=Paper= {{Paper |id=Vol-1921/paper8 |storemode=property |title=Application of Boolean-valued Models and FCA for the Development of Ontological Models |pdfUrl=https://ceur-ws.org/Vol-1921/paper8.pdf |volume=Vol-1921 |authors=Dmitry Palchunov,Gulnara Yakhyaeva }} ==Application of Boolean-valued Models and FCA for the Development of Ontological Models== https://ceur-ws.org/Vol-1921/paper8.pdf
    Application of Boolean-valued models and FCA for the
              development of ontological models

                          Dmitry Palchunov, Gulnara Yakhyaeva



       Abstract. The paper is devoted to the development of methods of ontology
       supported knowledge discovery in the field of mobile network subscribers. We
       develop the ontological model of the domain of mobile networks. This ontolog-
       ical model is intended to describe the behavior of mobile network subscribers.
       The ontological model is based on the four-level model of knowledge represen-
       tation. In the paper, special attention is given to the third level which represents
       the set of cases from the domain. For the analysis of domain cases and for the
       generation of fuzzy knowledge about the domain we use Boolean-valued mod-
       els, fuzzy models and Formal Concept Analysis. To describe the set of cases
       from the domain we use formal contexts; objects of these formal contexts are
       models representing sets of subscribers. We study formal contexts generated by
       Boolean-valued models, and formal concepts of these formal contexts. We ob-
       tain a description of theories of classes of domain cases in the language of for-
       mal concepts.

       Keywords: Boolean-valued model, fuzzy model theory, ontology, ontological
       model, mobile networks, mobile network subscribers, FCA, formal context,
       formal concept


1      Introduction

The article is devoted to the development of an ontological model of the domain of
mobile networks. The ontological model is based on the four-level model of
knowledge representation [1, 2]. We apply model-theoretical methods [3], theory of
fuzzy models [4] and FCA [5, 6] to construct the ontological model.
   The present investigations continue the studies begun in [7, 8]. In [8] the ontologi-
cal model of the domain of mobile networks was used to determine which tariffs and
services of the mobile operator are most interesting and useful for a given mobile
network user. In this article we expand the borders of our consideration of the do-
main. We are interested in revealing high-level characteristics of the subscriber: in-
come level, social status, mobility, interests, preferences, etc. The elucidation of high-
level characteristics is necessary to predict the behavior of the subscriber.
   Thus we need to consider not only properties of individual subscribers, but also the
interaction of subscribers (for example, calls between subscribers and so on). There-
fore, in contrast to [8], we need to consider not only unary predicates, but also binary
predicates to describe the domain ontology. A case model of this domain is represent-
ed as a set of countable algebraic systems.
   Next, in the paper we describe a method for constructing a formal context for the
case model (using the notion of a Boolean-valued model) and a method of transition-
ing to an object-clarified context.
   This work is mainly theoretical. The results of practical implementation will be de-
scribed in the next paper.


2      Ontological model of the domain of mobile networks

The ontological model of the domain of mobile networks is constructed on the basis
of the four-level model of knowledge representation [1, 2]. We call a tuple
                                  ๐“ž๐“œ = โŒฉ๐พ, ๐œŽ, ๐‘‡ ๐‘Ž , ๐‘‡ ๐‘  , ๐‘‡๐‘“ โŒช
an ontological model of the domain. Here ๐พ is the set of cases of the domain, ๐œŽ is the
signature of the domain, ๐‘‡ ๐‘Ž is the analytic theory of the domain, ๐‘‡ ๐‘  is the theory of
the domain and ๐‘‡๐‘“ is the fuzzy theory of the domain.
  The first step of the construction of the ontological model is the description of the
ontology of the domain. From the model-theoretical point of view, the construction of
the domain ontology consists of describing a signature ฯƒ (i.e. the set of key concepts)
and a set of axiom ๐’œ๐“๐‘Ž of the given domain [9, 10]. The pair โŒฉ๐œŽ, ๐’œ๐“๐‘Ž โŒช generates the
analytic theory ๐‘‡ ๐‘Ž , i.e. description of sense of the key concepts of the domain, defini-
tions of used notions. The theory of the domain ๐‘‡ ๐‘  represents general (universal)
knowledge of the domain.
        We consider six classes of concepts to determine the signature ๐œŽ๐•„ of the object
domain ๐•„ = โ€œMobile networksโ€:
1. ๐œŽ๐‘ƒ represents individual indicators of subscribers, and contains two parts: ๐œŽ๐‘ƒ1 are
   traffics and ๐œŽ๐‘ƒ2 are accruals.
2. ๐œŽ๐‘„ represents different tariff plans and services.
3. ๐œŽ๐‘… represents properties and characteristics of various tariff plans, services and op-
   tions; for example, the number of free minutes of talk, the volume of the SMS
   package, etc.
4. ๐œŽ๐ผ represents concepts which express different interests of subscribers.
5. ๐œŽ๐‘† represents concepts which express subscriber's social status.
6. ๐œŽ๐‘‡ represents concepts which express relationships and interactions between sub-
   scribers: calls / SMS / MMS of one subscriber to another and so on.

