests. We assume the
investigator has collected manifest keys for these files of
interest, which can be obtained, for example, from Freenet
message boards or web sites (i.e., freesites) related to CP. For
simplicity, we assume the investigator operates only one peer
in the Freenet network, which we call the observer. Running
multiple peers as Sybils [14] is possible and efficiently allows
for parallel investigations. The observer is strictly passive: it
participates in the network by forwarding requests as usual,
but also logs the SHA256 hash keys of any request it sees,
together with the ID of the peer (i.e., the neighboring node)
that sent it the request, and the count of the peer’s neighbors.
Surprisingly, these are all the steps required.

B. Description

For each manifest key from the files of interest, the
investigator obtains the SHA256 hash keys for each block in
the manifest, which can be retrieved from Freenet by fetching
the manifest blocks. The observer node passively logs requests
to download blocks from its peers, and the observer can easily
map the requests to the files of interest by the key values.
Requests that don’t map are not logged. The observer then
counts the requests received on a per-peer and per-file basis,
for all known files. Based on the counts, the observer can
calculate the likelihood that a given peer is either:
• requesting to download blocks for a specific file; or
• relaying requests of a third node to download blocks for

a specific file.
Figure 1 illustrates the two scenarios.

Let us call the observer’s peer who sends the requests the
subject, as the subject may be the downloader or merely
forwarding the requests. Because only requests with an HTL
of 18 or 17 could have originated at the subject, we do not
need to count requests with lower HTLs. For the remainder of
this section, we consider only requests with HTLs of 18 or 17
unless otherwise noted.

The intuition for the investigative technique is now easy
to describe. For large files, the downloader will make a

DownloaderObserver

download
requests

Subject

g
neighbors

Observer Relay

download
requests

Subject

g
neighbors

Downloader

download
requests

h
neighbors

Fig. 1: The observer’s goal is to distinguish between these two scenarios.

large number of requests for blocks from the manifest, and
those requests will be spread randomly among its peers. An
observer who is a peer of the downloader will expect to see a
certain number of those requests, with some variance. On the
other hand, if the observer is merely a peer to a peer of the
downloader, it will see only a fraction of the requests seen by
the peer. The investigative technique uses a statistical test to
distinguish between these two cases.

C. Analysis

We now more formally describe and analyze the investigative
technique, which uses several values as input. Two directly
observed (per-file, per-peer) values are:
r : the number of download requests received by the

observer from the subject;
g : the number of directly connected peers of the subject

(including the observer herself).
The observer must select two additional values:
T : the total number of requests made by a downloader of

the given file;
h : the number of peers assumed connected to a hypothesized

source that is not the directly observed subject.
The number of requests actually observed is the upper bound

of r; in practice, we use a downwardly adjusted value, as
described in Section III-E. The observer learns g from the
Freenet protocol. T is not simply the total number of blocks
in the manifest: almost half of those blocks are redundant to
ensure that the file can be downloaded even when some blocks
are unavailable. Due to Freenet’s implementation, the number of
requests made is dependent on the number of blocks available.
We define the values used for T and h in Section III-E.

We construct a model by assuming that each request the
downloader makes is sent to exactly one of its peers, and that
the selection of that peer is made uniformly at random. The
total number of requests an observer will receive from the
subject if she is the downloader can be modeled by a Binomial
distribution. Let p be the probability of each request being
sent to the observer. Given T possible download requests, the
probability of the observer receiving r requests is

B(r;T, p) =

(
T

r

)
pr(1− p)T−r. (1)

Let H1 be the event that the subject is the downloader, in
which case p = 1/g. Let H2 be the event that a peer of the
subject is the downloader, in which case p = 1

gh .

