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Abstract. Many tree layouts have been created for presenting hierarchical data.
However, layouts optimized for some tasks are not adequate for others. In this
paper, we focus on identifying tree structures and cross-links generated by hi-
erarchical edge bundling. Our key contribution is the introduction of descriptive
features that can be used to characterize trees in terms of their structural and con-
nective qualities. We present a user study with 14 subjects that provides an evalua-
tion of our approach in comparison to other popular tree visualization techniques.
The results of the study indicate which techniques are more effective for visual
analysis tasks that involve identifying and comparing tree and subtree structures
and/or visualizing connections using hierarchical edge bundling.
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1 Introduction

An important consideration in visualizing complex hierarchical data, such as biological
pathways, phylogenic trees, and ontological taxonomies, is clearly showing how par-
ticular elements relate to or are influenced by other elements. That is, it can be neces-
sary to highlight relevant interconnected subtrees with a particular directionality, while
at the same time making sure not to obscure the structure and hierarchical informa-
tion represented by the tree. Many existing approaches [1, 15, 21] investigate the use
of hierarchical edge bundling techniques [14], and our previous work also introduces
CactusTree [3], an interactive technique for visualizing the structure and connectivity
in nested trees.

In this paper, we explore the effective use of tree layouts to support hierarchical
structure recognition and to minimize ambiguity introduced by bundling cross-edges
(also called non-hierarchical connections/links). A user study that uses both real-world
and synthetic datasets validates the effectiveness of our approach. Additionally, the re-
sults of our user study offer preliminary guidelines for identifying or constructing lay-
outs that are appropriate for tasks requiring the analysis of linked data and ontologies.

2 Related Work

Schulz [27] maintains Treevis.net, a comprehensive website that describes of a large
number of tree layouts (296 in total as of September 2017) gathered from conference
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Fig. 1. Examples of hierarchical edge bundling on a hierarchical dataset using different tree lay-
outs. Connectedness between leaf nodes is more visible in some layouts than others: The two
purple nodes are connected (via red links) and these purple nodes are disconnected from the
green node.

proceedings and journal articles. Each of these layouts have advantages and disadvan-
tages when used for particular tasks. In this section, rather than attempting to survey all
related visualization techniques, we instead highlight related work representative of the
main approaches to visualize hierarchical datasets.

A TreeMap [30] is a space-filling technique that maps a hierarchical dataset onto a
rectangular region. The effective use of space enables comparison of attributes of leaf
nodes such as size and color coding, and therefore helps to highlight patterns and out-
liers in large hierarchies. ArcTrees [24] additionally overlay non-hierarchical links onto
TreeMaps [10]. Icicle Plots [17] encode hierarchical data by stacking child rectangles
directly on top of parent nodes. This makes it easier to see the hierarchical structure, but
also assigns valuable screen space in assigning large areas to intermediate nodes. When
using Icicle Plots to represent dense datasets that contain a large number of leaf nodes,
the leaf nodes can be pushed close together, making them hard to see. Viegas et al. [32]
propose a solution to better utilize the space in a circle packing algorithm by defining a
new center point of each “balloon.” However, the hierarchical structure can be difficult
to interpret for tree datasets with more than a few levels of depth.

Kobsa [16] describes a study to compare several well-known information visualiza-
tion systems for tree hierarchies in a between-subjects experiment. The study showed
a significant difference in completion times and correctness between structure-related
versus attribute-related tasks on various tree layouts. McGuffin and Robert [22] present
an in-depth survey of tree layouts that introduces a range of metrics to define the in-
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formation density of different tree layouts. These metrics provide design guidelines for
the use of layouts for certain tasks, such as maximizing space-efficiency and supporting
labeling.