       Note that the concepts from the classes ๐œŽ๐‘ƒ , ๐œŽ๐‘„ , ๐œŽ๐‘… , ๐œŽ๐ผ , ๐œŽ๐‘† represent different
properties of subscribers; these concepts are formalized as unary predicates. The con-
cepts from the class ๐œŽ๐‘‡ represent relationships and interactions between subscribers;
these concepts are formalized as binary predicates.
       The presented classes of concepts have a hierarchical structure which is de-
scribed by a set of axioms โ€œhyponym-hypernymโ€. For these classes of concepts we
present axioms of completeness and axioms of including. A detailed description of
these axioms is given in [8]. We present a set of axioms of irreflexivity for the class of
concepts ๐œŽ๐‘‡ . For example, for any concept ๐‘„(๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ๐‘‡ we formulate an axiom
ยฌ๐‘„(๐‘ฅ, ๐‘ฅ) which means that no subscriber can call to himself. This concludes the first
step of the ontological model's constructing.
        At the second step of the construction of the ontological model, we present the
set ๐’œ๐“๐‘  of general statements about the domain. The set ๐’œ๐“๐‘  is considered to be
true at the moment but may be changed at the future time. This knowledge is synthet-
ic, in contrast to the analytical knowledge presented in the ontology. The synthetic
knowledge does not follow from the meaning of the terms used in the description of
the domain. The truth value of this knowledge depends on the present state of the real
world. An example of such knowledge is the statement that a given tariff and a specif-
ic service of the mobile operator are not compatible.
        The set of all axioms ๐’œ๐“๐‘Ž โˆช ๐’œ๐“๐‘  generates the theory of the domain ๐‘‡ ๐‘  , i.e.,
a set of statements which are true in the given domain. This concludes the second step
of the ontological model's constructing.
        The third step of the building the ontological model is a formalization of em-
pirical knowledge about the domain, i.e., knowledge about the concrete precedents
(cases) of the given object area. In the domain ๐•„ the set ๐ด of subjects is the set of
various individuals and organizations using mobile network services, etc. Note that
the set of subjects ๐ด is finite at each point of time, but it is constantly changing in
dynamics. Therefore we may consider the set ๐ด as potentially infinite. Thus in this
paper we consider a countable set A of subjects.
        Let us consider a set ๐ด = {๐‘Ž1 , ๐‘Ž2 , โ€ฆ } of the subjects of the domain. Each case
(instance) of the domain ๐•„ determines an algebraic system ๐”„ = โŸจ๐ด, ๐œŽ๐•„ โŸฉ, i.e., defines
the signature ๐œŽ๐•„ on the set A.
        Further, to simplify the formalization, we will consider models ๐”„ = โŸจ๐ด, ๐œŽ๐•„ โŸฉ in
the signature (๐œŽ๐•„ )๐ด , enriched by constants for all elements of the model:
                                   (๐œŽ๐•„ )๐ด = ๐œŽ๐•„ โˆช {๐‘๐‘Ž | ๐‘Ž โˆˆ ๐ด}.
So, for simplicity, we denote ๐œŽ = ๐œŽ๐•„ , ๐œŽ๐ด = (๐œŽ๐•„ )๐ด and ๐”„๐ด = โŸจ๐ด, ๐œŽ๐ด โŸฉ.
        Note that not every algebraic system ๐”„ = โŸจ๐ด, ๐œŽ๐•„ โŸฉ is the case of the domain ๐•„.
We say that a model ๐”„๐ด is a domainโ€™s case if ๐”„๐ด โŠจ ๐’œ๐“๐‘Ž โˆช ๐’œ๐“๐‘  .
        To solve different problems we may consider different sets of cases ๐พ โІ
๐•‚(๐œŽ๐ด ). For example, the set of cases ๐พ may describe temporal "slices" of the domain,
or geolocation "slices" of the domain. Also, the set ๐พ may be used to describe the
behavior of different groups of subscribers.
        Empirical knowledge completely depends on the selection of the set of cases
๐พ โІ ๐•‚(๐œŽ๐ด ) of the domain and serves as a source of generating a new knowledge
about the given domain. Below we will be construct the case model of the domain
based on the selected set of cases ๐พ.
        Using the presented formalization of the case model, we can identify high-
level characteristics of mobile network subscribers and make portraits of mobile users'
segments. To do this, we generate different Boolean-valued and fuzzy models (see
Section 3) and construct corresponding formal contexts for given case models (see
Section 4).
3       Preliminaries: Boolean-valued models and fuzzy models

In the present paper a model (an algebraic system) is a tuple
๐”„ = โŒฉ๐ด; ๐‘ƒ1 , . . . , ๐‘ƒ๐‘› , ๐‘1 , . . . , ๐‘๐‘˜ โŒช. The set |๐”„| = ๐ด is called the universe of the model,
๐‘ƒ1 , . . . , ๐‘ƒ๐‘› are predicates defined on the set ๐ด and ๐‘1 , . . . , ๐‘๐‘˜ are constants. The tuple
๐œŽ = โŒฉ ๐‘ƒ1 , . . . , ๐‘ƒ๐‘› , ๐‘1 , . . . , ๐‘๐‘˜ โŒช is called the signature of the algebraic system ๐”„.
    A formula having no free variables is called a sentence. For a signature ๐œŽ we de-
note:
                      ๐‘ญ(๐ˆ) โ‡‹ {๐‹ | ๐‹ ๐ข๐ฌ ๐š ๐Ÿ๐จ๐ซ๐ฆ๐ฎ๐ฅ๐š ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ฌ๐ข๐ ๐ง๐š๐ญ๐ฎ๐ซ๐ž ๐ˆ},
                    ๐‘บ(๐ˆ) โ‡‹ {๐‹ | ๐‹ ๐ข๐ฌ ๐š ๐ฌ๐ž๐ง๐ญ๐ž๐ง๐œ๐ž ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ฌ๐ข๐ ๐ง๐š๐ญ๐ฎ๐ซ๐ž ๐ˆ} and
                        ๐‘ฒ(๐ˆ) โ‡‹ {๐•ฌ | ๐•ฌ ๐ข๐ฌ ๐š ๐ฆ๐จ๐๐ž๐ฅ ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ฌ๐ข๐ ๐ง๐š๐ญ๐ฎ๐ซ๐ž ๐ˆ}.
    For a sentence ๐œ‘ โˆˆ ๐‘†(๐œŽ) and a model ๐”„ โˆˆ ๐พ(๐œŽ) we denote ๐”„ โŠจ ๐œ‘ if the sentence
๐œ‘ is true in the model ๐”„.

