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Abstract. The emergence of Linked Open Data (LOD) enables data on
the Web to have a well defined structure and thereby to represent and in‐
terlink information from different sources and application areas. This web
of data is a complex socially created network, where concepts and rela‐
tions are connected in intricate ways, collectively forming a network of
knowledge. These data are published in a decentralized fashion and they
stem from different sources, have different types of relationships, and use
different terminologies, ontologies and meta models. While this so-called
LOD cloud has become a very valuable resource, we know only very little
about the general structural properties of the contained data, which im‐
pedes our ability to use and organize this resource in an efficient and accu‐
rate manner. The objective of this paper is to provide a basic understand‐
ing of LOD from the point of view of network structures. We analyze LOD
networks with respect to fundamental network properties such as degree
distribution and clustering. Using these metrics, we compare our results to
non-LOD networks, such as email, Web, and protein networks, that have
been reported in the literature. Our results show that the LOD cloud ex‐
hibits a broad variety of different network structures, consistent with the
diversity found in other types of networks.
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1    Introduction

The Linked Open Data (LOD) cloud has grown to huge dimensions in the re‐
cent past, currently consisting of tens of billion triples [3]. The LOD cloud can
be seen as a huge, decentralized network of knowledge consisting of statements
in  many  different  domains.  While  this  resource  of  open  Linked  Data  has
proved to be very valuable in a wide variety of problems [4], we have largely
remained ignorant about the structural properties of this data.

In graph theory terms, it is a directed network of nodes (represented by
URIs  and  typed  string  literals),  interconnected  by  labeled,  directed  edges
(where these labels are URIs too). In a certain sense, each label (i.e. RDF
property) can be seen to represent its own network. The LOD cloud includes



networks about, for example, friend relationships, geographical inclusion, and
relatedness of concepts. The structural properties of these networks are impor‐
tant in many different respects. Scale-free networks, for example, have shown
to be tolerant to random errors, but vulnerable to targeted attacks [1],  and
the network structure of Linked Data is known to impact distributed reason‐
ing [18]. Our current technologies and insights will therefore benefit from a
better understanding of the fundamental properties of such knowledge net‐
works, of their common properties and their variety, and of their difference to
other network types that have been studied in the past.

In the study presented here, we want to discover the quantitative properties
of the networks found in the Linked Open Data cloud. We are particularly in‐
terested in how uniform or different they are, whether they all exhibit similar
network structures or whether there is a great variety. Finally, we want to
compare these network properties to "real-world" networks, as they have been
reported in the literature. Do knowledge networks, as we call them, found in
the Linked Open Data cloud have a different structure than other types of
networks that have been investigated so far?

2    Background

Linked Open Data is one of the largest data sources on the Web, including big
datasets such as DBpedia [14], and it is growing at a fast pace [21,19]. This
data source is by definition distributed and therefore difficult to access and
handle in its entirety. However, the recent development of the LOD Laundro‐
mat platform [2] provides a centralized and uniform access to a cleansed and
harmonized  version  of  a  comprehensive  collection  of  Linked  Data.  It  also
comes with a simple yet powerful command-line interface, called Frank, which
facilitates new ways of conducting research and experiments on Linked Open
Data [19,20].

Various studies have been conducted on how the Linked Open Data cloud
can be better explored and interlinked [9,10]. Other studies investigate how
holistic graph analysis can be performed on RDF triple stores, including net‐
work properties such as degree distribution, clustering coefficient, connected
component analysis, and node eccentricity [13], and how such network metrics
can be used to assess the quality of links [8].

Outside of the Linked Open Data domain, many real-world networks have
been analyzed in the past, including router networks, the Web, protein inter‐
action networks, metabolic networks, and emails [5]. Further existing research
includes, for example, the study of the degree distributions of growing net‐
works [11], of theoretical graph properties of brain networks [6], of the cluster‐
ing in social networks [16], and of the spread of  ideas through the scientific ci‐
tation graph [12].

Little  is  known  about  the  information-theoretic  properties  of  real-world
RDF data. Several structural properties of RDF data are known to follow a



power-law distribution.  This  includes  the size  of  RDF documents,  the fre‐
quency with which terms occur  and the  frequency with which schema re‐
sources (properties and classes) occur in the data [7,17,22]. Even though these
observations have been relatively limited, they are already used as heuristics
in the implementation of triple stores and data compressors.

