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ABSTRACT

The Semantic Web has fuelled the appearance of numerous
open-source knowledge bases. Knowledge bases enable new
types of information search, going beyond classical query an-
swering and into the realm of exploratory search, and pro-
viding answers to new types of user questions. One such
question is how two entities are comparable, i.e., what are
similarities and differences between the information known
about the two entities. Entity comparison is an important
task and a widely used functionality available in many in-
formation systems. Yet it is usually domain-specific and de-
pends on a fixed set of aspects to compare. In this paper we
propose a formal framework for domain-independent entity
comparison that provides similarity and difference ezplana-
tions for input entities. We model explanations as conjunc-
tive queries, we discuss how multiple explanations for an
entity pair can be ranked and we provide a polynomial-time
algorithm for generating most specific similarity explana-
tions.

1. INTRODUCTION

Information seeking is a complex task which can be ac-
complished following different types of search behaviour.
Classical information retrieval focuses on the query-response
search paradigm, in which a user asks for entities similar to
the input keywords or fitting the formal input constraint.
Yet there exists a broad area of exploratory search that is
characterized by open-ended, browsing behaviour [18] and
that is much less well studied. Exploratory search encom-
passes activities like information discovery, aggregation and
interpretation, as well as comparison [13].

Comparing entities, or rather, information available about
the entities, is an important task and in fact a widely-used
functionality implemented in many tools and resources. On
the one hand, systems that highlight similarities between
entities can focus on how much entities are alike, giving a
similarity score to a pair (or a group) of entities [6]. On
the other hand, systems can focus on how or why, in which
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aspects two entities are similar and different, by compar-
ing entities and finding similar features. Such comparison
is done in many domains and for various types of entities:
hotels,! cars,? universities,® shopping items,* to name a few.
However, as a rule, such systems perform a side-by-side com-
parison of items in a domain-specific manner, i.e., following
a fixed, hard-coded template of aspects to compare (e.g., in
case of hotels, it could be price, location, included break-
fast, rating etc.). In a few more advanced systems, similar-
ities are computed with respect to the type of information
available about the input entities rather than following a
rigid pattern. One such example is the Facebook Friendship
pages.® Given two Facebook users, a friendship page con-
tains all their shared information, be it public posts, photos,
likes or mutual friends, as well as their relationship, if any
(e.g., married, friends etc.). However, as in the aforemen-
tioned examples, comparison is done over a limited set of
attributes.

Relying on a fixed set of aspects is a reasonable solution
for tabular data with rigid and stable structure. On the
other hand, a more flexible approach to entity comparison is
needed for Linked Data, namely for loosely structured RDF
graphs. However, all current systems with such functionality
compare items following a predefined, domain-specific list of
values to compare. Thus, an interesting research problem
would be to create a framework for entity comparison that
is domain- and attribute-independent.

The Semantic Web has fuelled the appearance of numer-
ous open-source knowledge bases (KBs). Such KBs enable
both automatic information processing tasks and manual
search, and they facilitate new types of information search,
going beyond classical query answering and providing an-
swers to new types of user questions. For example, using
KBs one can answer questions like how are the two entities
similar or what differs them, i.e., perform entity comparison.

In this paper we propose to study such questions posed
over one of the most common types of KBs — RDF graphs.
In particular, we provide a formal framework for posing such
questions and we model answers to these questions as sim-
ilarity and difference explanations. We then discuss how
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multiple explanations to a question can be ranked and we
provide a polynomial-time algorithm for generating most
specific similarity explanations. Finally, we outline direc-
tions of future research.

2. PRELIMINARIES

In what follows we use the standard notions of conjunctive
queries (CQs), query subsumption and homomorphism. We
disallow trivial CQs of the form T(X). We model RDF
graphs as finite sets of triples, where a triple is of the form
p(s,0), p and s being URIs and o being a URI or a literal.
Furthermore, we use the notion of a direct product of two
graphs, adapted to RDF graphs:

Definition 1. Let I and J be RDF graphs, t; = R(s1,01)
and to = R(s2,02) be two triples. The direct product of t1
and t2, denoted as t1 ® ta, is the triple R((s1, s2), (01, 02)).
The direct product I ® J of I and J is the instance:

{t1 ®tz | t1 € I and t; € J}.