    Definition 1 [11]. Let ๐”น be a complete Boolean algebra and ๐œ: S(๐œŽA ) โ†’ ๐”น. A
triple ๐”„๐”น = โŒฉ๐ด, ๐œŽ๐ด , ๐œโŒช is called a Boolean-valued model if the following conditions
hold:
                       ๐œ(๏ƒ˜๐œ‘) = ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
                                 ๐œ(๐œ‘); ๐œ(๐œ‘ โˆจ ๐œ“) = ๐œ(๐œ‘) โˆช ๐œ(๐œ“);
                 ๐œ(๐œ‘ & ๐œ“) = ๐œ(๐œ‘) โˆฉ ๐œ(๐œ“); ๐œ(๐œ‘ โ†’ ๐œ“) = ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
                                                         ๐œ(๐œ‘) โˆช ๐œ(๐œ“);
               ๐œ(โˆ€๐‘ฅ๐œ‘(๐‘ฅ)) = โ‹‚ ๐œ(๐œ‘(๐‘๐‘Ž )); ๐œ(โˆƒ๐‘ฅ๐œ‘(๐‘ฅ)) = โ‹ƒ ๐œ(๐œ‘(๐‘๐‘Ž )).
                                ๐‘Žโˆˆ๐ด                              ๐‘Žโˆˆ๐ด


   We use the notion of a fuzzy model to formalize the estimated knowledge of the
object domain (the fourth level of the construction of the ontological model). Each
fuzzy model is a special case of the fuzzification of some Boolean-valued model [12,
13].
   Definition 2 [4]. Let ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช be a Boolean-valued model, where
๐œ: S(๐œŽA ) โ†’ ๐”น, and โ„Ž: ๐”น โ†’ [0,1] be a mapping for which โ„Ž(0) = 0 and โ„Ž(1) = 1.
          We define a valuation ๐œ‡: S(๐œŽA ) โ†’ [0,1] as a composition ๐œ‡(๐œ‘) = โ„Ž(๐œ(๐œ‘)).
A triple ๐”„๐œ‡ = โŸจ๐ด, ๐œŽ๐ด , ๐œ‡โŸฉ is called a fuzzification of the Boolean valued-model ๐”„๐”น via
the mapping โ„Ž.

     Definition 3 [4]. The mapping โ„Ž: ๐”น โ†’ [0,1] is called an additive homomorphism
if
         (1) โ„Ž preserves the order, i.e., โ„Ž is a homomorphism โ„Ž: ๐”น โ†’ [0,1] of posets
             with constants 0 and 1;
         (2) โ„Ž is additive, i.e.,
                 ๐‘Ž โˆฉ ๐‘ = 0 โ‡’ โ„Ž(๐‘Ž โˆช ๐‘) = โ„Ž(๐‘Ž) + โ„Ž(๐‘) for any ๐‘Ž, ๐‘ โˆˆ ๐”น.

   Definition 4 [4]. A fuzzy model ๐”„๐œ‡ = โŸจ๐ด, ๐œŽ๐ด , ๐œ‡โŸฉ is a fuzzification of a Boolean-
valued model ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช via an additive homomorphism.
4      Main results: formal contexts for Boolean-valued models

Remark 5. Let ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช be a Boolean-valued model and ๐œ: S(ฯƒA ) โ†’ ๐”น. Con-
sider the formal context (๐”น, ๐‘†(๐œŽ๐ด ), ๐ผ), where ๐‘ ๐ผ ๐œ‘ โ‡” ๐œ(๐œ‘) = ๐‘. Note that the non-
empty extents of formal concepts are one-element sets.




                           Fig. 1. The formal context (๐”น, ๐‘†(๐œŽ๐ด ), ๐ผ).

   For a formal context (๐บ, ๐‘€, ๐ผ) by ๐”™(๐บ, ๐‘€, ๐ผ) we denote the lattice of formal
concepts of the formal context (๐บ, ๐‘€, ๐ผ).
   Definition 6 [14]. Let ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช be a Boolean-valued model, where
๐œ: S(๐œŽA ) โ†’ ๐”น. Consider an atom ๐‘ โˆˆ At(๐”น). Define a model ๐”„b โˆˆ ๐•‚(๐œŽA ) by setting
                    ๐”„b โŠจ ๐‘ƒ(๐‘1 , โ€ฆ , ๐‘n ) โ‡” ๐‘ โ‰ค ฯ„(๐‘ƒ(๐‘1 , โ€ฆ , ๐‘n ))
for any ๐‘ƒ, ๐‘1 , โ€ฆ , ๐‘n โˆˆ ๐œŽA .
   Proposition 7 [14]. For the model ๐”„b and for an arbitrary sentence ฯ† โˆˆ S(๐œŽA ), we
have ๐”„b โŠจ ฯ† โ‡” ๐‘ โ‰ค ฯ„(ฯ†).
          A Boolean-valued model ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช is called atomic if the Boolean al-
gebra ๐”น is atomic.
   Definition 8. Let ๐”„๐”น be an atomic Boolean-valued model. Denote ๐ด๐‘ก(๐”น) =
{๐‘Ž โˆˆ ๐”น | ๐‘Ž is an atom}. Consider the formal context (๐ด๐‘ก(๐”น), ๐‘†(๐œŽA ), ๐ผ๐œ ), where
                                  ๐‘Ž ๐ผ๐œ ๐œ‘ โ‡” ๐‘Ž โ‰ค ๐œ(๐œ‘).

   Proposition 9. Let (๐ถ, ฮ“) โˆˆ ๐”…(๐ด๐‘ก(๐”น), ๐‘†(๐œŽA ), ๐ผ๐œ ). Then ฮ“ is a theory of the signa-
ture ๐œŽA , i.e., for any ๐œ‘ โˆˆ S(๐œŽA ) if ฮ“ โŠข ๐œ‘ then ๐œ‘ โˆˆ ฮ“.
   Proof. Let (๐ถ, ฮ“) โˆˆ ๐”…(๐ด๐‘ก(๐”น), ๐‘†(๐œŽA ), ๐ผ๐œ ). Let us show that ฮ“ is a theory. Suppose
that ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ) and ฮ“ โŠข ๐œ‘. Prove that ๐œ‘ โˆˆ ฮ“. We have ๐ถ โ€ฒ = ฮ“; consequently, we must
only show that ๐œ‘ โˆˆ ๐ถโ€ฒ.




