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Abstract. To store Linked Data one may choose from a growing num-
ber of available database systems: from traditional relational databases
to RDF triple stores, not to mention the area of NoSQL technologies.
Comparisons of database systems often use benchmarks to evaluate sys-
tems with the best overall runtime performance. However, the structure
of data and queries used in traditional benchmarks differ from real-world
environments. They are typically not aligned with use cases from real-
world applications. In this paper we investigate a use case driven ap-
proach where queries are grouped by means of more general application
use cases. We evaluate and compare eight heterogeneous database sys-
tems (four relational, two graph, two column-oriented) with real-world
application data and measure query runtime performance according to
these use cases. The evaluation results show that the choice for a database
system should not only be based on the overall query runtimes, as a naive
evaluation would suggest, but preferably according to the use cases of
the application itself.

1 Introduction

The research on RDF data management deals with the efficient storage and
querying of RDF data. The driving factor for best performing query runtimes
is the efficient implementation of the domain model in the database schema
and the hereafter following physical data representation (data structures) which
are specific to each database system. For implementing the schema database
engineers have to overcome an impedance mismatch problem, which deals with
the difficulty of mapping the domain model to the specific model a database
system offers (cp. Figure 1). With a suitable schema design the internal database
mechanisms such as cardinality estimation during the query optimization process
or query rewriting can work properly, thus, returning query results faster.

As the number of available database systems grows, so does the demand for
performance comparison. Although research on solutions outside the relational
model has increased lately [8], relational databases are still subject to current
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Fig. 1. Textbook modelling process. Queries are executed against a database-specific
schema.

research for RDF data management [5,6,14]. The performance of schema imple-
mentations in database systems is typically estimated by benchmarks. However,
benchmark results do not necessarily reflect real-world situations [1,15]. That is
because many of the available benchmark suites use artificial schemata, data and
queries. Some of them also address multiple use cases and various aspects such as
exploration, updates, business intelligence [4], reasoning [11], and general cover-
age against features defined in the query language specifications [16]. Real-world
queries executed against public SPARQL endpoints, however, focus only on a
very small set of features [10]. Hence, the overall results of benchmarks may not
be meaningful enough. Database performance issues might then be claimed to
the specific type of database system in use. Given the vast amount of database
system types, finding the most suitable database system for storing RDF data
of an application is not a trivial task.

In this paper we address the issue of choice for a database system for RDF
data management concerning optimized overall query runtime performance. In
contrast to a typical benchmark approach where queries are executed in single
sequences we group queries by global application use cases and study different
query distributions. Each application use case contains queries that address a
specific part of the model that has certain characteristics at the schema and the
data level, leading to different query runtimes. Our assumption is that a use case
driven approach may influence a decision about the choice for a suitable database
system for an application. We consider “suitable” as the one that answers all
queries in the shortest time.

The evaluation in this paper is motivated by our web portal Missy which
provides Social Science research data. It uses a well-designed RDF vocabulary
from the Social Sciences as domain model and data from a real-world applica-
tion (cf. Section 3.1). We load the data into database systems of different types,
four databases based on relational technology, two graph databases, and two
databases with column-oriented storage (cf. Section 3.2). Then, we construct
groups of queries identifying our application use cases (cf. Section 3.3) and in-
troduce a general method to estimate overall performance (cf. Section 3.4). The
evaluation results show that the question which database system to choose for
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storing RDF data should not necessarily be made by considering overall query
runtimes, as benchmarking suites would suggest, but preferably according to the
use cases of the application (cf. Section 4).

2 Related Work

For storing RDF data in the relational model different strategies emerged which
are dealing with the mapping of the graph structure that is implicitly given in
RDF data to the relational model. An intuitive schema implementation is the
single table representation, so-called “triple-store” or “monolithic schema” where
all RDF statements are stored in one table with three columns. From the domain
model perspective there is the type-oriented approach [19] which uses one table
for each RDF data type. A third alternative uses predicate-tables [9] with a binary
relation between subject and object per table, so-called “group-by-predicates”.
This schema takes the RDF graph perspective with the predicate-tables being
the vertices between subject and object nodes.

