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Abstract

The singularly perturbed differential systems which describe the dynamics of the manipulator with flexible joints are investigated

under the condition of weak dissipation. The method of integral manifolds is used to construct the reduced model of robot.

Integral manifolds may be constructed as an asymptotic power series. The simplified model is used to construct the control law

for the robot with two flexible joints.
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1. Introduction

The dynamic and control problems for robotic systems are connected with difficulties caused by high dimensions of models

and availability of several time scales. Thereby the reduction problem ( the problem of the construction the lower order corrected

models) is topical.

We investigate the model of n-links robot-manipulator with flexible joints where dissipation is small. The dynamics of

such manipulators is described by quasi-oscillating singularly perturbed differential systems, which contain small parameter at

the leading derivative. The conditions ensuring the possibility of using classical asymptotic methods are described in the well-

known Tikhonov’s theorem. The main of them is the asymptotic stability of the so-called boundary layer system. For investigated

class of systems this condition of Tikhonov’s theorem is not satisfied.

One of the approaches, which allows to reduce the complex multirate dynamic systems, is based on the theory of integral

manifolds [1–14]. The conditions of the existence of an attractive slow integral manifold are investigated. This makes it possible

to use the slow subsystem, which describes the motion on the manifold, as the simplified model of the manipulator. Similar

questions for other classes of quasi-oscillating systems are studied in [10-13].

We consider the dynamic model of n-links robot with flexible joints Fig. 1.

Fig. 1. The link of the manipulator.

The dynamics of manipulator is described by the system [15 – 18]

D(q1)q̈1 + c(q1, q̇1) + K(q1 − q2) + B(q̇1 − q̇2) = 0,

Jq̈2 − K(q1 − q2) − B(q̇1 − q̇2) = u, (1)

where the coordinates of vectors q1 ∈ Rn and q2 ∈ Rn are the angles which characterize links and rotors positions respectively,

D(q1) is inertia matrix due to the links, J is diagonal inertia matrix of drive rotors, vector c(q1, q̇1) is determined by coriolis,

centrifugal and gravitation components. The flexibility of joint is represented by torsion spring with sufficiently large elastic

coefficient. Let K = k diag(K̃1, . . . , K̃n) be the matrix of elastic coefficients, B = diag(B1, . . . , Bn) be the matrix of damping

ratios, u be the unit torque.

Let µ = 1/k be a small positive parameter. Note that the more hard restriction on the matrix B was imposed in [15 – 18]. It was

supposed that B j = B̃ j/µ, or B j = B̃ j/
√
µ. In fact, it was assumed that there is a sufficiently high dissipation. Such assumption

guarantees the fulfillment of Tichonov’s theorem condition about the asymptotic stability of the boundary layer system. Let us

suppose that B j = O(1). Then the main condition of this theorem is not fulfilled.
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2. Reduction of the model

Putting q = q1, z = k(q1 − q2) gives us the following system

q̈ = a1(q, q̇) + A1(q)z + µA3(q)ż,

µz̈ = a2(q, q̇) + A2(q)z + µA4(q)ż + M2u, (2)

where

a1(q, q̇) = a2(q, q̇) = −D−1(q)c(q, q̇), A1(q) = −D−1(q)K̃,

A2(q) = −(D−1(q) + J−1)K̃, A3(q) = −D−1(q)B,

A4(q) = −(D−1(q) + J−1)B, M2 = −J−1.

Using the coordinates x1 = q, x2 = q̇, y1 = z, y2 = ż we can rewrite system (2) to the form

ẋ1 = x2,

ẋ2 = a1(x) + A1(x1)y1 + µA3(x1)y2,

µẏ1 = µy2,

µẏ2 = a2(x) + A2(x1)y1 + µA4(x1)y2 + M2u(t, x, µ. (3)

We obtained [14] the conditions for the existence of attractive slow integral manifold of system (3)

y = h(t, x, µ), (4)

where x =

(
x1

x2

)
, y =

(
y1

y2

)
, h(t, x, µ) =

(
h1(t, x, µ)

h2(t, x, µ)

)
.