3. COMPARISON FRAMEWORK

There are multiple ways of how we can define similarity
and difference explanations and how we can model entity
comparison. In our framework the formalism of choice is
conjunctive queries (CQs). We model formal explanations
as conjunctive queries and we consider the problem of find-
ing such explanations as an instance of the query reverse
engineering problem.

3.1 Similarity explanations

We would like similarity explanations to highlight com-
mon patterns for input entities. Thus, we model them as
queries that return both of these entities, i.e, they match
patterns fitting both entities. Let (I, a,b) be a tuple con-
sisting of an RDF graph I and two URIs from the domain
of I a,b € dom(I) representing input entities. Furthermore,
given a query @, let Q(I) be the answer set returned by Q
over I.

Definition 2. Given (I,a,b), a similarity explanation for
a and b is a unary connected conjunctive query @Qsim such
that {a,b} C Quim(I).

Ezample 1. Given two entities Marilyn_Monroe and Eliza-
beth_Taylor and the Yago RDF graph [14], a possible simi-
larity explanation is:

Qsim (X) =hasWonPrize(X, Golden_Globe),
diedIn(X, Los_Angeles),
hasGender(X, female),
actedIn(X, Y1),
isLocatedIn(Y 1, United_States),
isMarriedTo(X, Y 2),
hasGender(Y2, male),
hasWonPrize(Y'2, Tony_Award), etc.
Qsim can be interpreted the following way: both Monroe
and Taylor received a Golden Globes award, died in Los

Angeles, acted in movies that were shot in the US and were
married to men who received a Tony Award.

Using this definition, we can formulate the following de-
cision problem: given (I,a,b), SimFEzp is a problem of
whether there exists a CQ @ such that {a,b} C Q(I). The
corresponding functional problem is to compute a query Q
such that {a,b} C Q(I), given (I, a,b). Note that both the
definition of Qsim and SimFExp can be easily generalized
from a pair of entities to a set of input entities.

We specifically chose the condition to be {a,b} C Q)
for two reasons. Firstly, the form of @ does not depend on
the rest of the data: it does not matter whether there exist
other entities that match the graph pattern described by the
query; moreover, queries fitting the subsumption condition
will not be affected if new data is added. This is very im-
portant in the context of RDF graphs, since web data is
intrinsically incomplete.

Secondly, it is known that the definability problem is
CONEXPTIME-COMPLETE for conjunctive queries [3,15]. On
the other hand, SimFExp can easily be shown to be in PTIME:
for conjunctive queries, it is sufficient to take the full join of
all tables in the database instance.

Let Sim(a, b) be the set of all similarity explanations for
a given (I,a,b). Obviously Sim(a,b) can be quite big, con-
taining numerous explanations, however, we are interested
in the most informative ones. Our assumption is that the
more specific a similarity explanation is, the better.

Definition 8. Given (I, a,b), a most specific similarity ex-
planation is a similarity explanation Q7;.r s.t. for all simi-

larity explanations Q%;,, wrt (I,a,b): QTP C Qi

The decision problem SimFExp™*? is the problem of decid-
ing whether Qsiy, is a most specific similarity explanation
for the given (I, a,b).The related functional problem is to
compute a most specific Qsim.

The subsumption relation divides the set of all similarity
explanations Sim(a, b) into C-equivalent classes. If Sim(a, b)
is not empty, then Sim(a, b)™? is not empty, and there ex-
ists a finite most specific similarity explanation Q7;>F, whose
size is bounded by the size of I. This explanation can in fact
be constructed in PTIME (see Section 4).

3.2 Difference explanations

Analogous to similarity explanations, we model difference
explanations as CQs, but this time we require only one of
the input entities to be in the answer set.

Definition 4. Given (I,a,b), a difference explanation for
a wrt b is a unary connected conjunctive query Qg such

that a € Qg; (1), but b ¢ Qg,r(I).

The notion of a difference explanation can be generalized
to sets of entities: given an RDF graph I, a set of entities
Pos and a set of entities Neg, a difference explanation for
I and Pos wrt Neg is a unary connected CQ QCZ‘}G s.t.
Vp € Pos: p € QZ—‘}S and Neg N del-‘}s =0.