Hierarchical edge bundling (hereafter, HEB) groups links between adjacent edges
by routing them through parent nodes in order to re-enforce the hierarchical structure
of the data. HEB is widely used for a range of applications; however, HEB has not
been evaluated systematically. In a survey paper on edge bundling techniques, Zhou et
al. [36] summarize some studies of HEB, which tend to indicate user preference for
visualizations that use HEB in comparison to those that do not. While not explicitly
focused on HEB, Xu et al. [35] examine visualizations that use varying degrees of
curvature, finding that links with high-curvature can adversely affect how well users
interpret data. McGee and Dingliana [21] perform user experiments to evaluate the
impact of bundling on user performance on different tasks using a set of randomly
generated undirected compound graphs with varying sizes and edge densities. In their
study, graphs are presented with a range of different levels of edge bundling using only
a simple balloon tree layout. Moreover, the design of McGee and Dingliana’s study
limits the applicability of their results to 3 layers of depth and the interconnectivity in
their generated graphs does not reflect real-world edge densities.

3 Tree Qualities and Visualization Tasks

There are many tasks related to visualizing compound graphs in a range of scientific do-
mains, including those that involve biological pathways [20], ontology alignment [23],
and taxonomic classifications [5]. Although there are more basic tasks for tree layouts,
such as determining the degree [18] or height [33, 16] of a tree, through in-depth discus-
sions with systems biologists, taxonomists, and ontology researchers, we identified two
primary tasks important for visual exploration of hierarchical datasets: characterizing
hierarchical structures and identifying connections between nodes in the hierarchy.
T1: Effectively characterize hierarchical structure—It is not uncommon find a path-
way which contains more than ten nested levels [31]. Similarly, in taxonomic and on-
tological alignment domains, hierarchies can get extremely complicated, potentially
containing thousands of leaf concepts [5, 11]. More importantly, these classifications
(hierarchies) can be contentious, and they may change from year to year as new dis-
coveries or interpretations are made [13]. Having a representation which captures hier-
archical structures effectively and allows users to visually identify structures/determine
structural changes quickly is highly desirable by domain experts.
T2: Minimize ambiguity introduced by edge bundling—When HEB is applied, trac-
ing a bundled link can lead to the perception of incorrect connectivity if edges are not
clearly separated within the bundles [1]. For some tree layouts the loss in detail (i.e., the
ability to trace connectivity between two nodes) can be amplified depending on various
factors, such as the chosen visual encodings and the overall structure of the tree. An
ideal tree visualization technique to best support HEB should minimize this loss.
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Tree layouts Classic Radial TreeMap Balloon Icicle Cactus
Hierarchical relationship

Node-link
Containment
Stacking

Shape Preservation
Stable
Malleable

Space-centric filling
Root-centric
Parent centric

Bundling angularity
Wide
Sharp

Table 1. Tree layouts and their qualities. Cells are colors based on our hypotheses about whether
or not these qualities support the primary tasks in our user study (in Section 4): red means that
this quality will not effectively support these tasks; green means that it will be supportive; and
yellow means that it falls somewhere in between or is neutral.

3.1 Classifying Layouts to Support Visualization Tasks

Hierarchical edge bundling can be used in conjunction with existing tree visualization
techniques (balloon layout and radial cluster tree are the two prominent examples), but
each layout introduces certain drawbacks. When we explicitly draw the hierarchy un-
derneath the relationships (in the case of classic tree layout or TreeMaps), the visualiza-
tion becomes more cluttered and it is difficult to interpret the hierarchical information.
When we separate the hierarchy and connectivity (in the case of using outer rings to de-
pict hierarchy in radial tree), it becomes less intuitive because viewers need to interpret
them independently.