As stated above, the technique assumes that either the peer
is the downloader or a directly connected peer of the peer is
the downloader. Using a Bayesian framework, this assumption
can be modeled as follows. We seek the probability of H1
given that the observer has received r requests, which can be
written as follows using Bayes’ Rule:

Pr(H1|r) =
Pr(H1)Pr(r|H1)

Pr(r)
(2)

=
Pr(H1)Pr(r|H1)

Pr(H1)Pr(r|H1) + Pr(H2)Pr(r|H2)
.(3)

We know that
Pr(r|H1) = B (r;T, 1/g) (4)

and similarly,

Pr(r|H2) = B (r;T, 1/gh) . (5)

To set the priors Pr(H1) and Pr(H2), we use the number
of peers of the subject as a guide. Assuming that among the
subject or its peers, each is equally likely to be the downloader,
that is Pr(H1) = 1

g+1 and Pr(H2) = g
g+1 . Thus, we have

Pr(H1|r) =
1

g+1B (r;T, 1/g)
1

g+1B (r;T, 1/g) + g
g+1B (r;T, 1/gh)

. (6)

We quantitatively evaluate this equation in Section IV.

D. Multiple Third-Party Downloaders

Beyond the two cases above, it is also possible that the
subject is relaying a large number of download requests
from multiple third parties, and thus could be mistaken as
a downloader via Eq. 6. Below we show why this is unlikely.

If the subject is the downloader, then an observer can expect
to see 1

g of the T requests with an HTL of 18 or 17. Let
us consider the case that the subject is not the downloader,
but it instead relays requests for multiple other nodes. In the
worst case for a false positive determination for the subject,
let us suppose that the set of downloaders includes all nodes
except the observer and the subject: every peer of the subject
(except the observer), as well as all of their peers, and so on.
When h is small, a larger number of requests from these peers
will reach the observer because, in that case, the subject will
receive and potentially forward proportionately more of the
requests from these peers to the observer. This holds generally:
peers of the peer, and so on, in the worst case have few peers.

We can represent this set N of peers as an inward tree of
nodes, constructed as follows:
• The observer has one child, the subject;
• The subject has b children, N1

0 , N1
1 , . . . , N1

b−1;
• The tree continues with a branching factor of b, such that

each node in the tree has one parent and b children. Let
N i

j be the jth node at level i.
While the network structure of Freenet is not a tree, the routing
of messages through the network is, to a first approximation,
along a tree as described here.

Let us consider N1, the first level of the tree. In expectation,
half of these nodes will send requests to the subject with an

HTL of 17, and the subject will decrement those HTLs to 16
before forwarding them on. The investigator will discard these
requests, meaning that we only need to consider requests that
arrive at the subject with HTL 18. The other half of nodes in
N1 will generate requests with an HTL of 18 when sent to the
subject. Accordingly, the subject will receive, in expectation,
requests from b

2 of the nodes in N1 with an HTL of 18. It
will not receive all the requests generated by these nodes, as
each will split requests among their b+ 1 peers. The subject
will, in expectation, receive b

2
1

b+1 requests from the nodes in
N1 and forward 1

b fraction of these to the observer. In other
words, the observer can expect to see b

2
1

b+1
1
b = 1

2(b+1) of the
requests generated among the nodes at N1.

At N2, half of the connections to N1 will have an HTL of
17, and any of these that eventually reach the observer would
be discarded. Again, half of the connections between N1 and
the subject, where the requests arrives at N1 with an HTL of
18 will decrement the HTL. The subject will thus receive, in
expectation, requests from b

4 of the nodes in N2 with an HTL
of 18, where 1

b+1 of these requests will be sent to a node in
N1. Of those, 1

b will be sent to the subject, and 1
b of those to

the observer. In other words, the observer can expect to see
a total of b

4
1

b+1
1
b
1
b = 1

4b(b+1) of the requests generated from
among the nodes at N2.

In general, for a network with n levels of nodes where all
nodes are requesting the same file, we expect to see a fraction
of the requests equal to

n∑
i=1

1

2ibi−1(b+ 1)
(7)

if all nodes are downloading the file of interest.
Recall our motivating claim: that it is unlikely in practice for

third-party download requests to cause the subject to mistakenly
appear to be a downloader. Mathematically, we are saying it
is unlikely that 1

b+ 1
<

n∑
i=1

1

2ibi−1(b+ 1)
. (8)

As stated above, we can choose a conservative value of b = 2.
For an infinitely large network where b = 2, then

∞∑
i=1

1

2ibi−1(b+ 1)
=

2

9
. (9)

In other words, even if all nodes in the network were
downloading the file at the same time, we would expect to
see 2

9T requests for the file. This quantity is less than the
fraction of requests we would expect to see if the subject were
the downloader, which is 1

b+1T = T
3 . If a smaller fraction of

nodes were to be requesting the file (rather than all the nodes
in Freenet), say, 1

z , then the number of requests we would
expect to see would fall commensurately to 2

9zT .
As a result of this analysis, we believe it unlikely a subject

will be mistaken as a requester by Eq. 6 due to relaying multiple
third party requests for a file.