Given (I, a,b), Dif Exp is the problem of deciding whether
there exists a difference explanation Qg,; ;. The generalized
difference explanation problem DifExp can be solved using
the most specific similarity explanation problem SimExp™?:
given I, Pos and Neg, first construct a most specific sim-
ilarity explanation @ for entities in Pos (done in PTIME),
and then check whether none of the elements of Neg are in



the answer set of @ (conjunctive query evaluation is NP-
COMPLETE). Hence, the complexity of generalized DifFExp
is NP-COMPLETE.

Furthermore, we would like to introduce another defini-
tion of a difference explanation that is dependent on the
similarities between a and b. We would like the difference
explanation for a to be as relevant as possible, hence we
model it to be dependent not only on the information about
b, but also on the common patterns for a and b. One pos-
sible way to do so is the following: let const(Q) be the set
of constants appearing in a query @ and let const(R(Z)) be
the set of constants appearing in an atom R(Z).

Definition 5. Given (I,a,b), a difference explanation for
a wrt b and Qs;m is a different explanation ngfm such that

VR(Z) € QZ;?"L: const(R(Z)) N const(Qsim) # 0.

FEzxzample 2. Let the input entities be a = John_Travolta
and b = Quentin_Tarantino. Let Qs for a and b be an expla-
nation that both persons starred in Pulp_Fiction: Qsim(X) =
starredIn(X, Pulp_Fiction). Relevant difference explanations
could be that Travolta also starred in Grease and other
movies, while Tarantino has directed several movies, in-
cluding Pulp Fiction: Qg;;(X) = starredIn(X, Grease) and
Qb ;(X) = directed(X, Pulp_Fiction). On the other hand, an
explanation that Travolta (unlike Tarantino) is married to
Kelly Preston is rather irrelevant, since we have not com-
pared the two persons with respect to their marital status.

4. TECHNICAL RESULTS

4.1 Algorithm for computing a most specific
similarity explanation

We compute a most specific similarity explanation by con-
structing the direct product of the RDF graph, similar to the
construction of the direct product of a database instances
with itself [15]. Any RDF graph I a € dom(I) can be asso-
ciated with a canonical unary conjunctive query ¢ (z4) such
that for each fact R(c,d) in I there is an atom R(z.,zq) in
qr1, where x. and x4 are variables and z, is a free variable.
Note that a is an answer to gr(z,) over I. The following
algorithm produces a most specific similarity explanation.
In it, we first produce an instance with the domain from
dom(I)?, i.e., tuples {(c,d) for ¢,d € dom(I), and then con-
struct a canonical conjunctive query of this instance.

Claim 1. If J # (0, then J is a maximal connected com-
ponent of I ® I such that a ® b = (a,b) € dom(J).

Proof sketch: Firstly, if J # (), then (a,b) € dom(J), by Step
1. Secondly, the while-loop on Step 5 is in fact the greedy
procedure that generates the maximal connected component
in I ® I. Indeed, the condition R(c,e), R(d, f) € I ensures
that the fact R({c,d), (e, f)) is in I ® I, and the condition
that there must exist a fact in J that contains (c, d) or (e, f)
ensures connectedness.

Claim 2. Let (I,a,b) be an input of Algorithm 1. Let
q7(Z(a,py) be the output, and J the instance obtained after
the while loop on Step 5. Then all of the following hold.

(i) {a,b} € qs(1),

Algorithm 1: Algorithm for computing a most specific
similarity explanation

Input: an RDF graph I, entities a, b from dom(I).
Output: a most specific similarity explanation for a
and b.
1 Let J ={R({a,b), (c,d)) | R(a,c), R(b,d) €
I} U {R((C, d), (a, b>) ‘ R(c, a)? R(d7 b) € I}?
if J =0 then
L return empty query;
Let J* = 0;
while J # J* do
J* = J;
J:=JU{R({c,d),{e, f)) & J | R(c,e), R(d, f) €
I, and 3 a fact in J that contains (c,d) or (e, f)};
8 Construct qj((q.));
9 foreach =z . inqs, c & {a,b} do
// Replace x(..) with constant c
10 | qr(T(ap)) = @1 (T(ap)[Tiee) = Cl;
11 return q;(2(qp))-

B =T, B N VEI V)

(ii) For a connected unary conjunctive query ¢’ (), if there
exist homomorphisms h1, ho : ¢ — I such that hy(z) =
a and hz(z) = b, then there exists a homomorphism
h:q — J such that h(z) = (a,b).

Corollary 1. Algorithm 1 produces a most specific simi-
larity explanation.