Schulz [27] classifies tree layouts in terms of three main features, based on their
structural layout: dimensionality (2D or 3D), representation (explicit or implicit), and
alignment (axis-parallel, radial, and free). We refine Schulz’s representation categoriza-
tion by further dividing implicit representations into two sub-categories, containment
and stacking, in addition to node-link representations. These categories have distinct
features which impact the visual characteristics of HEB. In addition to refining the
structural classification of the tree layouts, we also identified how the layouts are either
amenable to or inappropriate for edge bundling techniques. We can thus characterize
each tree layout in terms of the following four “qualities” (see examples of tree layouts
in Table 1). We hypothesize that, in each case, having a particular quality is superior
to not having it, at least in terms of supporting our two primary tasks. We test this
explicitly in Section 4.
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Hierarchical relationship: Node-link vs. containment vs. stacking This describes
the encoding of a parent-child relationship by either: (a) drawing a link (node-link, such
as in Classic trees or Radial trees); (b) nesting children within the parent (containment,
such as TreeMaps or Balloon layouts); or (c) having a spatial area of the child abut its
parent (stacking, such as Icicle plots).

Shape preservation: Stable vs. malleable structure How a subtree appears is affected
by the structure of the tree (such as the number of leaf nodes) and where it locates in
the tree. Stable structures may have different scales/rotations, but overall shapes are
preserved. A layout with a malleable structure means that the exact same subtree may
appear very different when positioned in different trees, or in different places within the
same tree.

Space-centric filling: Root-centric vs. parent-centric In root-centric layouts, all lay-
out operations are made with respect to the tree’s root. In parent-centric layouts, all
layout operations are made with respect to a node’s parent [28]. Based on this classifi-
cation, Classic, Radial, and Icicle are root-centric since the subdivision for leaf nodes
are computed with respect to the root node.

Bundling angularity: Wide turns vs. sharp turns This quality describes the ease
of interpreting HEB overlaid on tree layouts. In general, layouts that have child nodes
distributed in a linear manner with regard to their parent center have sharper turns than
layouts that have child nodes distributed in a circular manner. For example, Radial trees
(having child nodes distributed in a circular manner with regard to their root) have
wider turns compared to Classic trees and have sharper turns compared to Balloon
layouts (since Radial trees are root-centric while Balloon layouts are parent-centric).

4 User Study

For our controlled experiments we recruited 14 subjects (11 males and 3 females), aged
between 22 and 38 with normal vision. All of the subjects had some familiarity with tree
layouts, and a short training session was provided to give a further overview of each of
the six layouts that were used in the study. The layouts shown to the subjects had sizes
in the range 900x700 to 1200x1050 pixels. Subjects were allowed to touch the screen
or to use a mouse or trackpad to move the mouse cursor, but the experiments involved
no interaction (other than to select and confirm answers to the Yes/No questions).

The total length of the study (including two experiments) ran from between 30 min-
utes to just under one hour depending on the speed of the participant. The subjects were
asked to answer the questions as quickly and accurately as possible. We collected accu-
racy and completion time for each quantitative task (described below); user preference
data were also collected. The order of the questions was randomized to avoid bias and
learning effects.
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For our user study, we chose representative examples of trees with the features de-
scribed in Section 3.1, including hierarchical relationship, shape preservation, space-
centric filling, and bundling angularity. The 6 trees we used are shown in Table 1: Clas-
sic, Radial, TreeMap, Balloon, Icicle, and Cactus.

There are many variants of the same tree layout and multiple ways to visual encode
them. Through a preliminary pilot study, we identified the best variant and visual en-
coding in each layout based on user performances. For example, for our representation
of TreeMap, we decided to use a TreeMap with margins to better represent hierarchical
structures. We also use gray shadings for all 6 tree layouts to encode different levels in
the hierarchy; although some layouts may benefit from this encoding more than others.
Examples of the layouts and their relevant features are presented in the top row of Ta-
ble 1, along with an indication of how well we thought the layouts would perform in
our user study.

4.1 Experiment 1: Identifying Subtrees

Our first experiment evaluates the ability of participants to identify the existence of a
subtree within a larger tree. This task has been confirmed to be valuable by the domain
experts we worked with to develop CactusTree [3] and previous visualization tech-
niques for representing interconnected hierarchical datasets [4–6, 8, 9, 7]. For example,
the RAF cascade pathway (used in Table 1, where it looks like a snowman in CactusTree
representation) is duplicated four times in the larger Signalling by NGF pathway.1 In
general, it can be important to facilitate hierarchical structure recognition tasks within
tree layouts. For instance, in taxonomic studies, these taxonomic classifications may
change from year to year (or even more often) as new discoveries are made [13].