Benchmark suites for RDF data focus either on single-node or distributed
RDF data stores. This paper pays attention to single-node RDF data manage-
ment, thus, related work is focused on that. To reproduce real-world situations
some researchers focus on making benchmark suites more realistic. Alug et al.
created a benchmark called WatDiv that reveals physical design issues of RDF
data management systems [1]. WatDiv addresses a wider range of problems than
existing benchmark suites do, e.g. creating simple and complex queries with a
varying number of features. However, it also uses artificial data and a fixed
schema for testing. Saleem et al. developed FEASIBLE [15], a feature-based
SPARQL benchmark that uses query logs to automatically generate queries for
benchmarking frameworks.

Recent research developed new approaches to overcome the impedance mis-
match problem described above and to optimize the query evaluation process.
Bornea et al. considered a flexible relational representation for RDF data, a
fourth “entity-oriented” alternative to classical RDF to relational model imple-
mentations [5]. They evaluated this using their benchmark suite. Alug et al.
physically fracture data according to workload, thus, introducing a schema-less
and workload-driven “group-by-query” representation [2]. Pham et al. created a
method to detect an emergent relational schema from RDF data to increase the
quality of SPARQL query optimization [14].

NoSQL technologies, graph-databases in particular, constitute an important
part in recent research activities for RDF data management. Cudré-Mauroux et
al. conducted the first comparison of NoSQL databases for RDF data in a dis-
tributed setting [8]. The authors used schema and data of different benchmarks.
They conclude that NoSQL systems can be competitive against distributed and
native RDF stores. However, more complex queries were reported to perform
poorly. Vicknair et al. evaluated a graph- and a relational database [17]. They
used a schema from the domain of data provenance, formulated queries typically
known from provenance systems, and created a database by a random genera-
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tion of nodes and edges. They concluded that the use of graph databases seems
premature for production use in their use case. Lee et al. evaluated a NoSQL
and a relational database for real-world clinical data [13]. The authors used five
different reasonable queries and measured query runtime. They concluded that
XML databases are a promising solution but not yet ready for production use in
clinical environments. The interested reader is pointed to a general overview of
relational and NoSQL database systems [7]. In contrast to the related work, in
this paper, real queries and real data from the Social Sciences domain are used.

3 Evaluation Design

The following section describes the setting of the evaluation. First, a brief in-
troduction to the domain model as well as the data is given, followed by the
database systems used in the evaluation. Use cases and the execution method
are explained at the end of this section. In order to make the evaluation repro-
ducible we have made all data and queries available on our website?.

3.1 Domain Model and Data

The DDI-RDF Discovery Vocabulary* (DISCO) is utilized as a domain model
in order to represent knowledge in the area of the Social Sciences. The main
purpose of this vocabulary is to support the discovery, representation, and pub-
lication of survey metadata. It supports usage scenarios, which are typically
applied by researchers from different domains such as the Social Sciences, data
archives, libraries, and other statistical organizations (cf. Table 1 for examples).
The implementation of the model in RDF facilitates the reuse of properties from
other vocabularies. By using data linking and reasoning tools linkage to external
sources in the Web of Linked Data is possible in order to enrich the metadata
of resources.

Usage Scenario Natural Language Query
Searching for studies by publishing|”Show me all the studies for the period 2000 to
agency 2010 which are disseminated by the ESDS Service

of the UK Data Archive.”
Finding relevant studies by free text|”Find all studies (titles, abstracts) with questions

search or keyword about commuting to work.”
Searching for reusable questions us-|”Find all questions which comprise Age in the con-
ing related concepts text of Income.”

Table 1. Examples of usage scenarios of DISCO which can be found in [18].