E. Modifications for Real Freenet Traffic

Recall that Eq. 6 estimates the probability that a given subject
is a downloader on the basis of: g, the number of peers of

the subject, which we can observe directly; r, the (adjusted)
number of requests observed; h, the number of peers of a
possible third-party downloader, which we estimate; and T ,
the number of requests the downloader made to reconstruct
the data referenced by the manifest, which we estimate. In this
section, we describe how to set these values given Freenet’s
real operation.

To apply Eq. 6 to real data, a passively observing Freenet
node can log requests that are sent to it. Requests for keys,
which are SHA256 values, can be compared to a table of keys
harvested from manifests. Thus, any keys in the table can be
mapped to specific content. Requests contain the key, an HTL,
the sender’s IP address and Freenet location, and the request
type (retrieve or insert). The observer also logs a timestamp
and the number of peers of the sender. The log is then analyzed
to identify runs of requests. To reduce potential false positives,
we define a run to be a collection of observations where:
• all observations are of data requests for blocks associated

with the same manifest;
• all observations are of the same peer, as identified by IP

address and Freenet location;
• all data requests have a consistent HTL: one of 17 or 18;
• a minimum of 20 data requests for distinct blocks were

observed;
• and all requests were logged within a set window of time.

We use the term data request to be consistent with Freenet
and to distinguish them from insert requests. A data request
can be for a data block, a check block, or a manifest block.
An insert request implies that a block that was requested, but
not found, and is being repaired.

Recall that in Freenet’s actual implementation, a manifest
consists of twice as many blocks as required to recreate the
original file. If all blocks are available on the network, only half
would be requested. However, additional requests are made
if blocks are unavailable, and the requests may be sent to
multiple peers. This redundancy can inflate o, the number of
distinct requests observed; and without adjustment it could
lead to false positives. Therefore, for a given run, we compute
• o, the number of data requests for distinct blocks;
• i, the number of insert requests;
• d, the number of duplicate data requests;

and define r as
r = o− i− εd. (10)

Because an insert typically indicates an additional request was
issued, we decrement the count by the corresponding number.
We further reduce the count by a constant multiplier, ε, for each
duplicate key observed. Duplicate data requests represent failed
data requests. We would have expected the other blocks within
a segment to have been requested before re-requesting a block.
Since a relayer might request a distinct block from several of its
peers due to not-found errors, this can result in a large number
of requests and potentially to false positives. We mitigate this
by applying a multiplier to the number of duplicates observed.
We used our false positive testing (see Section V-C) on real
data to tune this parameter, and we determined that ε = 3

was a reasonable trade-off between detecting downloaders and
limiting false positives.

We cannot observe the total number of requests, T , made
by the downloader. The minimum number of requests required
to successfully download a file is approximately half the total
number of blocks, due to the existence of redundant FEC
blocks. To determine a suitable value for T , we conducted
experiments on Freenet where we inserted our own files into
the network and then instrumented a downloader to count the
number of distinct blocks requested. Based on our findings,
we chose a value of T = 0.8 ∗ TotalBlocks.

For the value of h, the number of peers assumed to be
connected to a hypothesized source, we use a value of 8,
which we believe to be extremely conservative based on our
observations of peer counts and reported Freenet statistics [15].
Freenet defines the minimum number of allowable peers to be
10. In other words, this very low estimate reduces the number
of false positives at the cost of increasing the number of false
negatives as well.

