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1 Introduction

Preferences are statements about the relative quality or desirability of items.
Ever larger amounts of preference information are being collected and analyzed
in a variety of domains, including recommendation systems [2, 16, 18], polling
and election analysis [3, 6, 7, 15], and bioinformatics [1, 11,19].

Preferences are often inferred from indirect input (e.g., a ranked list may be
inferred from individual choices), and are therefore uncertain in nature. This
motivates a rich body of work on uncertain preference models in the statistics
literature [14]. More recently, the machine learning community has been develop-
ing methods for effective modeling and efficient inference over preferences, with
the Mallows model [13] receiving particular attention [4, 5, 12,17].

In this paper, we take the position that preference modeling and analysis
should be accommodated within a general-purpose probabilistic database frame-
work. Our framework is based on a deterministic concept that we proposed in
a past vision paper [8]. In the present work we focus on handing uncertain
preferences, and develop a representation of preferences within a probabilistic
preference database, or PPD for short.

This paper is an abbreviated version of our PODS 2017 paper, where an
interested reader can find additional details about the formalism and proposed
algorithmic solutions.

2 Probabilistic Preference Databases

A preference schema S is a relational schema with some relation symbols marked
as preference symbols (and others as ordinary symbols). Figure 1 gives an exam-
ple of a preference database instance, with the ordinary symbols Candidates
and Voters, and the preference symbol Polls.

An instance over a preference symbol (such as Polls in Figure 1) represents
a collection of preferences among a set of items, where each such preference is
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Candidates (o)

cand party sex edu

Trump R M BS

Clinton D F JD

Sanders D M BS

Rubio R M JD

Voters (o)

voter edu sex age

Ann BS F 25

Bob BS M 35

Cat MS F 40

Dave MS M 45

A MAL-instance over Polls (p)
voter date Preference model MAL(σ, φ)

Ann Oct-5 〈Clinton, Sanders, Rubio, Trump〉, 0.3
Bob Oct-5 〈Trump, Rubio, Sanders, Clinton〉, 0.3

Polls (p)

voter date lcand rcand

Ann Oct-5 Sanders Clinton

Ann Oct-5 Sanders Rubio

Ann Oct-5 Sanders Trump

Ann Oct-5 Clinton Rubio

Ann Oct-5 Clinton Trump

Ann Oct-5 Rubio Trump

Bob Oct-5 Sanders Rubio

Bob Oct-5 Sanders Clinton

Bob Oct-5 Sanders Trump

Bob Oct-5 Rubio Clinton

Bob Oct-5 Rubio Trump

Bob Oct-5 Clinton Trump

Fig. 1. An example of a preference database

itself a binary relation called a session. A a binary relation � over a set I =
{σ1, . . . , σn} of items is a (strict) partial order if it is irreflexive and transitive. A
linear (or total) order is a partial order where every two items are comparable.
By a slight abuse of notation, we often identify a linear order σ1 � · · · � σn with
the sequence 〈σ1, . . . , σn〉, and we call it a ranking.

Example 1. Our running example is on individual preferences among the set of
US presidential candidates I = {Clinton, Rubio, Sanders, Trump}. The ranking
τ = 〈Clinton, Rubio, Sanders, Trump〉 is an example ranking over I. ut

A preference relation instantiates a special relation symbol with a signature of
the form (β,Al, Ar), where β is the session signature, and Al and Ar are the left-
hand-side (lhs) attribute and right-hand-side (rhs) attribute, respectively. We
use semicolon (;) to distinguish between the different parts and write (β;Al;Ar).

Example 2. We use the preference signature (voter, date; lcand; rcand) in our run-
ning example. Here the components β, Al and Ar are (voter, date), lcand, and
rcand, respectively. The table Polls of Figure 1 is an instance of this preference
signature that contains two sessions. The session (Ann, Oct-5) is associated with
the ranking 〈Sanders, Clinton, Rubio, Trump〉. The tuple (Ann, Oct-5; Sanders;
Clinton) denotes that in the session of the voter Ann on October 5th, the can-
didate Sanders is preferred to the candidate Clinton. ut

We now make the knowledge about voters’ opinions probabilistic, interpreting
the preference database of Figure 1 as one possible world of a probabilistic
preference database. A probabilistic preference database (abbrv. PPD) over the
preference schema S is a probability space over preference databases over S.
A PPD can be represented by explicitly specifying the entire sample space;
however, we wish to allow for standard compact representations of preferences.

A probabilistic preference model is a (finite and typically compact) represen-
tation M of a probability space over partial orders � over a finite set of items;
we denote this probability space by JMK. A model family is a collection M of



probabilistic preference models. As prominent examples, we define two model
families: RIM is the family of RIM [5] models RIM(σ, Π), and MAL is the
family of Mallows [13] models MAL(σ, φ).

A Mallows model [13] MAL(σ, φ) is parameterized by a reference ranking
σ = 〈σ1, . . . , σm〉 and a dispersion parameter φ ∈ (0, 1]. The model assigns a
non-zero probability to every ranking τ : The higher the Kendal’s tau distance [9]
of τ is from σ, the lower its probability under the model. Lower values of φ
concentrate most of the probability mass around σ, while φ = 1 corresponds to
the uniform probability distribution over the rankings. Doignon [5] showed that
MAL(σ, φ) can be represented as the insertion model RIM(σ, Π).