DISCO comprises around 25 entity types with many simple as well as more
complex relationships. It contains a graph structure at its core (StudyGroup -
Study - LogicalDataSet - Variable - Representation) representing the naviga-
tional structure of a dataset. It furthermore stores flat data with statistics and

3 http://mazlo.de/papers,/blink2017
4 http://rdf-vocabulary.ddialliance.org/discovery.html
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numerical values in a few entity types (CategoryStatistics, SummaryStatistics).
For a detailed description of the model we refer to the specification* and the
implementation of the model® in Java®.

Data was taken from the project Missy’ which provides systematically struc-
tured metadata for official statistics. Missy targets international researchers from
the Social Sciences who are working with official microdata. Access to metadata
is provided via a web portal. The Missy web application uses DISCO as its
internal data model.

The original data is stored in a MySQL database of around 3GB in size. We
exported the data into various formats and imported it into the other database
systems. This data file covers about 45 studies with 159 research datasets (study
level), around 21 thousand variables and around 3.3 thousand questions in total
(variable level). Numerical values in form of statistical data is contained at the
variable level with around 2 million entries. As RDF data, this subset makes
around 18 million triples.

3.2 Database Systems

The selection of database systems for the evaluation was driven by objective and
subjective aspects, which were wide community acceptance and a strength of
handling data of certain structure, like graph-based or tabular-based; subjective
aspects cover the availability under an open source license and intuitive query
language, for the ease of translating queries. Further, heterogeneous database
systems which implement different storage techniques and internal models are
of interest. Based on this assumptions the following candidates were chosen:

Relational Technologies (1) MySQL Community Edition version 5.6.275,
(2) PostgreSQL version 9.3.9%, (3) MariaDB version 10.0.301°. The implemen-
tation of the domain model in Java facilitates the automatic generation of the
schema® constituting 50 tables for 25 entity types. This schema is type-oriented
respecting type inheritance, i.e. each entity type has its own table and the cor-
responding properties.

In addition we use (4) Virtuoso6 Open-Source version 6.1.6'1, a triple store
implementation in Java and C. Virtuoso comes with ”relational, graph, and
document data management capabilities” and uses a relational database in the
backend. It creates the relational schema of the RDF model from a graph per-
spective [9]. We imported data in the n-triple format into Virtuoso, which we
exported from MySQL using Triplify [3]. In the n-triple format the data set
constitutes around 18 million statements.

® https://github.com/missy-project/disco-model-impl

5 http://hibernate.org

" Metadata for Official Statistics - http://www.gesis.org/missy
8 http://www.mysql.com/products/community

9 https:/ /www.postgresql.org/
10 https://mariadb.org/
" https://github.com/openlink/virtuoso-opensource



6 Matthéus Zloch, Daniel Hienert, Stefan Conrad

l l Memory | Config l Index On l Query Via
(1) MySQL, (2) | 2GB default all primary | SQL+
Postgresql, (3) keys and all | JDBC
MariaDB foreign keys
(5) Neodj 2GB default + auto indexing on | manual on | Cypher+

(default) | nodes and edges enabled node.id + | HTTP
automatic on
nodes and
edges
(6) Stardog 2GB default + automatic SPARQL+
(default) | 1) Index on triples only en- HTTP

abled (command line)
2) Clustering disabled
3) Reasoning disabled

(4) Virtuoso6, | 2GB default + automatic SPARQL+
(7) Virtuoso7 (default) | 1) Clustering and segmen- HTTP
tation disabled

2) Inference disabled

3) ResultsSetMaxRows =
1000000

4) MaxQueryExecution-
Time = 600s

(8) Monetdb default default default SQL+
JDBC

Table 2. Configurations for each system used in the evaluation.
Graph-based Technologies (5) Neo4j Community Edition version 2.2.1'2,
(6) Stardog Community version 4.0.5'3. Both open source graph databases with
wide community acceptance and continuous development. Neodj exploits the
mathematical model of a graph. Thus, the schema is implemented in terms of
nodes and edges. Further, a node may have attributes attached. Edges represent
the connection between nodes. The implicit graph model of RDF can be mapped
by making each resource in RDF (a tuple in the relational model) to a node with
attributes. Entity types are mapped to labels which are attached to nodes.
Stardog utilizes the native graph character of RDF data. Thus, data is stored
by means of nodes and edges. During the import Stardog takes care of creating
the schema, which is explicitly given in the set of n-triples. Indexes are expected
to be created by Stardog itself. We used the same n-triple files for Stardog as
for Virtuoso to import data.