                           Fig. 2. The formal context (๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ ).
   Consider ๐‘ โˆˆ ๐ถ, then ๐‘ โˆˆ ๐ด๐‘ก(๐”น). It is true that ๐ถ โ€ฒ = ฮ“, so for any ๐œ“ โˆˆ ฮ“, we have
๐‘ ๐ผ๐œ ๐œ“, therefore ๐‘ โ‰ค ๐œ(๐œ“). Hence, by Proposition 7, we have ๐”„๐‘ โŠจ ๐œ“.
   Consequently, for any ๐œ“ โˆˆ ฮ“, it is true that ๐”„๐‘ โŠจ ๐œ“, which means that ๐”„๐‘ โŠจ ฮ“. In-
volving the fact that ฮ“ โŠข ๐œ‘, we conclude that ๐”„๐‘ โŠจ ๐œ‘. Therefore, by Proposition 7,
we have ๐‘ โ‰ค ๐œ(๐œ‘), so ๐‘ ๐ผ๐œ ๐œ‘.
   Thus, we have proved that ๐‘ ๐ผ๐œ ๐œ‘ for any ๐‘ โˆˆ ๐ถ. Then ๐œ‘ โˆˆ ๐ถ โ€ฒ = ฮ“. Therefore, we
have shown that for any ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ), if ฮค โŠข ๐œ‘ then ๐œ‘ โˆˆ ฮค. Hence, ฮ“ is a theory.     โˆŽ
    Theorem 10. Let ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช be an atomic Boolean-valued model. There ex-
ists an atomic Boolean-valued model ๐”„๐”น1 = โŒฉ๐ด, ๐œŽA , ๐œ1 โŒช, where ๐œ1 : S(๐œŽA ) โ†’ ๐”น1 , and
an epimorphism g: ๐”นโ†’ ๐”น1 such that
    1) the formal context (๐ด๐‘ก(๐”น1 ), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ1 ) is object-clarified;
    2) for any ฯ† โˆˆ S(๐œŽA ) we have g(๐œ(๐œ‘)) = ๐œ1 (๐œ‘);
    3) for any ๐‘ โˆˆ At(๐”น), if ๐‘”(๐‘) โ‰  0 then ๐‘”(๐‘) โˆˆ At(๐”น1 );
    4) for any ๐‘ โˆˆ At(๐”น) and ๐œ‘ โˆˆ S(๐œŽA ), if ๐‘”(๐‘) โ‰  0 then ๐‘ ๐ผ๐œ ๐œ‘ โ‡” g(๐‘) ๐ผ๐œ1 ๐œ‘.
    Proof. Let ๐”„๐”น = โŒฉ๐ด, ๐œŽA , ๐œโŒช be a Boolean-valued model and ๐”น be atomic.




                             Fig. 3. Epimorphism ๐‘”: ๐”น โ†’ ๐”น1

   Suppose that the formal context (๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ ) is not object-clarified. Consider
an equivalence relation ~ on the set ๐ด๐‘ก(๐”น) of the atoms of the Boolean algebra ๐”น
defined as follows: for ๐‘Ž, ๐‘ โˆˆ ๐ด๐‘ก(๐”น) we have ๐‘Ž~๐‘ iff for any ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ) it is true that
๐‘Ž ๐ผ๐œ ๐œ‘ โ‡” ๐‘ ๐ผ๐œ ๐œ‘.
   Consider the quotient set ๐”น/~ , and denote ๐ป = ๐ด๐‘ก(๐”น)/~ .
   We chose exactly one element ๐‘[๐‘Ž] โˆˆ [๐‘Ž] in each equivalence class [๐‘Ž] โˆˆ ๐ด๐‘ก(๐”น)/~ .
Denote
               ๐ถ = {๐‘[๐‘Ž] | [๐‘Ž] โˆˆ ๐ป} โІ ๐ด๐‘ก(๐ต) and ๐‘‘ =              โ‹ƒ           ๐‘.
                                                             (๐‘โˆˆ(๐ด๐‘ก(๐ต)\๐ถ))
   Consider a principal ideal ๐ผ = ๐‘‘ฬ‚ = {๐‘ โˆˆ ๐”น | ๐‘ โ‰ค ๐‘‘} of the Boolean algebra ๐”น :
๐ผ โŠฒ ๐”น.
   Consider a Boolean algebra ๐”น1 = ๐”นโ„๐ผ which is the quotient algebra of the Boolean
algebra ๐”น by the ideal ๐ผ.
   Consider an epimorphism ๐‘”: ๐”น โ†’ ๐”น1 defined as follows: ๐‘”(๐‘) = ๐‘โ„๐ผ for any
๐‘ โˆˆ ๐”น; here ๐‘โ„๐ผ is the quotient class of the element ๐‘.
   Define a mapping ๐œ1 : ๐‘†(๐œŽ๐ด ) โ†’ ๐”น1 as follows:
                                   ๐œ(๐œ‘)โ„
                        ๐œ1 (๐œ‘) =        ๐ผ for ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ).
  Lemma 11. ๐”„๐”น1 = โŒฉ๐ด, ๐œŽ๐ด , ๐œ1 โŒช is a Boolean-valued model.
  Proof. Consider ๐œ‘, ๐œ“ โˆˆ ๐‘†(๐œŽ๐ด ). We have
                            ๐œ(ยฌ๐œ‘)โ„      ๐œ(๐œ‘)โ„     ๐œ(๐œ‘)โ„
                ๐œ1 (ยฌ๐œ‘) =           ๐ผ=        ๐ผ=       ๐ผ = ๐œ1 (๐œ‘);

              ๐œ(๐œ‘ โˆจ ๐œ“)โ„    ๐œ(๐œ‘) โˆช ๐œ(๐œ“)โ„    ๐œ(๐œ‘)โ„     ๐œ(๐œ“)โ„
 ๐œ1 (๐œ‘ โˆจ ๐œ“) =          ๐ผ=              ๐ผ=       ๐ผ โˆช       ๐ผ = ๐œ1 (๐œ‘) โˆช ๐œ1 (๐œ“);
              ๐œ(๐œ‘&๐œ“)โ„     ๐œ(๐œ‘) โˆฉ ๐œ(๐œ“)โ„    ๐œ(๐œ‘)โ„     ๐œ(๐œ“)โ„
  ๐œ1 (๐œ‘ &๐œ“) =         ๐ผ=              ๐ผ=       ๐ผ โˆฉ       ๐ผ = ๐œ1 (๐œ‘) โˆฉ ๐œ1 (๐œ“);
                ๐œ(๐œ‘ โ†’ ๐œ“)โ„   ๐œ(๐œ‘) โˆช ๐œ(๐œ“)โ„   ๐œ(๐œ‘)โ„   ๐œ(๐œ“)โ„
 ๐œ1 (๐œ‘ โ†’ ๐œ“) =            ๐ผ=             ๐ผ=      ๐ผโˆช      ๐ผ = ๐œ1 (๐œ‘) โˆช ๐œ1 (๐œ“).