4.2 Properties of the resulting query

The algorithm 1 runs in time polynomial to the size of
the input RDF graph, and the size of resulting most specific
similarity explanation is also polynomial to I. It should be
noted that the output query tends to be non-minimal. For
example, since Marilyn_Monroe and Elizabeth_Taylor acted in
several movies that were shot in the US, Q(X) will contain
atoms like:

actedIn(X, Y1), isLocatedIn(Y'1, United_States),
actedIn(X, Y2),isLocatedIn(Y 2, United_States),
actedIn(X, Y 3),isLocatedIn(Y 3, United_States), etc.

To avoid such redundancy, we can take the core of the query
(i.e., apply the query minimization algorithm). Taking the
core is an NP-COMPLETE problem [9, 11], hence, obtaining
a most specific similarity explanation without redundant
atoms is an NP-COMPLETE task.

S. RELATED WORK

So far only few works have studied explanations over RDF
graphs [5,10,12], and there is no single formal definition
of an explanation over RDF data. A lot of attention has
been paid to discovering connections (“associations”) be-
tween nodes [12], which boils down to finding and grouping
together paths in the graph that connect one input node to
another one. Such connectedness explanations are orthogo-
nal (rather than alternative) to the similarity explanations
modelled as queries, which we propose to study. The two
types of explanations are intended to capture different rela-
tions between nodes: the former explore possible paths that
link the two nodes together, while the latter seek to find
commonalities in the neighbourhoods of the input nodes.



The problem of reverse engineering a query given some
examples originated in late 1970s and was first introduced
for the domain of relational databases [20]. Later it was ex-
tensively researched with respect to different query formats:
regular languages [1], XML queries [7], relational database
queries [16,17,19], graph database queries [4] and SPARQL
queries [2]. The problem of QRE for RDF data was first
studied by Arenas et al. [2] and was implemented by Diaz et
al. [8]. In [2], the authors consider three different variations
of QRE problem: the basic variation that requires the input
mappings to be part of the answer set (2 C [Q]c); the one
that allows positive examples €2 together with negative ex-
amples Q (such that Q C [Q]c and QN [Q]c = 0); and the
variation that requires the examples from 2 to be exactly
the answer set of @ (2 = [Q]c). The complexity of these
three variations is then provided for fragments of SPARQL
with AND, FILTER and OPT.

6. FUTURE WORK

As part of my PhD, I would like to continue studying the
problem of entity comparison using RDF graphs in several
research directions. So far we have investigated similarity
and difference explanations, and we rank the former accord-
ing to the preference condition based on subsumption. In
particular, we assume that the highest ranked explanations
are most specific similarity explanations. On the one hand,
we would like to apply a similar rationale to difference expla-
nations and to study most general difference explanations as
most preferred ones. On the other hand, these may not be
the optimal choices for a given user, hence we need to inves-
tigate other possible ranking conditions as well as means of
user-specific ranking of explanations.

RDF graphs are inherently incomplete, hence it would be
useful to consider a scenario where an explanation is pro-
duced over an RDF graph and a domain ontology that con-
tains knowledge not explicitly present in the graph. Con-
sider a graph G consisting of two facts: Teacher(Bob) and
teaches(Alice, C'S), — and a simple EL ontology O consist-
ing of one axiom: Jteaches.Class T Teacher. Let the two
input entities be Alice and Bob. Then a similarity explana-
tion wrt G, O could be Q(X) = Teacher(X), while we are
unable to generate such a CQ using only graph data.

In our framework explanations are modelled as CQs, and
while CQs are formulas with relatively high readability for
a user, it is of interest to be able to verbalize explanations,
transforming them into natural language sentences. For ex-
ample, a formal explanation Q(X) = livesIn(X, London),
friendsWith(X,Y"), worksAt(Y, Oracle) could be transformed
into an English sentence “Both input entities live in London
and are friends with someone who works at Oracle”.

While CQs correspond to a large part of queries issued
over relational databases, i.e., they have relatively high ex-
pressivity, they cannot express things like negation or dis-
junction, which is a limitation. Hence, an interesting prob-
lem would be to consider more expressive languages, in par-
ticular, union of CQs and CQs with inequalities and numeric
comparison.

Lastly, we are planning to implement a comprehensive
comparison system that would compute most specific simi-
larity explanations and most general difference explanations,
to test it on real-world RDF graphs and to perform usability
tests.
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