Relational Technologies with column-oriented storage (7) Virtuoso7
Open-Source version 7.2.2'1 and (8) Monetdb version 11.25.3'%. The main dif-
ference to Virtuoso6 is that Virtuoso7 stores data and uses indexes in a column-
wise manner. Monetdb is an open source relational database also based on a
columnar-oriented data storage. Like in the first group of database systems the
schema type-oriented respecting type inheritance. We used the dump of MySQL
and transformed it into import statements for Monetdb. We expect indexes to

2 http://neodj.com
'3 http://stardog.com
' https://www.monetdb.org/
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be created automatically, since Monetdb relies on ”its own decision to create
and maintain indexes for fast access”.

All three technologies have different internal models to represent data at the
logical and physical level. Table 2 shows an overview of the configuration of the
systems. Please note that each system is used with the default configurations
that are provided by the installers. For MySQL we raised the buffer pool size
to 2GB to have comparable RAM conditions for every system. For Virtuoso
and Stardog inference capabilities were disabled, since this would slow down
performance and distort the results.

3.3 Queries and Use Cases

We formed a set of overall 39 queries from three different sources: the official
sample set of usage scenarios created for the domain model [18] (7 queries), the
Missy application itself which runs a reasonable and advanced set of queries
against the model (24 queries), and a subset of validation queries recommended
for this vocabulary which were developed by Bosch et al. in [12] (8 queries). All
queries are read-queries. A full list of all queries in detail can be found on the
paper website3.

Like in most applications, there are different actors in the system, thus,
different contexts and intentions from which and with which a query may be
executed.

]Use case [Description [Queries [
UCI: Navigation |A user browses through { sd[1-3], dp[1-4], vd[1-3,5-7], qd[1-6] }
available datasets.
UC2: Statistics |A user wants to see details [{ vf[2-4], v{2b, v{3b }
for frequencies of a variable.
UC3: Validation |A developer runs validation [{ dsv[1-6], dsv5b, dv }
queries over the database.
UC4: User Query |A user executes a query { duc[1-7] }
over the SPARQL endpoint.

Table 3. Four classes of queries, which are constructed according to business use
cases of the application. Each set of queries addresses a specific area in the schema.
The abbreviations stand for ”dp” - ”datapoint selection”, ”sd” - ”study details”, ”vd”
- "variable details”, "qd” - ”question details”, ”v{’ - ”variable frequencies”, "dsv” -
”domain specific validation”, ”dv” - ”database validation”, ”"duc” - ?DISCO use case”

We assigned each query to a global business use case that is relevant in our
application and which satisfies different user roles and requirements (cf. Table 3).
UC1 contains the group of queries that are executed in the context of external
users who browse available datasets on the website. These queries address parts
of the schema that has graph-like characteristics, since most of the relationships
consist of many-to-many relationships (StudyGroup - Study - LogicalDataSet -



8 Matthéus Zloch, Daniel Hienert, Stefan Conrad

Variable - Question). Queries in UC2 are more complex in terms of runtime. They
are executed in the context of a variable, i.e. when a user has found a dataset
and now wants to obtain statistics on specific variables. UC3 contains queries
which address tabular-like structures and use more complex query functions like
inner queries, aggregation, and group-by-having constructs. Queries in UC3 are
executed by application developers to validate the data in the database. UC4
consists of a subset of queries (7 out of 15) which can be found in [18]. These
queries are considered to be executed by external users, e.g. over a SPARQL-
endpoint. Table 4 shows some statistics for the used queries.