In this experiment, we used 10 different datasets for subtrees, each of which were
synthesized from real-world datasets from different domains, including biological path-
ways, flare source code packages,2 and mammal hierarchy [26]. We selected these
datasets for subtrees because they characterize the inherent complexity of real-world
scenarios. These subtrees have from 3 to 5 levels of depth. The depth of a tree is defined
as the number of edges on the longest path from the root to a leaf. The degree of a tree is
defined as the maximum degree of any of its nodes (the degree of a node is the number
of its children). The larger search trees are generated randomly with 6 level of depth
and 6 degrees. Since our study does not explicitly evaluate zooming or other interaction
techniques, these maximums ensure that the generated search trees are neither too small
nor too large, which could cause a layout to be completely obvious or to draw tiny trees
that are impossible for any user to recognize.

Our experiment was extended on the following dimensions: 6 tree visualizations
x 10 subtree datasets = 60 questions. In particular, for each tree layout we asked 10
questions (associated with 10 subtrees) in which 5 contain a subtree and 5 do not. For
those that do contain a subtree, we blend the subtree into a random position in the
generated tree. The order of questions and tree layouts are completely randomized.

1 http://www.reactome.org/PathwayBrowser/#/R-HSA-166520
2 http://flare.prefuse.org
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Hypotheses for the Identifying Subtrees Task Based on our analysis of meaningful
features for hierarchical structure recognition tasks, we hypothesized H1—Layouts that
(a) preserve the shape of the data regardless of where it is positioned in the layout, and
that (b) use stacking to represent structure will perform better than those that do not,
both in terms of completion time and accuracy, for the subtree task (T1).

More specifically, we ranked the six layouts according to how these qualities were
emphasized. Each tree layout exhibits these qualities to more or less of a degree, but
generally, we expect shape preservation to be most important, followed by the type
of hierarchical relationship. The following hypotheses about performance rankings are
based on this expectation: H1.1—Cactus, which can uniformly scale and rotate the
shape, but do not otherwise modify it, will outperform all other layouts in terms of
completion time and accuracy. H1.2—Icicle, which can narrow the nodes representing
data when positioned within a larger tree, but otherwise retain its shape, will not perform
as well as Cactus, but perform better than other layouts. H1.3—Classic, similarly to
Icicle, can narrow the nodes representing data when they are positioned within a larger
tree, and will not perform as well as Cactus. Classic will also not perform as well as
Icicle since it also uses lines rather than shapes to indicate structure. H1.4—Balloon,
although the shape of the data is preserved, nodes in general difficult to see because
they are nested within each other, and become hard to view at deeper levels. Thus,
Balloon will perform worse than Cactus, Icicle, and Classic, both in terms of accuracy
and completion time. H1.5—TreeMap suffers from both having nested data and from
lacking any guarantee that shape will be preserved. Thus, TreeMap will perform worse
than Cactus, Icicle, Classic, and Balloon, both in terms of accuracy and completion
time. H1.6—Radial, which does not preserve layout and uses lines to indicate structure,
will perform worse than all other layouts, both in terms of accuracy and completion
time.

4.2 Experiment 2: Path Tracing

Path tracing is a basic task in network visualization [21, 25]. We asked participants
to identify whether or not two highlighted nodes in a tree are connected using edge
bundling. In our second experiment, we used 4 different datasets for subtrees drawn
directly from real-world data used in different domains. The data was ranked in terms
of its complexity, that is, its depth, number of leaf nodes, and number of links used in
the edge bundling: easy (4 levels, 3 max branches, 49 leaf nodes, 39 links); medium
(4 levels, 4 branches, 87 leaf nodes, 81 links); hard (4 levels, 7 branshes, 105 leaf
nodes, 156 links); and hardest (4 levels, 7 branches, 103 leaf nodes, 267 links). We
used these datasets because they reflect real-world, non-hierarchical link densities (the
non-hierarchical links to the number of nodes). We further randomized these data by
swapping 2 branches within 3 levels from the root. This generates more trees and en-
sures that participants will never see the same tree twice; swapping does not effect
non-hierarchical link density.

