
IberEval 2017, COSET task: a basic approach

Carlos Diez Alba, Jesús Vieco Pérez

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València
{cardieal,jeviepe}@dsic.upv.es

Abstract. This paper discusses the IberEval 2017 shared task on Clas-
sification Of Spanish Election Tweets (COSET) [5]. This task has the
goal to analyze tweets that talk about Spanish General Election of 2015
and classify them in one of these 5 categories: political issues, policy
issues, personal issues, campaign issues and other issues.

Keywords: UPV, bag-of-words, embeddings, neural networks, support
vector machine, random forest

1 Introduction

Election dates increase the political conversations in Twitter. We can extract
several useful information from all the conversations if we are able to segment
them in different categories. COSET [5] has the aim to classify a simited corpus
of Spanish tweets which are related with the 2015 Spanish General Election in
one of these categories:

– Political issues: related to the electoral confrontation
– Policy issues: related to the political sectors
– Personal issues: related to the life and activities of the candidates
– Campaign issues: related to the hustings
– Other issues: remaining ones that do not fit in the previous categories

The aim of this paper is to perform a study of different feature extraction
methods and machine learning algorithms for classifying this set of tweets into
their categories.

2 Machine learning algorithms

Before explaining the feature extraction we need some algorithms that can clas-
sify the tweets in the different categories. To solve this problem we tried different
machine learning algorithms:

– Support vector machines (SVM): probably the most used algorithm in tweets
classification, the SVM is one of the state-of-the-art algorithm for tasks re-
lated with text.



– Random forest (RF): this algorithm is not usually employed for a text task
but we decided to use it because we have possibilities of overfitting with the
size of the corpus and the random forest prevents that.

– Neural network (NN): currently the most used machine learning algorithm
due to its flexibility. We used both multilayer perceptron and long short term
memory (LSTM) [6] networks.

We used support vector and random forest from scikit learn [14]. Neural
networks are programmed using Keras [3] and Theano [20].

3 Feature extraction

For this task we have a list of characters for every tweet but we can not feed a
machine learning algorithm with a list of characters: before it we have to extract
features for every tweet. We try three different methods of feature extraction.
All of them need a previous preprocessing:

– Tokenization: we split every tweet in a list of tokens like words, URL links,
punctuation marks, etc.

– Cleaning: we remove all URL links, emoticons and some other special char-
acters.

3.1 N-gram

The n-gram idea is based on grouping the tokens in groups of n. We create a
model based on the idea of bag of words but using the n-gram themselves [13],
so we get a vector with the number of different n-grams as size and the number
of times a n-gram appears in the tweets as a feature.

3.2 Tf-idf

Another approach is using the Term Frequency Inverse Document Frequency
(tf-idf) to generate vectors for every tweet with the tweets tokenized and clean,
despite of getting the n-gram model. It is similar to the previous one but we
have a probability of a word in every feature related with the importance of a
word in a tweet instead of getting a count in every feature. This method is used
in some experiments like [10] and [7].

3.3 Vector representations of words: Embeddings

The third feature extraction method is the proposed one [12]. The features ex-
tracted by this method are called embeddings and we can found several recent
papers where the embeddings are combined whit neural networks and get state-
of-the-art results [19]. The main idea is to obtain a vector representation for
every word learning it in an unsupervised way of a set of sentences.
To train this embedding we will use the Gensim [15] software. Due to this model

Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017)

62



needs many tweets to train and we have less than 3000, we used a bigger set of
tweets provided by the UPV researcher Javier Palanca Cámara, used in other
fields [21] [22], in addition of what we already have. These tweets have political
correlation and are linked with the manifestation for the independence of Cat-
alonia in 2016 called Diada.
This feature extraction gets a vector for every word, so we got different numbers
of vectors for every tweet. To train a neural network we need a recurrent layer to
deal with different size of vectors. In our case we used Long short term memory
(LSTM) layers [6] and we compare it with the bidirectional [17] long short term
memory (BLSTM), which has some improvements in this field [11] [2].

3.4 Combining methods

We used both feature extraction methods tf-idf and word embeddings in order
to improve our past model. We need a neural network which can join both. In
Figure 1 we can see our base neural network to work with.

Fig. 1: Network schema

Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017)

63



We tried some different models, replacing the LSTM by a BLSTM, adding
dropout, batch normalization and more fully connected layers. To improve the
LSTM learned, we added another output layer just before the LSTM.

4 Results and Discussions

We are going to show the experiments done. We will divide these sections in two
parts:
The first is for the experiments with the first feature extraction method, which
was the n-grams approximation with the tf-idf approach. Next we proceed to do
the same with the embeddings method. Finally we join both methods in one.
We show the best results with f1 macro score obtained with every model and
feature extraction because the task will be evaluate with it due to the unbalanced
corpus. In addition we show the average precision for every result. The f1 score
considers both the precision and recall. The formula for the f1 score is:

f1 = 2 · precision · recall
precision + recall

(1)

To calculate the f1 macro score we only need to calculate the f1 score for every
class and find their unweighted mean.

4.1 N-grams and tf-idf

In Table 1 we can see our best result in terms of f1 macro score and its corre-
spondent accuracy obtained in every machine learning algorithm. First of all, we
can see the support vector machine column. In the second column we have the
experiments with random forest and the third column is for the test with neural
networks.