Let function u(t, x, µ) is represented in the form u(t, x, µ) = u0(t, x) + µu1(t, x) + . . . .

Integral manifold (4) may be constructed as an asymptotic power series of the small parameter µ

yi = h
(0)

i
(t, x) + µh

(1)

i
(t, x) + µ2h

(2)

i
(t, x) + . . . , i = 1, 2 (5)

with any degree of accuracy. Substituting (5) to the equations

∂h1

∂t
+
∂h1

∂x1

x2 +
∂h1

∂x2

(a1(x) + A1(x1)h1 + µA3(x1)h2) = h2,

µ(
∂h2

∂t
+
∂h2

∂x1

x2 +
∂h2

∂x2

(a1(x) + A1(x1)h1 + µA3(x1)h2) =

= a2(x) + A2(x1)h1 + µA4(x1)h2 + M2u(t, x, µ), (6)

hi = hi(t, x, µ)

and equating the coefficients at the same powers of µ we can get h
( j)

i
= h

( j)

i
(t, x) for any j. In particular

h
(0)

1
= −A−1

2 (x1)[a2(x) + M2u0(t, x)], h
(0)

2
=
∂h

(0)

1

∂t
+
∂h

(0)

1

∂x1

x2 +
∂h

(0)

1

∂x2

[a1(x) + A1(x1)h
(0)

1
],

h
(1)

1
= A−1

2 (x1)

[∂h
(0)

2

∂t
+
∂h

(0)

2

∂x1

x2 +
∂h

(0)

2

∂x2

[a1(x) + A1(x1)h
(0)

1
] − A4(x1)h

(0)

2
− M2u1(t, x)

]
,

h
(1)

2
=
∂h

(1)

1

∂t
+
∂h

(1)

1

∂x1

x2 +
∂h

(1)

1

∂x2

[a1(x) + A1(x1)h
(0)

1
] +

∂h
(0)

1

∂x2

[A1(x1)h
(1)

1
+ A3(x1)h

(0)

2
].

For h
( j)

i
, i = 1, 2 from (6) we have

h
( j)

1
= A−1

2 (x1)

[
M2u j(t, x) − A4(x1)h

( j−1)

2
−
∂h

( j−1)

2

∂t
−
∂h

( j−1)

2

∂x1

x2 −
∂h

( j−1)

2

∂x2

[a1(x) + A1(x1)h
(0)

1
] −

−

j−2∑

s=0

∂h
(s)

2

∂x2

[A1(x1)h
( j−s−1)

1
+ A3(x1)h

( j−s−2)

2
]

]
,

h
( j)

2
=

∂h
( j)

1

∂t
+
∂h

( j)

1

∂x1

x2 +
∂h

( j)

1

∂x2

[a1(x) + A1(x1)h
(0)

1
] +

j−1∑

s=0

∂h
(s)

1

∂x2

[A1(x1)h
( j−s)

1
+ A3(x1)h

( j−1−s)

2
]. (7)
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The system, which describes the motion on the slow integral manifold, is

ẋ1 = x2,

ẋ2 = a1(x) + A1(x1)h1(t, x, µ) + µA3(x1)h2(t, x, µ). (8)

The dimension of this system is half of the dimension of the initial system. The slow subsystem has not fast variables, but

nonetheless reliably describes the behavior of full system near the slow integral manifold. This allows to use it as a simplified

model of flexible joints robot. The proposed approach to construct the reduced model is used in [11 – 13] to solve the problems

of control and estimation for robot with one flexible joint.