IV. EVALUATION I: SIMULATION

The goal of our evaluation is to quantitatively determine
the accuracy of Eq. 6, which is the core of our investigative
technique. In this section, we use a simulation that models
Freenet’s graph topology and basic routing mechanisms. In
these simulations, we show near perfect accuracy. In Section V,
we evaluate the technique on real Freenet data, resulting in a
slightly higher FPR due to its more complicated mechanisms.

A. Assumptions

Freenet has a small-world topology [16], which we create
in simulation via Watts and Strogatz’s algorithm [17]. We
assign each node a random location from [0, 1). We then assign
each node a set of c edges to close nodes, and also a set of
l long-distance edges, where distance is defined using the
Freenet distance metric. The c edges to close nodes are chosen
uniformly at random from among the 2c closest nodes, and
the l edges are chosen uniformly at random from among the
remaining nodes. In the end, each node has at least c+ l edges
due to edge selection.

All our graphs were constructed with 5,000 nodes total. In
any single trial, all nodes in a graph had the parameters c+ l
of either 27+3, 54+6, 81+9, or 108+12, resulting in average
degrees of 36, 72, 108, and 144, respectively. For each degree,
we constructed 500 random graphs. The real Freenet graph
is comprised of nodes with a variety of degrees, at or below
these values [18].

For each graph, we requested blocks from a random node
to one of the 5,000 locations in the graph. To find the content,
we use the Freenet friend-of-a-friend routing algorithm, HTL
decrementing, and other critical details (see Section 2).

Specifically, we ran two types of trials on 2,000 graphs
constructed using the four different degrees. In the first type
of trial for a specific graph, 5,000 times we selected a node at
random as an originator, another at random as a destination,
and then one of the originator’s adjacent neighbors at random

degree: 36 degree: 72 degree: 108 degree: 144
0.

00

0.
01

0.
02

0.
03

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
00

0

0.
00

5

0.
01

0

0

2500

5000

7500

Fraction of requests received

F
re

qu
en

cy
(f

ro
m

 B
oo

st
ra

p
di

st
rib

ut
io

n)
expected observed adjacent twohop

Fig. 2: The distribution of re-
quests received by an observer
either adjacent to or two hops
away from the requester. The
distribution for each type of ob-
server is based on 10,000 boot-
strapped samples from one ex-
ample graph with node degrees
of 36 to 144. Even visually, it’s
clear observers can differentiate
the two scenarios. See Figure 3
for full results using 500 graphs
per degree.

●●●●●●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●●● ●●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ●●●●● ●●●● ●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●

●

●●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●●0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

FPR

T
P

R

Node degree ● ● ● ●36 72 108 144

Fig. 3: ROC curve for investigator success based on Eq. 6, from trials for
500 random small-world graphs for each degree (i.e., 2,000 graphs total).

as an observer. In the second trial, 5,000 times we selected
a node at random as an originator, another at random as a
destination, then one of the originator’s neighbors two hops
away at random as an observer. Each of the 5,000 requests
resulted in a path that did or did not include the observer. Next,
for each trial, we created 10,000 bootstrapped samples [19],
where each sample was constructed by selecting 5,000 paths
randomly with replacement from that trial’s 5,000 requests.

B. Results

Figure 2 provides an intuitive explanation of why requestors
are distinguishable from neighbors that are relaying requests
in Freenet. Each facet of the figure shows the results for the
two primary trials on exactly one sample graph with a specific
degree. Each facet plots the fraction of requests observed
from the 10,000 bootstrapped samples for an example trial.
One distribution of bootstrapped samples is presented for the
case when observer is adjacent to the requester, and another
distribution for when it is two hops away. A simple visual
test distinguishes the two scenarios. For these experiments,
observations included only packets with HTLs of 18 or 17.

In each plot, vertical lines shows the observed mean fraction
of requests for the two scenarios, and two other lines show
a simple expected fraction of 1/degree for the adjacent and

(1/degree)2 for the two-hop case. Because nodes in the graph
have different degrees, and requests are sent from a random
node, there is not an exact match with the mean degree.