Table 1: N-grams and tf-idf experiments using svm, rf and nn

SVM RF NN

accuracy f1 score accuracy f1 score accuracy f1 score

1-gram 60.80 56.70 51.20 43.77 64.00 58.74

2-gram 60.40 55.92 50.80 41.19 62.80 59.09

3-gram 62.80 56.73 50.08 41.77 62.40 59.05

tf-idf 63.60 57.24 52.40 47.63 64.80 59.15

The random forest results are quite far from the others as it is shown in the
table. As we said before the random forest is not so common as svm for task
related to text but we want to make a comparison because we saw some studies
where obtain very good marks [4] [1].
For the random forest, the best results are obtained with the tf-idf feature ex-
traction and a random forest form by ten decision trees forced to have only one

Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017)

64



sample in every leaf.
In the case of the support vector machine, we get the best with the same feature
extraction and a group of SVM (one for every pair of classes) with linear kernel
faced each other to decide the predicted label.
To obtain the best result on this table we use a multilayer perceptron with 3
hidden layers of size 1024, 512, 256 for each layer respectively. Due to the size
of the corpus we need to avoid the overfitting. In this case we use dropout [18]
along with batch normalization [8]. The curious thing about this model is that
avoiding cleaning the tweets (remove all URL links, emoticons and some other
special characters) we improve our results in 3 points but we did not see this
improvement in the other algorithms.

4.2 Embeddings

In this section we trained two models of embeddings. The first one was trained
with only the training tweets provided for the competition and the second one
with these tweets along with the tweets provided by Javier Palanca Cámara [22]
and [21]. We obtained better results with the second model in all the experiments
with embeddings. Therefore, to avoid redundant results we will not show the ones
of the first model.

Table 2: Embeddings experiments

accuracy f1 score

lstm 46.80 42.12

blstm 50.00 47.92

svm 57.24 63.60

rf 47.63 52.40

nn 59.15 64.80

In Table 2 are shown the best results obtained with LSTM and BLSTM along
with the best results obtained in the previous section with svm, rf and nn. As
we say before BLSTM have some improvements in LSTM but both have worse
results compared to the approach of n-grams and tf-idf. We can conclude that
embeddings and recurrent neural networks in this task need much more samples
that other approximations to be competitive.

4.3 Combining methods

Best results we obtained are shown in Table 3. As we said before, we got better
result with the BLSTM than with the LSTM. We have improved the results of
the LSTM and the BLSTM with embeddings but can not improve the results
with the neural network and td-idf. One of the biggest problems for this method
is the number of parameters we need to estimate. Furthermore, more data to
train the model is needed.

Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017)

65



Table 3: Combining experiments

accuracy f1 score

lstm 54.22 50.95

blstm 61.85 56.34

5 Conclusions and future work

We can conclude that traditional models like support vector machines and multi-
layer perceptron have worked better than fashionable approaches such as LSTM
and BLSTM. We saw the same results comparing n-grams and tf-idf against
embeddings. These results are due to the size of the training set, so we might
obtain better results using data augmentation techniques.
In order to improve our previous models, we can try some new approaches like
fastText [9]. We can also try adding other feature extraction like part-of-speech
tags as we can see in [16].

References

1. Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: detecting influenza
epidemics using twitter. In: Proceedings of the conference on empirical methods in
natural language processing. pp. 1568–1576. Association for Computational Lin-
guistics (2011)

2. Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with
bidirectional conditional encoding. arXiv preprint arXiv:1606.05464 (2016)

3. Chollet, F., et al.: Keras. https://github.com/fchollet/keras (2015)
4. Fernández Anta, A., Núñez Chiroque, L., Morere, P., Santos Méndez, A.: Senti-

ment analysis and topic detection of spanish tweets: a comparative study of nlp
techniques (2013-03)

5. Giménez, M., Baviera, T., Llorca, G., Gámir, J., Calvo, D., Rosso, P., Rangel,
F.: Overview of the 1st classification of spanish election tweets task at ibereval
2017. In: Proceedings of the Second Workshop on Evaluation of Human Language
Technologies for Iberian Languages (IberEval 2017), Murcia, Spain, September 19,
CEUR Workshop Proceedings. CEUR-WS.org, 2017 (sep 2017)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

7. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in twitter. In:
Proceedings of the 20th international conference companion on World wide web.
pp. 57–58. ACM (2011)

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

10. Lee, K., Palsetia, D., Narayanan, R., Patwary, M.M.A., Agrawal, A., Choudhary,
A.: Twitter trending topic classification. In: Data Mining Workshops (ICDMW),
2011 IEEE 11th International Conference on. pp. 251–258. IEEE (2011)

11. Limsopatham, N., Collier, N.: Bidirectional lstm for named entity recognition in
twitter messages. WNUT 2016 p. 145 (2016)

Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017)

66



12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

13. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: LREC. vol. 10 (2010)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

15. Řeh̊uřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. pp. 45–50. ELRA, Valletta, Malta (May 2010), http://is.muni.cz/
publication/884893/en

16. Robinson, T.: Disaster tweet classification using parts-of-speech tags: a domain
adaptation approach. Ph.D. thesis, Kansas State University (2016)

17. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing 45(11), 2673–2681 (1997)

18. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(1), 1929–1958 (2014)

19. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for twitter sentiment classification. In: ACL (1). pp. 1555–1565
(2014)

20. Theano Development Team: Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016), http:

//arxiv.org/abs/1605.02688

21. Val, E.D., Palanca, J., Rebollo, M.: U-Tool: A Urban-Toolkit for enhancing city
maps through citizens’ activity. In: 14th International Conference on Practical
Applications of Agents and Multi-Agent Systems. pp. 243–246 (2016)

22. Vivanco, E., Palanca, J., Val, E.D., Rebollo, M., Botti, V.: Using geo-tagged sen-
timent to better understand social interactions. In: 15th International Conference
on Practical Applications of Agents and Multi-Agent Systems (2017)

Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017)

67