Our experiment was extended on the following dimensions: 6 tree visualizations
x 4 datasets x 4 correct answers (2 Yes and 2 No)= 96 questions. Each pair of high-
lighted nodes was selected randomly. The order of questions and tree layouts are also
completely randomized. The examples of the 4 original datasets in Cactus and Classic
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(without any blending or swapping of subtrees) are presented in Fig. 2, ordered from
left to right in terms of difficulty of the increasing complexity of the data.

Fig. 2. Visualizing 4 input datasets using HEB on CactusTree (top row) and classic tree (bottom
row). The difficulty of data increases from left to right. The same pair of nodes is highlighted in
both tree representations for each of the four datasets.

Hypotheses for the Path Tracing Task Based on our analysis of meaningful features
for tree layouts, we hypothesized that layouts that emphasize a wider bundling angu-
larity and that use a different visual encoding to differentiate hierarchical structure and
non-hierarchical connectivity (i.e., containment and stacking) would perform better for
the connectivity task: H2—Layouts that (a) use different visual encodings to represent
hierarchy and connectivity, that (b) reduce sharp turns in edge bundling, that (c) and
avoid inward nesting will perform better than those that do not, both in terms of com-
pletion time and accuracy, for the connectivity tracing task (T2).

As with the first experiment, we ranked the six layouts according to how these qual-
ities were emphasized. Each tree layout exhibits these qualities to more or less of a
degree, but generally, we expect hierarchical relationship to be most important, fol-
lowed by bundling angularity. The following hypotheses about performance rankings
are based on this expectation: H2.1—Cactus, which clearly differentiates between vi-
sual encodings and which uses a wide bundling angularity, will outperform all other lay-
outs in terms of completion time and accuracy. H2.2—Icicle, which clearly differenti-
ates between visual encodings but introduces sharp turns in edge bundling, will not per-
form as well as CactusTree, but will perform better than other layouts. H2.3—Balloon,
which nests inwardly, but which supports wide bundling angularity will perform worse
than CactusTree and Icicle Plots in terms of both time and accuracy. H2.4—TreeMap,
which nests inwardly, but uses a different visual encoding to differentiate hierarchical
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structure and non-hierarchical connectivity, will perform worse than Cactus, Icicle, and
Balloon. H2.5—Radial, which does not clearly differentiate between visual encodings,
but which tends to have wider bundling angularity will perform worse than all layouts,
except Classic trees in terms of both time and accuracy. H2.6—Classic, which does
not clearly differentiate between visual encodings, and which introduces sharp turns in
edge bundling, will perform worse than all other layouts.

5 Results

Several aspects were considered for the statistical analysis of the results of the user
study. First, we compared the six methods for each of the tasks by looking into the mean
errors over all subjects and all data sets. Second, we did the same comparisons consider-
ing the time it took the participants to fulfill the tasks. For all analyses,

Fig. 3. Percent Correct (higher is better) for iden-
tifying subtrees (T1) for each of six layouts. Our
CactusTree is highlighted in darker bars.

we computed means and standard de-
viation of the errors. To test for statis-
tical significance of the individual re-
sults, we first tested the distribution of
the error values against normality using
the Shapiro-Wilk tests [29]. All of our
data had non-normal distribution, thus
we applied the non-parametric Fried-
man test [12] on K related samples
when comparing more than two groups,
and Kendall’s Coefficient of Concor-
dance [19]. If the computed differences
were significant, we performed pair-wise
comparisons of the groups using a Wilcoxon test [34] on non-parametric two related
samples to be able to report which groups particularly differ from each other. For pair-
wise comparisons in case of more than two groups we run a series of Holm’s sequential
Bonferroni adjustment at the 0.05 level.