Because the database systems used for evaluation use different query lan-
guages all queries have to be transformed into the query language of each system.
That is SQL for all relational technologies and Monetdb, Cypher for Neo4j, and
SPARQL for Stardog and Virtuoso 6/7. All queries were transformed to have an
equivalent counterpart in the other languages and will return the same number
of results.

[Feature | UCl | UC2 [ UC3 | UC4 |
No. of queries 19 5 8 7

No. of tables joined, max (avg) 18(9) 22(19) 6(2) 12(7)
No. of results, max. (avg) 275(24) 17(9) 9490(3221) | 25(16)

. DISTINCT SUM

Use of aggregate function COUNT DISTINCT GROUP-BY DISTINCT
Average no. of filters (where-clause) 3 4 2 2
Maximum no. of nested queries 0 1 1 0

Table 4. Statistics of queries used for the evaluation in the language SQL. The reader
is referred to the website of this paper® to see the complete list of queries.

3.4 Evaluation Method

In order to show the differences between a single list of queries and the use case
driven approach we created two different scenarios for evaluation.

Standard Benchmark Approach In this scenario each of the 39 queries is
executed 10 times by the database systems. This results in 390 queries (execu-
tions) in total. Each execution of a query is followed by a restart of the database
system and the clearing of all system caches (as described in 3.5). This way, we
get the so-called cold start query execution time which we expect to be unbiased
by any cache. After each execution the runtime is saved and at the end of the
evaluation run the average runtime per query is calculated.

Use Case Driven Approach In this approach all queries are executed by the
database systems only in the context of their use case, e.g. for UC1 Navigation.
This way, a first impression for use case driven performance is obtained for
all of the use cases. However, in real-world environments a mixture of queries
throughout all use cases can be observed. For instance, in 80% of the time users
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navigate (UC1) and 20% of the queries come from other use cases (UC2: viewing
statistics or UC3: validation). To reproduce this we compute further sequences
of queries to measure the difference in overall runtime. We start by using queries
which are explicitly relevant to a use case (100/0 ratio as described above) and
successively increase the occurrence of queries which are not relevant to the
corresponding use case (non-use case queries). We denote these ratios as 90/10,
80/20, 70/30, 60/40, and 50/50. The total runtime for a given use case and ratio
is the sum of all query runtimes in a sequence. Each sequence is shuffled once in
preparation for the evaluation so that each database system will have to execute
the same sequence of queries per ratio.

Since working with these sequences per use case and database system would
require a lot of executions and would take days for computation, we calculate the
total runtime using known execution times for warm and cold starts of individual
queries. We calculate the total runtime T for a given database system db and
use case UC with the help of this formula:

Tip,uc = Zr(qz-)Jr zn: r(qr) (1)
i=1 k=j+1

where i..j is the index of relevant queries (part of the given use case UC),
k..n the index of not relevant queries (all other queries). For example:
Tab1 uct =(r(sdl) + r(sd2) + ... + r(qd6))+
(r(vf1) +r(wf2) + ...+ r(dsvl) + r(dsv2) + ...)

7(gz) is the look-up function for the known runtime of query ¢, in a specific
database system and use case. In particular

(2)

co r warm\{z we — 1
Tabue(qe) = Tdb,cold (qx) + Tab, (gz) * (n ) .

nuc

which respects (1) the cold start runtime, (2) the warm start runtime (with
caching mechanisms) of the database, and the total number of times n,. the
query will be executed in that particular use case.

3.5 Execution Environment

As already mentioned we focus on centralized single-node solutions and stan-
dard hardware. Thus, operating system, database installation, test data, and
client software reside all on one server. The evaluation was made with an In-
tel(R) Core(TM) i5 650 CPU quad core processor running 3.2Ghz each, 4MB
internal cache, 1333Mhz FSB, 8GB of main memory, and 80GB main storage.
The operating system is Linux, Fedora 21, kernel version 4.1.3, with the latest
update of packages. Processes that are not relevant to the execution and oper-
ating system were terminated. In cold start query executions file system caches
where dropped with sync && echo 3 > /proc/sys/vm/drop_caches right be-
fore an execution. For the purpose of automation a lightweight client software
was written. It executes a given sequence of queries, restarts the database and
drops caches (in cold start scenarios) and measures the query execution time.
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Fig. 2. Average query runtime of 10 cold start executions for 39 queries on each
database system. For better comparison the x-axis with query runtimes in millisec-
onds is log-scaled. The three colors group similar database technologies. See Table 5
for total runtimes.
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4 Evaluation Results