Figure 3 shows a Receiver Operating Characteristic (ROC)
curve for the result of applying Eq. 6 to all 10,000 bootstrapped
samples for each of the two trials for each of the 2,000 graphs.
The plot shows FPR versus TPR as a curve parameterized by
a threshold from 0 to 1 for the value of Eq. 6. A true positive
is an observation from an adjacent node with a probability
greater than or equal to the threshold. A false positive is an
observation from a two-hop neighbor with the same.

As the figure shows, the algorithm obtains near-perfect
accuracy. The area under the curve is numerically equivalent to
1.0 for all four graph types. The equal error rates (i.e., where
FPR = 1−TPR) for each graph is as follows: 0.0 for degree
of 36; 0.0000002 for degree 72; 0.000012 for degree 108;
and 0.00034 for degree 144. The high accuracy is due to the
distinct separation of the distributions, illustrated in Figure 2.

V. EVALUATION II: REAL FREENET DATA

In this section, we quantitatively evaluate our investigative
technique by applying it to real Freenet CP-related manifests
and requests. We find that our approach has a low false positive
rate of about 2% for these data. We also discuss challenges in
redesigning Freenet to thwart downloader detection.

A. Child Exploitation on Freenet

We harvested more than 70,000 manifest keys posted
to freesites and Frost boards explicitly dedicated to child
exploitation. We queried Freenet for the block keys associated
with those manifests, which resulted in the collection of over
150 million distinct keys. We did not download the files.

Many files inserted into Freenet are zip or rar archives.
But for manifests containing non-archived files, we identified
the SHA hashes of 54,000 distinct non-archived images using
file names and meta data from manifest blocks (some images
appeared in multiple manifests). We provided the hashes to law
enforcement, and 31,000 were known to them as child sexual
exploitation material, of which 9,000 were flagged as having
infants or toddlers as victims. Law enforcement confirmed
from spot downloads that some of the unknown files and
archive-based manifests included previously unknown CP.

These figures are in line with previous studies. CP is not
“sexting” crimes by late teens: Wolak found that 21% of CP
possessors have images depicting sexual violence to children
such as bondage, rape, and torture; 28% have images of children
younger than 3 years old [20]. Studies have shown that at the
time of arrest 10%–12% of possessors are found to be also
physically abusing children [1,21]; post-arrest, it increases to
58%–85% from, for example, self-admission during counseling
or victims coming forward [22,23]. And CP sharing on peer-to-
peer networks is vast. We measured over 600,000 unique peers
per month in 2015 sharing known CP in file sharing networks
such as BitTorrent [1]. For this paper, we re-measured that
statistic and found 1,200,000 unique peers in February 2017.

We condemn the misuse of the techniques of this paper to
investigate ethical uses of Freenet.

B. Experimental Setup

We ran passive Freenet opennet nodes from November 2016
through January 2017, inclusive. Our nodes were modified to
log only the requests whose keys matched those we harvested.
Of all the block requests observed with an HTL of 17 or 18,
35% were for those keys that we had identified from forums
and sites associated with child exploitation. As noted above,
law enforcement identified over 31,000 known CP images in
these manifests, and though some remain unconfirmed, it is
also unlikely that we located all CP manifests in Freenet. In
sum, it’s reasonable to assume that at least about 35% of
Freenet’s traffic is related to child exploitation material.

The most recent data from [15], which stopped reporting
Freenet statistics in September 2016, estimated that the size
of the Freenet network averaged 8,000 active nodes. Over the
duration of the last month of our measurements, January 2017,
our nodes were peered randomly with over 42,000 distinct
Freenet nodes, and about 4,200 distinct nodes per day. Tor is
reported to have many more users [24], and so is BitTorrent [1].
However, since the trafficking of child exploitation materials is
illegal in many countries, and because Freenet is heavily used
for trafficking CEM, there is motivation for law enforcement
to focus investigations on Freenet.

C. False Positive Rate on Real Data

Because of Freenet’s policy for decrementing HTLs and its
defined maximum HTL of 18, we can assume that requests
with an HTL of 16 or below did not originate with neighbors.
Under this assumption, any positives our algorithm would
report on requests with HTLs of 16 are false positives. (We
cannot calculate a TPR for these manifests.)