  Consider ๐œ‘(๐‘ฅ) โˆˆ ๐น(๐œŽ๐ด ). We have
                              ๐œ(โˆ€๐‘ฅ๐œ‘(๐‘ฅ))โ„   โ‹‚๐‘Žโˆˆ๐ด ๐œ(๐œ‘(๐‘๐‘Ž ))โ„
              ๐œ1 (โˆ€๐‘ฅ๐œ‘(๐‘ฅ)) =             ๐ผ=                ๐ผ=

                                   ๐œ(๐œ‘(๐‘๐‘Ž ))โ„
                        =โ‹‚                   ๐ผ = โ‹‚ ๐œ1 (๐œ‘(๐‘๐‘Ž )) ;
                             ๐‘Žโˆˆ๐ด                 ๐‘Žโˆˆ๐ด


                                    ๐œ(โˆƒ๐‘ฅ๐œ‘(๐‘ฅ))โ„   โ‹ƒ๐‘Žโˆˆ๐ด ๐œ(๐œ‘(๐‘๐‘Ž ))โ„
                 ๐œ1 (โˆƒ๐‘ฅ๐œ‘(๐‘ฅ)) =                ๐ผ=                ๐ผ=

                                   ๐œ(๐œ‘(๐‘๐‘Ž ))โ„
                         =โ‹ƒ                  ๐ผ = โ‹ƒ ๐œ1 (๐œ‘(๐‘๐‘Ž )).
                             ๐‘Žโˆˆ๐ด                 ๐‘Žโˆˆ๐ด

  Note that the equalities

                         โ‹‚๐‘Žโˆˆ๐ด ๐œ(๐œ‘(๐‘๐‘Ž ))โ„    ๐œ(๐œ‘(๐‘๐‘Ž ))โ„
                                        ๐ผ=โ‹‚           ๐ผ
                                                ๐‘Žโˆˆ๐ด

and

                         โ‹ƒ๐‘Žโˆˆ๐ด ๐œ(๐œ‘(๐‘๐‘Ž ))โ„    ๐œ(๐œ‘(๐‘๐‘Ž ))โ„
                                        ๐ผ=โ‹ƒ           ๐ผ
                                                ๐‘Žโˆˆ๐ด

are true in virtue of the fact that the Boolean algebra ๐”น is complete.
    Thus, we have shown that ๐”„๐”น1 = โŒฉ๐ด, ๐œŽA , ๐œ1 โŒช is Boolean-valued model.
    The lemma is proved.                                                     โˆŽ
   Continue the proof of the theorem. First we prove that the set of atoms
๐ด๐‘ก(๐”น1 ) = {๐‘โ„๐ผ | ๐‘ โˆˆ ๐ถ}.
   Let ๐‘ โˆˆ ๐ถ. Then ๐‘ โˆ‰ ๐ผ and so, ๐‘โ„๐ผ โ‰  0. If ๐‘โ„๐ผ โ‰  0 and ๐‘โ„๐ผ โ‰ค ๐‘โ„๐ผ then