4.1 Standard Benchmark Approach

Figure 2 shows query runtimes for 39 different queries on all database systems
based on the average of 10 cold start executions (note: x-axis is log-scaled).
Virtuoso7 performs best with 85sec in total and has best times in 8 individual
queries. Note the high standard deviation on cold start results (Table 5). Stardog
is the second best with overall 139sec, but has zero best times in single query
performance comparison. Virtuoso6 is on the third place with a total runtime
of 211sec and the best performance in 20 single queries. Worst performance has
MySQL with a total runtime of 862sec and being the fastest in two queries. It
can be observed that in the group of relational databases (MySQL, MariaDB,
PostgresQL) the overall performance is massively influenced by only a small
number of queries. For example, for the queries dsv5 and dsv5b the performance
is 2.5 magnitudes worse than the best-performer. Similarly for the queries v{2
and vf2b with up to 2 magnitudes (cp. Figure 2).

Overall Query Best Time in | Mean Standard

Runtime (ms) .. Queries Deviation
MySQL 865,566 2 802.745
Postgresql | 845,651 2 691.900
MariaDB | 623,358 4 180.967
Virtuoso6 | 211,515 20 174.263
Neodj 391,663 3 301.498
Stardog 139,779 0 115.029
Virtuoso7 | 85,886 8 3,264.709
Monetdb | 251,826 0 336.861

Table 5. Overall query runtimes and mean standard deviation values for 10 executions
of each query on each of the database systems. Highlighted are lowest and highest
runtimes.

4.2 Use Case Driven Approach

Figure 3 let us compare total runtimes for the ratio 100/0, which contains only
use case specific queries. Database systems of the same technology are grouped
by color. None of the systems perform best or worst throughout all use cases.
In the group of traditional relational databases (blue color) MySQL performs
best in all use cases. In the group of graph databases (green color) Neo4j outper-
forms Stardog in all use cases except UC3. In UC2 Neo4j even has a significant
shorter runtime. The group of relational technologies using column-oriented stor-
age (grey color) seems to have a good performance in all use cases. Overall, UC3
consumes most of the time in comparison to the other use cases.

Table 6 shows a detailed overview of query runtimes for the ratios 100/0
and 50/50. It shows that for a use case driven approach the systems perform
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Fig. 3. Comparing total runtimes for ratio 100/0, which contains use case specific
queries. Database systems of same technology are grouped by color. None of the systems
perform best or worst throughout all use cases.

differently in each use case. Virtuoso7 performs best and Stardog worst in UC1
ratio 100/0. In UC2 Neo4J performs best and MariaDB worst. Monetdb performs
best and Virtuoso6 worst in UC3, where in UC4 Monetdb performs best and
Stardog worst. Since all queries are equally distributed in ratio 50/50, we find
very similar runtimes for each of the database systems in all use cases.

UC1 uc2 UC3 UC4

100/0[  50/50][ 100/0[ 50/50 100/0[  50/50]| 100/0]  50/50
MySQL 876 74,317 1,356] 73,988]] 56,003] 74,730 571 93,376
Postgresql|| 2,048 127,512 2,802] 120,311 103,595| 140,538]| 1,571 144,170
MariaDB || 1,191 100,680 14,852 99,121 66,135] 102,760 600 127,255
Virtuoso6 977 144,818 || 6,476 138,950 129,641 | 140,610 1,303] 144,575
Neodj 2,328 39,831 829 39,731 21,917 36,654] 1,778 38,621
Stardog || 6,494 | 40,8421 13,903| 39,426 13,388] 40,544(|2,356| 41,022
Virtuoso7 || 452] 26,339]| 3,685| 26,629 20,413 26,943[] 420] 29,315
Monetdb || 1,120 15,186 4,572| 16,666 8,096 | 16,038| 350| 15,697

Table 6. Total query runtimes in milliseconds for ratio 100/0 and 50/50 (cf. Figure
4). Highlighted are lowest and highest runtimes per use case and ratio. Since all
queries are equally distributed in ratio 50/50, very similar runtimes for all use cases
and databases systems can be observed in this ratio.