Using six weeks of data — from the first two weeks of
November 2016, December 2016, and January 2017 — we
identified 26,963 runs, as defined in Section III-E except
replacing the requirement that the HTL be 17 or 18 with
a requirement that the HTL be 16. All told, 323/26963 = 1.2%
runs tested positive, if we set a threshold probability of 98% or
higher using Eq. 6. We note that there were nearly zero false
positives in our simulations; false positives in real Freenet are

likely due to, for example, duplicate data requests, which we
can only partially account for using the selected value of ε.

A limitation of our findings is that HTLs of 16 are, on
average, more hops from the downloader than relayers with
17s and 18s. However, we can adjust the FPR rate as follows.
The degree distribution of neighbors varied; past work has
observed that Freenet nodes vary typically from the default
minimum of 10 to about 100 [18]. Using our simulation, we
know empirically that, for a network comprised of only nodes
with degree 10, the chances a request with an HTL of 16 is 2
hops away is 52%. Therefore, we adjust our FPR by assuming
the worst case: that in our 26,963 runs, only 52% (14,021)
runs were from neighbors 2 hops away; and furthermore all
323 runs testing positive were from that set. In other words,
we estimate the FPR for our test of real data could be as high
as 323/14021 = 2.3%. (N.b., the adjusted FPR would be lower
if we assumed the node degree was higher, which it surely is.)

D. Avoiding Detection
A significant redesign of Freenet is required to prevent

detection of downloaders. Below we detail why simple changes
are insufficient. Thus, proposing and evaluating a new design
for Freenet is beyond the scope of this preliminary work.
Sometimes, never, or always decrement. Currently, Freenet
peers decrement the HTL of requests with an HTL of 18
with probability p = 0.5; this coin flip is performed once
per edge. A downloader that flips per-packet or per-manifest
advantages the investigator. Another approach is to alter p, but
any p 6= 0.5 allows for very effective downloader detection.
When p < 0.5, an HTL of 18 will occur more frequently,
revealing a downloader; when p > 0.5 an HTL of 17 will
similarly occur more frequently, revealing a downloader. Setting
p to 0 or 1 is the investigator’s best case.
Choose a different initial HTL. Our investigative technique
does not consider requests with HTLs of 16 or lower because
they are sent by only relays. Downloaders could choose a
different initial (maximum) HTL, resulting in values other than
17 or 18 being sent to their neighbors. This is not an effective
approach; it requires only that the investigator log additional
HTLs. As long as the initial HTL is selected once per edge,
the investigator can still construct runs from only a single
HTL at a time. Further, we expect the investigator can use
statistical inference to determine the initial HTL selected by
the downloader.
Per-packet decrement. Another approach is for the down-
loader to decrement HTLs on a per-packet basis by some
integer d ≥ 0, requiring the investigator to include requests
with multiple HTLs in each run, which might increase the
FPR. If we assume the investigator wishes to minimize her
FPR, this approach would force the investigator to use a
threshold that drives down the TPR as well. But the approach
is not a clear win. First, we expect the investigator could
statistically infer the downloader, given the HTLs for each
request associated with a particular manifest. On average,
higher HTLs would be expected from the originator. It’s non-
obvious what algorithm selects d in a way that prevents this

inference. Second, imagine that such an algorithm exists; in
that case, including multiple HTLs in runs could increase the
FPR. However, our basic approach would still apply and would
remain effective, especially for manifests that are less popular.
Quantifying whether the FPR increase is significant would
require an update of our analysis in Section III to include
manifest popularity. We leave this analysis for future work.

Removing HTLs. Freenet could be redesigned completely to
remove HTLs from requests, which is the method employed by
OneSwarm [25]; however, this approach is not secure [26,27].

VI. RELATED WORK

In comparison to past work on Freenet vulnerabilities, ours
is the only passive method, and ours is the only method that
requires but a single peer.