3    Approach and Methods

To analyze the structure and variety of  knowledge networks,  we focus our
study on the following eight network properties, which cover all important and
generally established basic network metrics: the average degree of nodes (i.e.
average number of incoming and outgoing edges), the average local clustering
coefficient (i.e. average chance of two neighbors of a given node being con‐
nected  too),  the  global  clustering  coefficient  (i.e.  ratio  of  three  connected
nodes being fully connected), the number of connected components (i.e. sub‐
sets of a network where each node is directly or indirectly linked to every
other node in the subset), the α exponent of a power-law fit as an indication of
a scale-free network, whether the network is bi-partite or not (i.e. whether the
nodes can be divided into two disjoint classes A and B, such that all edges
point from A to B and never the other way round), the Gini coefficient of the
degree distribution (i.e. the inequality of the degree distribution), and the Gini
coefficient of the component size distribution (i.e. the inequality of the compo‐
nent sizes).

Table 1. Selected RDF properties and their official descriptions

RDF property Description

foaf:knows "A person known by this person (indicating some level of
reciprocated interaction between the parties)."

geop:hasBorderWith Borders among countries according to the United Nations

osspr:contains "The interior of one object completely contains the interior of
the other. Their boundaries may or may not intersect." (inverse
of osspr:within)

osspr:within "The interior of one object is completely within the interior of
the other object. Their boundaries may or may not intersect."
(inverse of osspr:contains)

swrc:affiliation Mapping of organizations to affiliated entities (e.g. employees)

lexinfo:partofspeech "Term used to describe how a particular word is used in a
sentence."

gn:parentCountry "parent country"

tag:associatedTag "The object is a Tag which plays a role in the subject Tagging."

To calculate these metrics, we picked a number of widely used RDF proper‐



ties from various vocabularies and domains, attempting to capture the variety
of Linked Data (but at this point without claiming representativeness of the
sample). We chose foaf:knows as a representative of a property on social rela‐
tions, geop:hasBorderWith as a property of geographical proximity, osspr:con‐
tains/osspr:within  as  an example  of  relations  about hierarchical  inclusions,
and swrc:affiliation as a social/organizational network. For comparison and ex‐
ploration, we also included three properties for which we did not expect to
find interesting network structures, because their semantics do not seem to de‐
scribe a relation that would form a complex network: lexinfo:partOfSpeech,
which maps words to their roles in a sentence, gn:parentCountry, which links
geographical entities to the containing countries, and tag:associatedTag, which
maps concepts to tag strings. Table 1 shows an overview of these selected
properties with their official descriptions.

In addition, we look at a number of properties from the well-known and
popular  SKOS  (Simple  Knowledge  Organization  System)  ontology  [15].
Specifically, skos:narrower specifies a given concept to be in some sense less
general than a given more general concept, whereas skos:related  states that
two concepts are related without marking one or the other as more general.
Similarly,  skos:closeMatch,  skos:exactMatch,  skos:broadMatch,  skos:narrow‐
Match, and skos:relatedMatch establish links between concepts, but these so
called mapping relations establish links across different concept schemes. For
comparison, we also add skos:hasTopConcept, which maps concept schemes to
their top concepts, and for which we do not expect to find complex network
structures.

On the technical side, we retrieve the instances of these RDF properties
from the Linked Open Data cloud by the use of the LOD Laundromat via the
Frank tool [19]. We download the triples in N-Quads format, which we trans‐
form then in a straight-forward way using a SWI Prolog program into the
Graph Modeling Language (GML) for further processing. We then use the
igraph package of R Studio to calculate the different network metrics. Gephi is
used with its OpenOrd plugin to visualize the networks.

Standard R commands are used to calculate the metrics, specifically ecount,
vcount, degree, transitivity (for clustering coefficients), components (to calcu‐
late weak components), and bipartite_mapping, and ineq (for inequality anal‐
ysis using the Gini coefficient). A power law fit is performed on the degree dis‐
tribution (Kolmogorov-Smirnov test)  with the command fit_power_law.  A
power law exponent α between 2 and 3 is typical for scale-free networks (even
though not sufficient to determine their scale-free nature).

4    Results

Below we present the results of our analyses. We explain the sizes of the ana‐
lyzed networks, show visualizations of them, describe them in terms of the in‐
troduced metrics, and finally compare these numbers to results that have been



reported in the existing literature.

4.1   Network Sizes

Table 2 shows the sizes of the analyzed networks in terms of numbers of docu‐
ments, nodes, and edges. The number of documents denotes from how many
data documents the respective triples were retrieved, i.e. it measures the dis‐
tributedness of the network. This number varies from just 10 to more than
6000. In terms of classical network terms of nodes and edges, these networks
range from just 132 nodes and 229 edges in the case of geop:hasBorderWith to
more than 1.7 million nodes and more than 2.3 million edges in the case of
foaf:knows. In the latter case, even the subset of triples that originated from
the Last.fm platform is still larger than most other analyzed datasets with
more than 300'000 nodes and more than 400'000 edges.