3. Example

Let us consider the control problem for the robot with two flexible joints. The dynamics of manipulator is described by

system (1), where [18]

D(q1) =

(
θ1 + θ2 + 2θ3 cosϕ2 θ2 + θ3 cosϕ2

θ2 + θ3 cosϕ2 θ2

)
, q1 =

(
ϕ1

ϕ2

)
, q2 =

(
ψ1

ψ2

)
,

θ1 = m1l2c1
+ m2l2

1
+ I1, θ2 = m2l2c2

+ I2, θ3 = m2l1lc2
, θ4 = m1lc1

, θ5 = m2l1, θ6 = m2lc2
,

c(q1, q̇1) = θ3 sinϕ2

(
−2ϕ̇1ϕ̇2 − ϕ̇

2
2

ϕ̇2
1

)
+

(
(θ4 + θ5)g cosϕ1 + θ6g cos(ϕ1 + ϕ2)

θ6g cos(ϕ1 + ϕ2)

)
,

J =

(
J1 0

0 J2

)
, K =

(
k 0

0 k

)
, B =

(
b 0

0 b

)
.

Using the coordinates x1 = q, x2 = q̇, y1 = z, y2 = ż we rewrite system (2) to the form (3), where

x =

(
x1

x2

)
, x1 =

(
x

(1)

1

x
(1)

2

)
=

(
ϕ1

ϕ2

)
, x2 =

(
x

(2)

1

x
(2)

2

)
=

(
ϕ̇1

ϕ̇2

)
, y =

(
y1

y2

)
,

a1(x) = a2(x) =
(−θ3 sin x

(1)

2
(2x

(2)

1
+ x

(2)

2
)x

(2)

2
+ θ4g cos x

(1)

1
+ θ6g cos(x

(1)

1
+ x

(1)

2
))

∆



−θ2

(θ2 + θ3 cos x
(1)

2
)

+

+
(θ3 sin x

(1)

2
(x

(2)

1
)2
+ θ6g cos(x

(1)

1
+ x

(1)

2
))

∆

(
(θ2 + θ3 cos x

(1)

2
)

−(θ1 + θ2 + 2θ3 cos x
(1)

2
)

)
, ∆ = θ1θ2 − θ

2
3 cos2 x

(1)

2
,

A1(x) =
1

∆

(
−θ2 θ2 + θ3 cos x

(1)

2

θ2 + θ3 cos x
(1)

2
−(θ1 + θ2 + 2θ3 cos x

(1)

2
)

)
,

A2(x) =
k

∆J1J2

(
−J2(θ2J1 + ∆) J1J2(θ2 + θ3 cos x

(1)

2
)

J1J2(θ2 + θ3 cos x
(1)

2
) J1(J2(θ1 + θ2 + 2θ3 cos x

(1)

2
) + ∆)

)
,

A3(x) =
b

∆

(
−θ2 J1J2(θ2 + θ3 cos x

(1)

2
)

(θ2 + θ3 cos x
(1)

2
) −(θ1 + θ2 + 2θ3 cos x

(1)

2
)

)
,

A4(x) =
b

∆J1J2

(
−J2(θ2J1 + ∆) J1J2(θ2 + θ3 cos x

(1)

2
)

J1J2(θ2 + θ3 cos(x
(1)

2
)) J1(J2(θ1 + θ2 + 2θ3 cos x

(1)

2
) + ∆)

)
, M2 =



−
1

J1

0

0 −
1

J2


.

The slow integral manifold (4) takes the form (5), where coefficients h
(i)

j,k
are obtained from (7)by using the computer algebra

system Maple. In particular

h
(0)

1,1
= −

1

kS
(u

(0)

1
(θ1θ2 + J2θ1 + J2θ2 − θ

2
3(cos x

(1)

2
)2
+ 2J2θ3 cos x

(1)

2
) + u

(0)

2
J1(θ2 + θ3 cos x

(1)

2
) −

− J1θ
2
3(x

(2)

1
)2 cos x

(1)

2
sin x

(1)

2
− J1θ3 sin x

(1)

2
(θ2(x

(2)

1
+ x

(2)

2
)2
+ J2x

(2)

2
(2x

(2)

1
+ x

(2)

2
)) +

+ J1g(θ4 + θ5) cos x
(1)

1
(θ2 + J2) + cos(x

(1)