Figure 4 shows that lowest values for runtime performance can be found in
ratio 100/0 (cf. Figure 3 which depicts a detailed view on that). This changes
when the number of queries increases which do not belong to a use case. Gener-
ally, there are two types of curves: a) one that starts with low value at 100/0 and
increases significantly in the next ratio 90/10, following a continuous decrease in
value in the next ratios; and b) one that starts with low value at 100/0 than fol-
lowing a logarithmic shape. For the group of traditional relational technologies
(blue color) there is a high rise in runtimes in 90/10 and a following slow decrease
in runtimes in the subsequent ratios until 50/50. Virtuoso6 remains rather stable
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Fig. 4. Comparing total runtimes for all use cases and ratios. Database systems of same
technology are grouped by color. Successively increasing the frequency of queries which
do not belong to a use case results in different behaviour of the database systems.

in UC1-3, with a continuous increase in runtime in UC4 from 100/0, 90/10 to
80/20. Same can be observed for the group of graph databases (green color),
although the increase in runtime is not that high. Neo4j’s increase in runtime is
much higher in ratio 90/10 and converges to that of Stardog until 70/30. From
there it is very similar to the runtime of Stardog with mutual marginal outper-
forming. The increase of non-use case queries does not seem to influence overall
runtimes for the group of relational column-stores. After a slight increase in
90/10, the runtimes remain quite stable. Without doubts, Virtuoso7 and Mon-
etdb outperform the other database systems in all use cases from ratio 90/10 to
50/50.

5 Discussion

Looking at Figure 4, it seems that each plot is tripartite and that there are three
groups where the overall runtimes and the shapes of curves are similar. These
three groups align well with the database technologies that were used in the
evaluation: (1) the traditional relational model, (2) the graph model and (3) the
relational model with column-oriented storage (Virtuoso7 and Monetdb).
Except for Virtuoso6 all of the other systems in the first group implement the
schema from the domain model perspective, i.e. type-oriented [19]. In our case,
the schema consists of 50 tables for 23 entity types. The schema implementation
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of Virtuoso is implemented from the implicit RDF graph model perspective, i.e.
property-oriented [9]. Thus, different schema implementations yield to different
queries and query runtimes. However, the performance of Virtuoso 6/7 is sur-
prising, since it also has to translate all SPARQL queries into SQL during query
evaluation.

We would have liked to compare this aspect for the graph-based technologies
(Neodj and Stardog) likewise, but unfortunately the internal schemata are not
easily accessible. We suppose that each graph database implements a different
data structure to store data in. Graph databases were developed to take advan-
tage of specific properties of graphs, e.g. the number of steps needed to get from
one node to another, or graph traversal. We did not take advantage of these
features in our data set and queries, hence the systems could not show their full
strengths. However, we can see that the influence on the schema for these two
systems is less serious. Besides the spikes for Neo4j in 90/10 and 80/20 in all use
cases, both systems have very similar runtimes.

We did not expect total query runtimes to be the highest in ratio 90/10 and
to decrease in the following ratios for most of the systems. As the frequency
of non-use case queries increase (from 90/10 to 50/50), we expected runtime
to gradually either decrease or increase for a system. One explanation is that
caching mechanisms for query evaluation applies better as queries are executed
more often. Further, each system has at least one query which is slow in execution
(cf. Figure 2) and the runtime for the first execution is the highest in most
systems (cold start). In 90/10 there is 10% of non-use cases queries and thus,
a slow query only executes approximately between 1-5 number of times. This
results in a high average value for that system. Further, in all use cases the
runtimes are quite similar for all systems in ratio 50/50 (cf. Table 6). This is
caused by the balanced ratio of use case and non-use case queries in this sequence,
which also shows that the execution results are consistent.