Table 2. Sizes of analyzed networks

Network Documents Nodes Edges Size Class

foaf:knows 421 1776554 2374275 Large

foaf:knows (Last.fm) 310 315765 469361 Large

geop:hasBorderWith 13 132 229 Small

osspr:contains 94 7736 10098 Medium

osspr:within 26 16623 28544 Medium

swrc:affiliation 508 12860 12366 Medium

lexinfo:partOfSpeech 10 60700 60678 Medium

gn:parentCountry 14 197117 197115 Large

tag:associatedTag 328 27469 25670 Medium

skos:related 818 208076 300250 Large

skos:narrower 5848 181261 169489 Large

skos:relatedMatch 395 33862 34546 Medium

skos:broadMatch 45 9304 7207 Small

skos:narrowMatch 42 1807 1338 Small

skos:closeMatch 419 328877 254703 Large

skos:exactMatch 5901 263291 213306 Large

skos:hasTopConcept 5854 26180 25304 Medium

4.2   Visualizations

Network visualizations can be very helpful to get a feeling of the network
structures and as an exploratory aid. Figure 1 shows the visualizations of the
first part of the analyzed networks. The full foaf:knows network was too large



to visualize, which is why we can only show here a visualization of its Last.fm
subset.

The  variety  of  appearance  of  the  networks  through these  visualizations  is
striking. Social, geographical, and containment relations each exhibit a very
particular and clearly distinguishable form. The two relations osspr:contains
and its inverse osspr:within, which are semantically identical apart from their
direction (which was not taken into account by the visualization algorithm),
show similar  visual  features  but  are  nevertheless  clearly  different  in  their
structure. lexinfo:partOfSpeech and gn:parentCountry, as expected, do not ex‐
hibit  proper  network  structures,  but  instead  show large  and  small  groups
around central objects. These central objects are of course the part of speech
categories and countries, respectively. The case of tag:associatedTag, however,
gave us a surprising result. We expected this network to be as monotonic as
the previous two, but to our surprise it seems to possess a complex network
structure. The explanation for this is that seemingly basic relations (from a

foaf:knows (Last.fm
subset)

geop:hasBorderWith osspr:contains

osspr:within swrc:affiliation lexinfo:partOfSpeech

gn:parentCountry tag:associatedTag

Fig. 1. Network visualizations of different predicates



network point of view), such as a relation between concepts and their informal
tags, can lead to complex networks if the relation is many-to-many. Concepts
are indirectly linked to related concepts via their overlapping tags, thereby es‐
tablishing a kind of relatedness network, which can exhibit complex struc‐
tures.

The RDF properties discussed above stem from different vocabularies, which
were defined by different people and are used by different user groups. To find
out whether the observed variety is possibly explained by these differences
alone, we can look at the different relations from the SKOS vocabulary, which
were all defined by the same people and presumably used by the same user
groups.  Figure  2  shows  the  visualizations  of  the  chosen  SKOS properties.
While not quite as varied as the examples shown above, they nevertheless ex‐
hibit a striking variety of network structures.

skos:related skos:narrower skos:relatedMatch

skos:broadMatch skos:narrowMatch skos:closeMatch

skos:exactMatch skos:hasTopConcept

Fig. 2. Network visualizations of SKOS predicates



4.3   Metrics

Visualization are good for exploration and for getting an intuitive feeling of
the networks, but we now need an objective analysis by quantitative measures.
Table 3 shows the results for the chosen network metrics that were introduced
above.

Table 3. Summary of network metrics

Clustering
coefficient

Inequality

Network Size Avg.
degree

Local Global Bi-
partite?

Power-
law α

Degree
dist.

Comp.
size

foaf:knows Large 2.673 0.1017 0.0116 No 1.992 0.6047 0.7783

foaf:knows
(Last.fm)