Baumeister et al. [11] discovered a Routing Table Insertion
(RTI) attack that does not de-anonymize a peer, but it can
be used by other methods to traverse the network. This
vulnerability can be addressed with randomized routing [28]

Tian et al. [7,10,12] discovered a Traceback Attack in Freenet
that exploits a unique identifier (UID) assigned to each request
as confirmation that the peer must have been on the path from
the original requester. By actively probing all neighbors of
the peer, and leveraging the RTI attack, the attacker can move
toward the requestor. Freenet developers addressed the attack
by having peers discard a UID after receiving the response to
the outstanding request; see also [8,9].

Roos et al. [13] show how Freenet network probes, intended
to gather obfuscated values, can be used to infer the actual
value with a Bayesian model after multiple observations. The
attack is a general approach, but a specific example to infer
bandwidth is provided, which could be used to detect opennet-
darknet bridges; see also [18].

OneSwarm [25] is an anonymous filesharing network with
similarities to Freenet. OneSwarm does not use an HTL field;
instead a cancel message chases down the flooded request with
purposeful delays. Bissias et al. [26,27] demonstrated that this
approach cannot hide the source of messages, suggesting there
is no method by which Freenet can drop its HTL altogether.

VII. CONCLUSIONS

We presented a passive technique for detecting Freenet
downloaders who violate the privacy of sexually abused
children. We obtained 70,000 manifests posted to forums openly
dedicated to child sexual exploitation and confirmed to include
known CP images; we found that about 35% Freenet’s traffic
is related to these manifests. Our approach requires only a
single peer and known child pornography manifest keys. We
derived a Bayesian framework for testing whether a peer may
be downloading a document, based on counting the requests
observed. We have demonstrated that the investigative technique
is resistant to false positives when requests from multiple nodes
are being relayed by a single peer. We have validated our model
through simulation. We demonstrated an FPR on actual Freenet
traffic of approximately 2%.

This work was supported in part by a Signature Interdisciplinary Research Area Grant
from the Rochester Institute of Technology. This work was performed in part using high
performance computing equipment obtained under a grant from the Collaborative R&D
Fund managed by the Massachusetts Technology Collaborative.

REFERENCES

[1] G. Bissias, B. N. Levine, M. Liberatore, B. Lynn, J. Moore, H. Wal-
lach, and J. Wolak, “Characterization of Contact Offenders and Child
Exploitation Material Trafficking on Five Peer-to-Peer Networks,” Child
Abuse & Neglect, 52:185–199, Feb 2016.

[2] M. Cutajar, P. Mullen, J. Ogloff, S. Thomas, D. Wells, and J. Spataro,
“Psychopathology in a large cohort of sexually abused children followed
up to 43 years,” Child Abuse & Neglect, 34(11):813–822, 2010.

[3] E. Bazelon, “The price of a stolen childhood,” New York Times Magazine,
https://nyti.ms/2kmwJlJ, Jan 27 2013.

[4] Freenet reference daemon source code, https://github.com/freenet/fred.
[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed

anonymous information storage and retrieval system,” in Proc. Intl. Wkshp.
Designing Privacy Enhancing Technologies, 2001, pp. 46–66.

[6] I. Clarke, S. Miller, T. Hong, O. Sandberg, and B. Wiley, “Protecting
free expression online with Freenet,” IEEE Internet Computing, 6, no. 1,
pp. 40–49, Jan 2002.

[7] G. Tian, Z. Duan, T. Baumeister, and Y. Dong, “A traceback attack on
Freenet,” in Proc. IEEE INFOCOM, Apr 2013, pp. 1797–1805.

[8] ——, “Thwarting traceback attack on freenet,” in Proc. IEEE GLOBE-
COM, Dec 2013, pp. 741–746.

[9] ——, “Reroute on loop in anonymous peer-to-peer content sharing
networks,” in Proc. IEEE Conf. Communications and Network Security,
Oct 2014, pp. 409–417.

[10] ——, “A traceback attack on Freenet,” IEEE Trans. Dependable Secure
Comput., no. 10.1109/TDSC.2015.2453983, Jul 2015.

[11] T. Baumeister, Y. Dong, Z. Duan, and G. Tian, “A Routing Table Insertion
(RTI) Attack on Freenet,” in Proc. Intl. Conf. on Cyber Security, 2012.