                              ๐‘โ„ = ๐‘โ„ โˆฉ ๐‘โ„ = ๐‘ โˆฉ ๐‘โ„ .
                                ๐ผ    ๐ผ    ๐ผ        ๐ผ
   So, ๐‘ โˆฉ ๐‘ โ‰  0 and ๐‘ โˆฉ ๐‘ โ‰ค ๐‘, therefore, ๐‘ โˆฉ ๐‘ = ๐‘. Hence, ๐‘ โˆฉ ๐‘โ„๐ผ = ๐‘โ„๐ผ and so,
๐‘โ„ = ๐‘โ„ . Thus, ๐‘โ„ is an atom of the Boolean algebra ๐”น .
  ๐ผ      ๐ผ          ๐ผ                                        1
   On the other hand, let ๐‘โ„๐ผ be an atom of the Boolean algebra ๐”น1 . Then ๐‘โ„๐ผ โ‰  0
and so, ๐‘ โ‰  0. The Boolean algebra ๐”น is atomic, hence the set of atoms ๐ด๐‘ก(๐‘) =
{๐‘ โˆˆ ๐ด๐‘ก(๐”น)| ๐‘ โ‰ค ๐‘} โ‰  โˆ… and ๐‘ = โ‹ƒ๐‘โˆˆ๐ด๐‘ก(๐”น) ๐‘ . Involving the fact that ๐‘โ„๐ผ โ‰  0 we
conclude that ๐‘ โˆ‰ ๐ผ = ๐‘‘ฬ‚, consequently, ๐‘ โ‰ฐ ๐‘‘.
   We have ๐‘‘ = โ‹ƒ๐‘โˆˆ๐ด๐‘ก(๐”น)\๐ถ ๐‘ and ๐‘ = โ‹ƒ๐‘โˆˆ๐ด๐‘ก(๐‘) ๐‘, hence, if ๐ด๐‘ก(๐‘) โІ ๐ด๐‘ก(๐”น)\๐ถ then
๐‘ โ‰ค ๐‘‘. Therefore, ๐ด๐‘ก(๐‘) โŠˆ ๐ด๐‘ก(๐”น)\๐ถ, so ๐ด๐‘ก(๐‘) โˆฉ ๐ถ โ‰  โˆ….
   Consequently, there exists an atom ๐‘ โˆˆ ๐ด๐‘ก(๐‘) โˆฉ ๐ถ . Hence, ๐‘ โˆˆ ๐ถ and ๐‘ โ‰ค ๐‘ , so
๐‘โ„ โ‰ค ๐‘โ„ . As we proved above, ๐‘ โˆˆ ๐ถ implies that ๐‘โ„ is an atom of the Boolean
  ๐ผ      ๐ผ                                                  ๐ผ
algebra ๐”น1 . Involving the fact that ๐‘โ„๐ผ is an atom we conclude that ๐‘โ„๐ผ = ๐‘โ„๐ผ and so,
๐‘โ„ โˆˆ {๐‘’โ„ | ๐‘’ โˆˆ ๐ถ}. Therefore, ๐ด๐‘ก(๐”น ) = {๐‘โ„ | ๐‘ โˆˆ ๐ถ}.
  ๐ผ       ๐ผ                              1         ๐ผ
   Thus, that for any ๐‘ โˆˆ ๐ด๐‘ก(๐”น) if ๐‘ โˆˆ ๐ด๐‘ก(๐”น)\๐ถ then ๐‘ โ‰ค ๐‘‘, hence, ๐‘โ„๐ผ = 0. If
๐‘ โˆˆ ๐ถ then ๐‘โ„๐ผ โˆˆ ๐ด๐‘ก(๐”น1 ). Consequently, the statement (3) holds.
   Next, by the definition of the epimorphism ๐‘”: ๐”น โ†’ ๐”น1 we have
                                           ๐œ(๐œ‘)โ„
                              ๐‘”(๐œ(๐œ‘)) =           ๐ผ = ๐œ1 (๐œ‘).
   Therefore, the statement (2) holds.
   Lemma 12. For every ๐‘ โˆˆ ๐ด๐‘ก(๐”น), and every ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ), if ๐‘”(๐‘) โ‰  0 then
                               ๐‘ ๐ผ๐œ ๐œ‘ โ‡” ๐‘”(๐‘) ๐ผ๐œ1 ๐œ‘.
   Proof. Consider ๐‘ โˆˆ ๐ด๐‘ก(๐”น) and ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ) . Let ๐‘”(๐‘) โ‰  0 . Let us prove that
๐‘ ๐ผ๐œ ๐œ‘ โ‡” ๐‘”(๐‘) ๐ผ๐œ1 ๐œ‘.
                                                                 ๐œ(๐œ‘)โ„
   (โ‡’) Suppose that ๐‘ ๐ผ๐œ ๐œ‘ holds. Then ๐‘ โ‰ค ๐œ(๐œ‘) , hence ๐‘โ„๐ผ โ‰ค          ๐ผ = ๐œ1 (๐œ‘) .
                    ๐‘
Therefore, we have ( โ„๐ผ ) ๐ผ๐œ1 ๐œ‘ and so, ๐‘”(๐‘)๐ผ๐œ1 ๐œ‘ holds.
    (โ‡) Suppose that ๐‘ ๐ผ๐œ ๐œ‘ doesnโ€™t hold. Then ๐‘ โ‰ฐ ๐œ(๐œ‘), so, ๐‘ โ‰  ๐‘ โˆฉ ๐œ(๐œ‘). The el-
ement ๐‘ is an atom and we have ๐‘ โ‰  ๐‘ โˆฉ ๐œ(๐œ‘) โ‰ค ๐‘. Then ๐‘ โˆฉ ๐œ(๐œ‘) = 0, hence
๐‘โ„ โˆฉ ๐œ(๐œ‘)โ„ = ๐‘ โˆฉ ๐œ(๐œ‘)โ„ = 0.
   ๐ผ          ๐ผ            ๐ผ
                                                    ๐œ(๐œ‘)โ„                  ๐œ(๐œ‘)โ„
    Since โ„๐ผ = ๐‘”(๐‘) โ‰  0 , we have ๐‘โ„๐ผ โ‰  ๐‘โ„๐ผ โˆฉ
           ๐‘                                                          ๐‘
                                                           ๐ผ , hence, โ„๐ผ โ‰ฐ      ๐ผ=
๐œ1 (๐œ‘), i.e., ๐‘”(๐‘) โ‰ฐ ๐œ1 (๐œ‘). Therefore, ๐‘”(๐‘)๐ผ๐œ1 ๐œ‘ doesnโ€™t hold.
    The lemma is proved.                                                         โˆŽ
   Thus, we have proved the statement (4). Now let us prove that the formal context
(๐ด๐‘ก(๐”น1 ), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ1 ) is object-clarified โ€“ the statement (1).
                                 ๐‘        ๐‘
   Consider ๐‘1 , ๐‘2 โˆˆ ๐ถ. Let 1โ„๐ผ โ‰  2โ„๐ผ . Then there are atoms ๐‘Ž1 , ๐‘Ž2 โˆˆ ๐ด๐‘ก(๐”น) such
that ๐‘1 = ๐‘[๐‘Ž1] and ๐‘2 = ๐‘[๐‘Ž2] . Hence, ๐‘1 โˆˆ [๐‘Ž1 ] and ๐‘2 โˆˆ [๐‘Ž2 ]. Since ๐‘1 โ‰  ๐‘2 , we
have [๐‘Ž1 ] โ‰  [๐‘Ž2 ], so, ๐‘1 โ‰ ๐‘2 . Therefore, there is a sentence ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ) such that only
one of the statements ๐‘1 ๐ผ๐œ ๐œ‘ and ๐‘2 ๐ผ๐œ ๐œ‘ holds. Suppose that ๐‘1 ๐ผ๐œ ๐œ‘ holds and ๐‘2 ๐ผ๐œ ๐œ‘
doesnโ€™t hold. We conclude by Lemma 12 that ๐‘”(๐‘1 ) ๐ผ๐œ1 ๐œ‘ holds and ๐‘”(๐‘2 ) ๐ผ๐œ1 ๐œ‘
                                                                   ๐‘          ๐‘
doesnโ€™t hold. Therefore, the rows corresponding to the objects 1โ„๐ผ and 2โ„๐ผ of the
formal context (๐ด๐‘ก(๐”น1 ), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ1 ) are different. Thus, the formal context
(๐ด๐‘ก(๐”น1 ), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ1 ) is object-clarified.
   The theorem is proved.                                                   โˆŽ
   Recall that ๐•‚(๐œŽA ) = {โŒฉ{๐‘๐‘Ž๐”„ | ๐‘Ž โˆˆ ๐ด}, ๐œŽA โŒช | ๐‘๐‘Ž๐”„ โ‰  ๐‘๐‘๐”„ for ๐‘Ž โ‰  ๐‘} and
๐‘‡โ„Ž(๐พ) = {๐œ‘ โˆˆ S(๐œŽA )| ๐พ โŠจ ๐œ‘} is the theory of the class ๐พ โІ ๐•‚(๐œŽA ).
   We represent the set of the cases of the domain (3rd level of the ontological model)
as a class of models ๐พ โІ ๐•‚(๐œŽA ). So, it is interesting and important to solve the fol-
lowing
   Problem 13. How to describe the theories of the classes ๐พ โІ ๐•‚(๐œŽA ).
   Theorem 14. Let ๐‘‡ be a theory of the signature ๐œŽ๐ด . There exists a class ๐พ โІ ๐•‚(๐œŽ๐ด )
such that ๐‘‡ = ๐‘‡โ„Ž(๐พ) if and only if there exists a Bolean-valued model ๐”„๐”น such that
                             (๐‘‡ โ€ฒ , ๐‘‡) โˆˆ ๐”…(๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ ).
   Proof. Let ๐‘‡ be a theory in the signature ๐œŽ๐ด .
   (โ‡’) Consider a class ๐พ โІ ๐•‚(๐œŽ๐ด ). Let ๐‘‡ = ๐‘‡โ„Ž(๐พ). Denote ๐พ0 = ๐•‚(๐œŽ๐ด ). Consider
a Boolean algebra ๐”น = โŒฉโ„˜(๐พ0 ); โˆช,โˆฉ, โˆ’, โˆ…, ๐พ0 โŒช and a mapping ๐œ: ๐‘†(๐œŽ๐ด ) โ†’ ๐”น defined
as follows: ๐œ(๐œ‘) = {๐”… โˆˆ ๐พ | ๐”… โŠจ ๐œ‘} for a sentence ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ).
   Lemma 15. ๐”„๐”น = โŒฉ๐ด, ๐œŽ๐‘Ž , ๐œโŒช is a Boolean-valued model.
   Proof. Let ๐œ‘, ๐œ“ โˆˆ ๐‘†(๐œŽ๐ด ). Then
                ๐œ(ยฌ๐œ‘) = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ยฌ๐œ‘} = {๐”… โˆˆ ๐พ0 | ๐”… โŠญ ๐œ‘} =
                      ๐พ\{๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘} = ๐พ0 \๐œ(๐œ‘) = ๐œ(๐œ‘);
                       ๐œ(๐œ‘ โˆจ ๐œ“) = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ (๐œ‘ โˆจ ๐œ“)} =
             = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘} โˆช {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ“} = ๐œ(๐œ‘) โˆช ๐œ(๐œ“);
                     ๐œ(๐œ‘&๐œ“) = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ (๐œ‘&๐œ“)} =
            = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘} โˆฉ {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ“} = ๐œ(๐œ‘) โˆฉ ๐œ(๐œ“);
             ๐œ(๐œ‘ โ†’ ๐œ“) = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ (๐œ‘ โˆจ ๐œ“)} = ๐œ(๐œ‘) โˆช ๐œ(๐œ“).
  Let ๐œ‘(๐‘ฅ) โˆˆ ๐น(๐œŽ๐ด ). Then
                     ๐œ(โˆ€๐‘ฅ๐œ‘(๐‘ฅ)) = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ โˆ€๐‘ฅ๐œ‘(๐‘ฅ)} =
 = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘(๐‘Ž) for any ๐‘Ž โˆˆ ๐ด} = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘(๐‘๐‘Ž ) for any ๐‘Ž โˆˆ ๐ด} =
                    = โ‹‚{๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘(๐‘๐‘Ž )} = โ‹‚ ๐œ(๐œ‘(๐‘๐‘Ž )) ;
                      ๐‘Žโˆˆ๐ด                           ๐‘Žโˆˆ๐ด
                   ๐œ(โˆƒ๐‘ฅ๐œ‘(๐‘ฅ)) = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ โˆƒ๐‘ฅ๐œ‘(๐‘ฅ)} =
 {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘(๐‘Ž) for some ๐‘Ž โˆˆ ๐ด} = {๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘(๐‘๐‘Ž ) for some ๐‘Ž โˆˆ ๐ด} =
                   = โ‹ƒ{๐”… โˆˆ ๐พ0 | ๐”… โŠจ ๐œ‘(๐‘๐‘Ž )} = โ‹ƒ ๐œ(๐œ‘(๐‘๐‘Ž )).
                      ๐‘Žโˆˆ๐ด                          ๐‘Žโˆˆ๐ด
  The lemma is proved.                                                              โˆŽ