Large 2.973 0.0932 0.0046 No 2.020 0.6095 0.9911

geop:hasBorderWith Small 3.470 0.3920 0.2304 No 4.559 0.4179 0.6174

osspr:contains Medium 2.611 0.6667 0.0076 No 1.9985 0.5696 0.7079

osspr:within Medium 3.434 0.6512 0.0065 No 1.8653 0.5696 0.7286

swrc:affiliation Medium 1.923 0.0 0.0 No 2.453 0.4305 0.6845

lexinfo:partOfSpeech Medium 1.999 0.0 0.0 Yes 1.0277 0.4998 0.8949

gn:parentCountry Large 2.000 0.0 0.0 No 1.253 0.5000 0.9032

tag:associatedTag Medium 1.869 0.0 0.0 Yes 3.0444 0.4064 0.3638

skos:related Large 2.886 0.2624 0.1119 No 2.857 0.4864 0.4862

skos:narrower Large 1.87 0.0304 0.002 No 2.8528 0.4273 0.7326

skos:relatedMatch Medium 2.040 1.41E-04 2.03E-05 No 3.4793 0.3846 0.5465

skos:broadMatch Small 1.549 0.0 0.0 Yes 3.3594 0.3248 0.3961

skos:narrowMatch Small 1.481 0.0 0.0 Yes 2.1632 0.2898 0.2790

skos:closeMatch Large 1.549 2.14E-04 1.01E-04 No 3.1513 0.2808 0.2620

skos:exactMatch Large 1.620 0.0878 0.1758 No 3.212 0.3458 0.1940

skos:hasTopConcept Medium 1.933 0.0 0.0 Yes 1.7919 0.4754 0.5665

The average degree ranges from 1.48 for skos:narrowMatch to above 3.4 for
geop:hasBorderWith and osspr:within. As expected, our examples for compari‐
son,  lexinfo:partOfSpeech,  gn:parentCountry,  tag:associatedTag,  and
skos:hasTopConcept, show a bipartite network structure (i.e. no entities show
up on both sides of the relation) or have at least zero or near-zero clustering
coefficients. The remaining relations show a relatively broad range of cluster‐
ing behavior up to around 0.65 for osspr:contains and osspr:within on the av‐
erage local clustering coefficient, and up to 0.23 for the global coefficient and
geop:hasBorderWith.



Three networks exhibit an α exponent of a power law fit between 2 and 3,
which  is  an  indication  of  a  scale-free  structure:  the  Last.fm  subset  of
foaf:knows, swrc:affiliation, skos:related, skos:narrower, and skos:narrowMatch.
In addition, the full foaf:knows network, osspr:contains, and tag:associatedTag
are outside but very close to the boundary values. Further investigation would
be needed, however, to reliably determine whether these networks are indeed
scale-free.

The inequality measures in the form of the Gini coefficient on the degree
distribution show that this distribution ranges from fairly equal for some of
the SKOS predicates to fairly unequal in the case of foaf:knows. An even wider
variety is manifested for the inequality with respect to the size of the net‐
work's connected components. From highly unequal (because one giant compo‐
nent includes almost all nodes in the network), such as 0.99 for the Last.fm
subset of foaf:knows, to very equal in the case of skos:exactMatch with a value
of 0.19.

4.4   Comparison

So far, we have seen a large variety of results for the chosen network metrics
in the LOD cloud, but we do not know so far how this variety compares to
non-LOD networks, which have been studied extensively. For this comparison,
we use nine well-studied networks that have been summarized in the litera‐
ture, including their average degrees and average local clustering coefficient
[5]. These networks include a social network of actors, the link structure of the
Web, protein interactions, and server networks.

Figure 3 shows the comparison between LOD networks and non-LOD net‐
works with respect to their average degree (note the logarithmic y-axis).  A
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majority of the other networks have a higher average degree than any of the
analyzed LOD networks. Only four LOD networks have an average degree that
is higher than the lowest of the non-LOD ones. Therefore, while LOD net‐
works show a relatively wide range of average degrees, they do not reach near
the top of the scale. This can be explained by the fact that LOD networks are
by  design  incomplete  (everybody  is  free  to  add  more  nodes  and  edges),
whereas the other networks stem from data with stronger completeness claims.

Figure 4 shows the same kind of comparison, but now with respect to the av‐
erage local clustering coefficient. We see that the LOD networks in this case,
apart from the bi-partite or almost bi-partite networks (for which the cluster‐
ing coefficient is  a meaningless  metric),  spread over the given range much
more evenly. While they still do not reach to the very top, they come in this
case at least close to it. Unfortunately, there is no data available for the non-
LOD networks with respect to the remaining network metrics. Therefore such
comparisons are at the moment only possible for the given two metrics.

5    Discussion and Conclusions

We have shown that there is a large variety of network structures in the LOD
cloud. Their visualizations show striking differences, and sometimes the struc‐
ture of a given network is hard to anticipate and the results can be surprising,
which underscores the importance of our work. While the observed metrics are
similar to some other networks reported in the literature, their distributions
seem to be slightly different, which might be due to LOD's lack of complete‐
ness.

The study of the degree of completeness and its consequences is in fact one
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of our future plans. We furthermore plan to conduct studies that take the di‐
rectedness of LOD networks into account, instead of analyzing them only as if
they were undirected networks. A further important point to consider in the
future are entailed relations. Our two networks for osspr:within and osspr:con‐
tains, for example, entail each other, as they are defined as inverse properties.
They therefore form just one network on the semantic level. Similarly, the diff‐
fferent SKOS properties, as many other LOD properties, are arranged in a hi‐
erarchy, and their relation instances can therefore be inferred in well-defined
cases, even if the instance has not been explicitly asserted.

It is clear that the analyses shown in this paper have just scratched the sur‐
face, and there is much more to analyze and understand. We hope that our
work can provide a basis for such future endeavors.
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