In the PPD representations we explore, termed RIM-PPD, each session is
associated with the parameters of a RIM model. A RIM-PPD represents a prob-
ability space over preference databases, where a possible world is obtained by
independently sampling a preference from the model of each session. Figure 1
gives an example of a MAL-instance over the p-symbol Polls that associates
each session in Polls with a Mallows model. It is straight-forward to extend this
representation to a mixture of Mallows, by associating each session with k com-
ponents MAL1(σ1, φ1), . . . ,MALk(σk, φk), with the corresponding probabilities
p1, . . . , pk. A possible world would then be obtained by first sampling compo-
nent MALi(σi, φi) with probability pi independently for each session, and then
sampling a preference from MALi(σi, φi).

3 Query Evaluation over PPDs

We adopt the semantics of probabilistic databases [20] for query evaluation.
Specifically, let S be a schema, let Q be a query, and let D = (Ω, π) be a PPD.
A possible answer for Q is a tuple a over sig(Q) such that a ∈ Q(D) for some
sample D of D. We denote by PosAns(Q,D) the set of all possible answers. The
confidence of a possible answer a ∈ PosAns(Q,D), denoted confQ(D,a), is the
probability of having a as an answer when querying a sample of D. If E is anM-
PPD for some model classM, then evaluating Q on E is the task of computing
the following (finite) set: Q(E) = {(a, confQ(JEK,a)) | a ∈ PosAns(JEK)}.

We study the data complexity of evaluating Conjunctive Queries (CQs) over
RIM-PPDs. We focus on CQs to which we refer as itemwise. Intuitively, these
are CQs where items are connected only through preferences. We show a natural
fragment of CQs where the itemwise CQs are precisely the CQs in which query
evaluation can be done in polynomial time. In the fragment we consider, we
prove that every query that is not itemwise is actually #P-hard, and therefore,
we establish a dichotomy in complexity.

Let S be a preference schema, and let Q be a CQ over S. An atomic formula
of Q is called a p-atom if it is over a p-symbol, and an o-atom if it is over an
o-symbol. Let P (s1, . . . , sk; tl; tr) be p-atom of Q. Each term si for i = 1, . . . , k
is said to occur in a session position, and each of tl and tr is said to occur in
an item position. A session variable of Q is a variable that occurs in a session
position, and an item variable of Q is a variable that occurs in an item position.



We say that Q is sessionwise if all p-atoms of Q refer to the same session; that
is, if P (s1, . . . , sk; tl; tr) and P ′(s′1, . . . , s

′
l; t

′
l; t

′
r) are p-atoms of Q, then P = P ′

and (s1, . . . , sk) = (s′1, . . . , s
′
l). We say that Q is itemwise if Q is sessionwise,

and the joins between item variables occur only inside the p-atoms, or through
session variables. Put differently, in an itemwise CQ with a constant session,
the o-atoms state properties of individual items but do not draw connections
between the items. In [10] we define this property more formally, by means of
the Gaifman graph of the CQ.

Example 3. Consider the following Boolean CQs. The query Q1 asks whether
there is a voter with a BS degree who prefers a male Democratic candidate to a
female Democratic candidate.

Q1()← P (v, ;l; r), V (v, BS, , ), C(l, D, M, ), C(r, D, F, )

The query Q2 asks whether there is a voter who prefers a male candidate to a
female candidate such that both candidates are of the same political party.

Q2()← P ( , ;l; r), C(l, p, M, ), C(r, p, F, )

The query Q3 asks whether there is a voter who prefers a female candidate to
both Trump and Sanders.

Q3()← P (v, d; l; Trump), P (v, d; l; Sanders), C(l, ,F, )

All of these CQs are sessionwise. Indeed, Q1 and Q2 involve a single p-atom
(hence, they are sessionwise by definition), and in Q3 both atoms have (v, d) in
their session parts. CQs Q1 and Q3 are itemwise, while Q2 is not itemwise. ut

In [10] we prove the following theorem, which states that every itemwise
Boolean CQ can be evaluated in polynomial time, under data complexity.

Theorem 1. Let S be a preference schema, and let Q be a Boolean CQ over S.
If Q is itemwise, then Q can be evaluated in polynomial time on RIM-PPDs.

We also prove that the class itemwise CQs are precisely the tractable ones
(among the queries in the class), under conventional complexity assumptions. In
other words, every Boolean CQ (in the class) that is not itemwise is necessarily
hard to evaluate, and therefore, we establish a dichotomy.

Theorem 2. Let S be a preference schema, and let Q be a Boolean CQ over S
such that Q has no self joins and Q has a single p-atom. If Q is not itemwise,
then the evaluation of Q on RIM-PPDs over S is FP#P-hard.

In [10] we give is a polynomial-time algorithm for evaluating itemwise CQs.
Interestingly, such CQs translate into a natural (and novel) inference problem
over RIM. In this problem, every item is associated with one or more labels
(e.g., “democratic” party or “comedy” genre), and the goal is to compute the
probability that a graph pattern (or equivalently a partial order) over these
labels matches the random ranking.
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