   Notice that the atoms of the Boolean algebra ๐”น = โŒฉโ„˜(๐พ0 ); โˆช,โˆฉ, โˆ’, โˆ…, ๐พ0 โŒช are exact-
ly the one-element subsets of the set ๐พ0 . Hence, ๐ด๐‘ก(๐”น) = {{๐”…} | ๐”… โˆˆ ๐พ0 }.
  Consider a formal context โŒฉ๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ โŒช. Let โ„ญ โˆˆ ๐พ0 and ๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ). Then we
have
         {โ„ญ} ๐ผ๐œ ๐œ‘ โ‡” {โ„ญ} โІ ๐œ(๐œ‘) โ‡” {โ„ญ} โІ {๐”… โˆˆ ๐พ | ๐”… โŠจ ๐œ‘} โ‡” โ„ญ โŠจ ๐œ‘.
    Thus, we have {โ„ญ} ๐ผ๐œ ๐œ‘ โ‡” โ„ญ โŠจ ๐œ‘. Recall that ๐พ โІ ๐พ0 = ๐•‚(๐œŽ๐ด ) and ๐‘‡ = ๐‘‡โ„Ž(๐พ).
    Denote ๐พฬƒ = {{๐”…} | ๐”… โˆˆ ๐พ} โІ ๐ด๐‘ก(๐”น). Then
       ฬƒ โ€ฒ = {๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ) | {๐”…} ๐ผ๐œ ๐œ‘ for any {๐”…} โˆˆ ๐พ
       ๐พ                                          ฬƒ}
                            = {๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด ) | ๐”… โŠจ ๐œ‘ for any ๐”… โˆˆ ๐พ} = ๐‘‡โ„Ž(๐พ) = ๐‘‡.
  Therefore, ๐‘‡ = ๐‘‡ and the pair (๐‘‡ โ€ฒ , ๐‘‡) is a formal concept of the formal context
                     โ€ฒโ€ฒ