We expected all systems to show that 90/10-phenomenon, but the third group
of database technologies (Virtuoso7 and Monetdb) seem to be immune to that
and their execution times are quite stable. Even Stardog behaves similarly. On
the other hand, stable runtimes suggest for a better exploitation of database
caches, since rare queries are encountered more often. Also, we assume that this
behaviour is because of the main-memory usage of these systems.

Comparison Standard Benchmark and Use Case Approach The results
of our case study give a more distinctive impression of database performance.
This would lead to a different decision regarding the choice of a database system.

The standard benchmark approach would rank 1. Virtuoso7, 2. Stardog, 3.
NeodJ, 4. Monetdb and on the very last rank 8. MySQL (cp. Table 5). As already
mentioned, total runtime of a database system (here: all relational databases) is
massively influenced by a small number of queries with exceptional long runtimes
that add to the overall runtime. This is enforced by using only mean cold start
query runtimes.

In the use case driven approach with ratio 100/0 one would choose a database
system depending on the use case only. That would be Virtuoso7 for queries of
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UC1, Neo4j for UC2, and Monetdb for queries of UC3 and UC4 (cp. also Table
6).

By looking at mixtures of use case queries that reflects real-world user be-
havior Monetdb now gives a much better picture. In the group of relational
technologies MySQL performs best in every use case. Looking at the plots in
Figure 4) one would now choose for Monetdb and Virtuoso7 in the first place,
where a very stable performance between all ratios can be observed. The perfor-
mance of graph-based technologies is comparable.

This shows that a use case driven evaluation can give a more fine-grained
view on database performance to obtain realistic query runtimes.

Limitations We believe that our domain model and data used in this study
represent well a real-world situation in single-server environments. However,
the queries may not be diverse enough for a more general statement of which
database should be used in which use case and ratio. Nevertheless, this work
does motivate to have a closer look at the queries and their execution frequen-
cies in an application. Further, the volume of data and the distribution of data
within the schema has a high impact on query runtime. In our case, the volume
of structural and numerical data is very unbalanced (cf. Section 3.1). However,
the data set and the queries are pretty common for statistical data. Increasing
the number of entities residing in the graph-part of the schema (StudyGroup -
Study - LogicalDataSet - Variable - Question) would probably result in a shift
towards other database technologies than our results would suggest.

6 Conclusion and Future Work

This paper addresses the issue of decision making about which of the available
database system types is best suited for an application model and its data.
Our hypothesis is that overall runtimes are different and probably lower in a
use case driven grouping of queries. We investigate this by measuring query
runtimes of heterogeneous database system technologies and different schema
implementations. The two evaluation methodologies differ by (1) using groups
of queries according to application use cases and (2) by using a realistic model
to compute query runtimes based on cold- and warm start execution times.

One can see from the evaluation results that each system performs differently
according to a given use case and ratio. From that we conclude that the overall
performance of an application is influenced by (1) characteristics of the schema
implementation and the executed queries, (2) the ratio of use case and non-use
case queries, (3) realistic query runtime modeling and (4) the internal model
of the database system. In order to fully utilize the strengths of each database
system a use case-aware application should be developed which respects the
mentioned aspects.

In future work, we want to investigate various schema implementations with
respect to runtime performance in RDF data management systems. We also
consider implementing the proposed use case driven approach in a framework
or to extend an existing benchmark suite. This framework would (a) compute
sequences of queries with different distributions according to a set of use cases
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and their corresponding queries, (b) estimate query runtimes according to the
look-up function 1, (c) give feedback to the database engineer about the results.
We also consider respecting the characteristics at schema and data level to let
the results of the framework be more reliable and realistic.
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