1
+ x

(1)

2
)J1gθ6(J2 − θ3 cos x

(1)

2
)),

h
(0)

1,2
= −

1

kS
(u

(0)

1
J2(θ2 + θ3 cos x

(1)

2
) + u

(0)

2
(θ1θ2 + J1θ2 − θ

2
3(cos x

(1)

2
)2) − J2g(θ4 + θ5) cos x

(1)

1
(θ2 + θ3 cos x

(1)

2
) +
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+ J2gθ6 cos(x
(1)

1
+ x

(1)

2
)(θ1 + J1 + θ3 cos x

(1)

2
) + J2θ

2
3 cos x

(1)

2
sin x

(1)

2
(2x

(2)

1
x

(2)

2
+ (x

(2)

2
)2
+ 2(x

(2)

1
)2) +

+ J2θ3 sin x
(1)

2
((θ1 + θ2)(x

(2)

1
)2
+ 2θ2x

(2)

1
x

(2)

2
+ θ2(x

(2)

2
)2
+ J1(x

(2)

1
)2)),

S = (J2θ1 + θ1θ2 + J1θ2 + J2θ2 + J1J2 − θ
2
3(cos x

(1)

2
)2
+ 2J2θ3 cos x

(1)

1
).

The reduced system (8) takes the form

ẋ
(1)

1
= x

(2)

1
, ẋ

(1)

2
= x

(2)

2
,

ẋ
(2)

1
=

1

S
(u

(0)

1
(θ2 + J2) − u

(0)

2
(θ2 + θ3 cos x

(1)

2
) − g(θ4 + θ5) cos x

(1)

1
(θ2 + J2) + θ2

3 cos x
(1)

2
sin x

(1)

2
(x

(2)

1
)2
+

+ θ3 sin x
(1)

2
(θ2(x

(2)

1
+ x

(2)

2
)2
+ J2x

(2)

2
(x

(2)

2
+ 2x

(2)

1
)) + gθ6 cos(x

(1)

1
+ x

(1)

2
)(θ3 cos x

(1)

2
− J2) + O(µ),

ẋ
(2)

2
=

1

S
(u

(0)

1
(θ2 + θ3 cos x

(1)

2
) − u

(0)

2
(θ1 + θ2 + 2θ3 cos x

(1)

2
+ J1) − cos x

(1)

1
(θ4 + θ5)g(θ2 + θ3 cos x

(1)

2
) +

+ θ3 sin x
(1)

2
(θ2x

(2)

2
(x

(2)

2
+ 2x

(2)

1
) + (x

(2)

1
)2(θ1 + θ2 + J1)) + θ2

3 cos x
(1)

2
sin x

(1)

2
(x

(2)

1
+ x

(2)

2
)2
+

+ gθ6 cos(x
(1)

1
+ x

(1)

2
)(θ3 cos x

(1)

2
+ J1 + θ1)) + O(µ),

We omitted here the terms containing µ because of their bulkiness.

We construct the control law to move both links of manipulator to the fixed stable positions. We choose the control law based

on the reduced system in accordance with the concept of linearizing feedback.

The Fig. 1 and Fig. 2 demonstrate the dynamics of the angles which characterize links positions with the control law formed

by reduced system for the following parameters

m1 = 10, m2 = 5, l1 = 1, l2 = 1, lc1
= 0.5, lc2

= 0.5, J1 = 1, J2 = 1, K̃1 = 1, µ = 0.01, K̃2 = 1.

0

0.2

0.4

0.6

0.8

2 4 6 8 10

Fig. 1. The first link angle ϕ1(t).

–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

x2

2 4 6 8 10
t

Fig. 2. The second link angle ϕ2(t).

It can be seen that the trajectories of initial system, which is characterized by damped high-frequency oscillations tend to the

trajectories of reduced system, and those tend to the required fixed positions.

4. Conclusion

The application of the integral manifolds method allows us to reduce the dimension and simplify the problem of the control

law construction.
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