โŒฉ๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ โŒช, i.e., (๐‘‡ โ€ฒ , ๐‘‡) โˆˆ ๐”…(๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ ).
  (โ‡) Let ๐”„๐”น = โŒฉ๐ด, ๐œŽ๐‘Ž , ๐œโŒช be a Boolean-valued model and a pair (๐‘‡ โ€ฒ , ๐‘‡) โˆˆ
๐”…(๐ด๐‘ก(๐”น), ๐‘†(๐œŽ๐ด ), ๐ผ๐œ ).`
    Denote ๐ถ = ๐‘‡ โ€ฒ . Then ๐ถ โІ ๐ด๐‘ก(๐”น) and ๐ถ โ€ฒ = ๐‘‡. Consider a class ๐พ = {๐”„๐‘ | ๐‘ โˆˆ ๐ถ}.
We have proved above in the proof of Proposition 9 that in this case ๐”„๐‘ โŠจ ๐‘‡ holds for
any ๐‘ โˆˆ ๐ถ.
    Therefore, for any ๐”… โˆˆ ๐พ we have ๐”… โŠจ ๐‘‡ . It means that ๐พ โŠจ ๐‘‡ . Hence, ๐‘‡ โІ
๐‘‡โ„Ž(๐พ) = {๐œ‘ โˆˆ ๐‘†(๐œŽ๐ด )| ๐พ โŠจ ๐œ‘}.
    Let us show that ๐‘‡โ„Ž(๐พ) โІ ๐‘‡. Let ๐œ‘ โˆˆ ๐‘‡โ„Ž(๐พ). Then ๐พ โŠจ ๐œ‘, which means that
๐”… โŠจ ๐œ‘ for any ๐”… โˆˆ ๐พ. Consequently, for any ๐‘ โˆˆ ๐ถ we have ๐”„๐‘ โŠจ ๐œ‘. By Proposition
7, ๐”„๐‘ โŠจ ๐œ‘ implies that ๐‘ โ‰ค ๐œ(๐œ‘), hence, ๐‘ ๐ผ๐œ ๐œ‘ holds.
    Thus, for any ๐‘ โˆˆ ๐ถ we have ๐‘ ๐ผ๐œ ๐œ‘, then ๐œ‘ โˆˆ ๐ถ โ€ฒ = ๐‘‡ โ€ฒโ€ฒ = ๐‘‡, i.e., ๐œ‘ โˆˆ ๐‘‡. Therefore,
for any ๐œ‘ โˆˆ ๐‘‡โ„Ž(๐พ) we have ๐œ‘ โˆˆ ๐‘‡, hence ๐‘‡โ„Ž(๐พ) โІ ๐‘‡, and so, ๐‘‡ = ๐‘‡โ„Ž(๐พ).
    The theorem is proved.                                                           โˆŽ


5       Conclusion

In the present paper we investigate the mathematical foundations of ontological mod-
eling of the domain of mobile networks. We use the four-level model of knowledge
representation to formalize this domain. We construct the case model at the third level
of ontological model creation, when we formalize the empirical knowledge. The case
model is presented by a set of countable algebraic systems. In the ontological model,
the high-level characteristics of mobile network subscribers are represented with the
help of first order theories of classes of algebraic systems of the special kind.
   Next, we describe a method of constructing a formal context for a Boolean-valued
model which represents the case model. We show that, without loss of generality, we
may consider only object-clarified formal contexts corresponding to the Boolean-
valued models.
   We prove that the intents of formal concepts of formal contexts corresponding to
Boolean-valued models are first order theories of the signature under consideration. In
the end, we solve the following problem: What are the theories of the classes
๐พ โІ ๐•‚(๐œŽA )? We obtain a description of theories of the classes of domain cases in the
language of formal concepts of the formal contexts corresponding to the Boolean-
valued models.


       References
 1. Naydanov, Ch., Palchunov, D., Sazonova, P.: Development of automated methods for the
    prevention of risks of critical conditions, based on the analysis of the knowledge extracted
    from the medical histories. Proceedings of the International Conference on Biomedical
    Engineering and Computational Technologies, Novosibirsk, 47-52 (2015)
 2. Palchunov, D., Yakhyaeva, G., Yasinskaya, O.: Software system for diagnosing spinal dis-
    eases using case-based reasoning. Proceedings - 2015 International Conference on Bio-
    medical Engineering and Computational Technologies, SIBIRCON 2015, 205-210 (2015)
 3. Chang, C.C., Keisler, H.J.: Model theory: 3rd ed. Amsterdam, New York: North-Holland,
    Elsevier Science Pub. Co. (1990)
 4. Pal'chunov, D., Yakhyaeva, G.: Fuzzy logics and fuzzy model theory. Algebra and Logic,
    54 (1), 74-80 (2015)
 5. Kuznetsov, S.O., Poelmans, J.: Knowledge representation and processing with formal con-
    cept analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3
    (3), 200-215 (2013)
 6. Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in
    knowledge processing: A survey on models and techniques. Source of the Document Ex-
    pert Systems with Applications, 40 (16), 6601-6623 (2013)
 7. Palโ€™chunov, D.: Lattices of relatively axiomatizable classes. Lecture Notes in Artificial In-
    telligence, 4390, 221โ€“239 (2007)
 8. Palchunov, D., Yakhyaeva, G., Dolgusheva E.: Conceptual Methods for Identifying Needs
    of Mobile Network Subscribers. International Conference on Concept Lattices and Their
    Applications CLA 2016, 147-158 (2016)
 9. Palchunov, D.: The solution of the problem of information retrieval based on ontologies.
    Bisnes-informatika, 1, 3โ€“13 (2008) (In Russ.)
10. Palchunov, D.: Virtual catalog: the ontology-based technology for information retrieval.
    In: Knowledge Processing and Data Analysis. LNAI 6581, Springer-Verlag Berlin Heidel-
    berg, 164โ€“183 (2011)
11. Pulchunov, D., Yakhyaeva G.: Interval fuzzy algebraic systems. Mathematical Logic in
    Asia. Proceedings of the 9-th Asian Logic Conference. World Scientific Publishers. 191-
    202 (2006)
12. Yakhyaeva, G., Yasinkaya, O.: An algorithm to compare computer-security knowledge
    from different sources. ICEIS 2015 - 17th International Conference on Enterprise Infor-
    mation Systems, Proceedings 1, 565-572 (2015)
13. Yakhyaeva, G.: Logic of fuzzifications. Proceedings of the 4th Indian International Con-
    ference on Artificial Intelligence, IICAI 2009, 222-239 (2009)
14. Palโ€™chunov, D., Yakhyaeva, G.: Fuzzy algebraic systems. Vestnik NGU, Mat., Mekh., Inf.,
    10, No. 3, 76-93 (2010)