[12] R. Rajan, “Feasibility, Effectiveness, Performance and Potential Solutions
on Distributed Content Sharing System [plagiarized],” Intl. J. Engineering
and Computer Science, 5(1):15638–15649, Jan 2016 http://www.ijecs.in/
issue/v5-i1/30%20ijecs.pdf.

[13] S. Roos, F. Platzer, J. Heller, and T. Strufe, “Inferring obfuscated values
in freenet,” in Proc. NetSys, Mar 2015, pp. 1–8.

[14] J. Douceur, “The Sybil Attack,” in Proc. Intl. Wkshp. Peer-to-Peer
Systems, Mar. 2002, pp. 251–260.

[15] S. Dougherty, “Freenet statistics,” https://www.asksteved.com/stats/.
[16] H. Zhang, A. Goel, and R. Govindan, “Using the small-world model to

improve freenet performance,” in Proc. Infocom, 2002, pp. 1228–1237.
[17] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ networks,”

Nature, 393(6684):440–442, 1998.
[18] S. Roos, B. Schiller, S. Hacker, and T. Strufe, “Measuring freenet in the

wild: Censorship-resilience under observation,” Proc. Privacy Enhancing
Technology Symposium, LNCS 8555, pp. 263–282, Jul 2014.

[19] B. Efron, “Bootstrap methods: another look at the jackknife,” in
Breakthroughs in Statistics. Springer, 1992, pp. 569–593.

[20] J. Wolak, D. Finkelhor, and K. Mitchell, “Trends in Arrests of “Online
Predators”,” UNH Crimes Against Children Research Center, http://www.
unh.edu/ccrc/pdf/CV194.pdf, Tech. Rep., March 2009.

[21] M. Seto, R. Hanson, and K. Babchishin, “Contact sexual offending by
men with online sexual offenses,” Sex Abuse, 23(1):124–145, 2011.

[22] M. Bourke and A. Hernandez, “The butner study redux: A report of the
incidence of hands-on child victimization by child pornography offenders.”
Journal of Family Violence, 24(5):183–191, 2009.

[23] M. Bourke, L. Fragomeli, P. Detar, M. Sullivan, E. Meyle, and
M. O’Riordan, “The use of tactical polygraph with sex offenders,” Journal
of Sexual Aggression, 21(3):354–367, 2014.

[24] Tor metrics, https://metrics.torproject.org/userstats-relay-country.html.
[25] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-

preserving P2P data sharing with OneSwarm,” in Proc. ACM SIGCOMM,
Aug 2010, pp. 111–122.

[26] G. Bissias, B. N. Levine, M. Liberatore, and S. Prusty, “Forensic
Identification of Anonymous Sources in OneSwarm,” IEEE Trans.
Dependable Secure Comput., no. 10.1109/TDSC.2015.2497706, 2015.

[27] S. Prusty, B. N. Levine, and M. Liberatore, “Forensic Investigation of
the OneSwarm Anonymous Filesharing System,” in Proc. ACM CCS,
Oct 2011, pp. 201–214.

[28] T. Baumeister, Y. Dong, G. Tian, and Z. Duan, “Using randomized
routing to counter routing table insertion attack on freenet,” in Proc.
IEEE GLOBECOM, Dec 2013, pp. 754–759.

https://nyti.ms/2kmwJlJ
https://github.com/freenet/fred
http://www.ijecs.in/issue/v5-i1/30%20ijecs.pdf
http://www.ijecs.in/issue/v5-i1/30%20ijecs.pdf
https://www.asksteved.com/stats/
http://www.unh.edu/ccrc/pdf/CV194.pdf
http://www.unh.edu/ccrc/pdf/CV194.pdf
https://metrics.torproject.org/userstats-relay-country.html

	Introduction
	Background
	Investigative Technique and Analysis
	Assumptions and Model
	Description
	Analysis
	Multiple Third-Party Downloaders
	Modifications for Real Freenet Traffic

	Evaluation I: Simulation
	Assumptions
	Results

	Evaluation II: Real Freenet Data
	Child Exploitation on Freenet
	Experimental Setup
	False Positive Rate on Real Data
	Avoiding Detection

	Related Work
	Conclusions
	References