5.1 Results of Experiment 1

Fig. 3 summarizes the results of the comparative analysis of the six different methods
for finding subtrees (T1). The bar charts show the mean error values and the standard
error from the mean. The omnibus tests for statistical significance showed that there
is statistical significance in the mean errors for some of the tasks. Kendall’s Coeffi-
cient of Concordance test showed significant difference (Kendall W=0.149, χ2=102.76,
df=5, p<0.01) among six methods. Bonferroni across pair-wise Wilcoxon compar-
isons showed significant differences between TreeMap and all other techniques, with
TreeMap as the least accurate technique for finding sub-tree. Other pair-wise com-
parisons also showed significant differences: Icicle vs. Radial (Z=-3.343, P<0.0035),
Cactus vs. Radial (Z=-3.34, P<0.0035) and Radial vs. Classic (Z=-2.942, P<0.0032).
Therefore, according to Bonferroni adjustment, Icicle and Cactus are ranked as the
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best techniques. Classic is ranked as the second best technique. Balloon and Radial are
ranked as the third best techniques and TreeMap is the worst technique.

Fig. 4 summarizes the results of the time analysis of the six different methods for
finding subtrees (T1). The bar charts show the mean error values and the standard er-
ror from the mean. The omnibus tests for statistical significance showed that there is

Fig. 4. Time taken (lower is better) for identify-
ing subtrees (T1) for each of six layouts. Our
CactusTree is highlighted in darker bars.

significance in the mean errors for
some of the tasks. Kendall’s Coeffi-
cient of Concordance test indicates sig-
nificant difference (Kendall W=0.164,
χ2=114.276, df=5, P<0.0001) among
six methods. Pairwise comparisons be-
tween TreeMap and other techniques
other than Radial Tree showed signif-
icant difference. TreeMap is one of
the slowest techniques while Radial
was significantly slower than TreeMap
(Z=-2.153, P<0.031). Thus, Radial is
ranked as the slowest techniques fol-
lowed by TreeMap. The significant results from Bonferroni across pair-wise Wilcoxon
comparisons between Cactus and Classic (Z=-3.747, P<0.001) and Cactus and Balloon
(Z=-2.986, P<0.003) also reveal Cactus to be one of the fastest techniques. Similarly,
Icicle is ranked as one of the fastest method as revealed significant difference in com-
parison with Classic (Z=-4.178, P<0.001) and Balloon (Z=-2.548, P=0.011). These re-
sults show a consistent results with accuracy for finding because Icicle and Cactus both
ranked as the two most accurate methods, while TreeMap was both the least accurate
method and the slowest.

Thus H1 is confirmed: layouts that use stacking to represent hierarchical structure
are better than those that use containment or node-link representations; layouts that tend
to preserve shape are better than those that do not. Our hypotheses about the importance
of each of these qualities are mostly correct as well. Cactus and Icicle performed best
(with no statistically significant difference), followed by Classic, then Balloon and Ra-
dial (which showed no statistically significant difference), and finally TreeMaps. Thus,
H1.1–H1.6 are partially supported.

5.2 Results of Experiment 2

Fig. 5 summarizes the results of the comparative analysis of six different methods for
path tracing tasks. Again, the bar charts show the mean error values and the standard
error from the mean. The omnibus tests for statistical significance showed that there
is statistical significance in the mean errors for some of the tasks. The Friedman test
showed (χ2 (5,N=224)=3.250; P<0.001) among six methods. Bonferroni across pair-
wise Wilcoxon comparisons showed significant differences between TreeMap vs. Cac-
tus (Z=-3.255, P=0.001). Cactus outperforms significantly Icicle (Z=-4.096, P<0.0001).
Cactus is also significantly more accurate than Balloon (Z=-4.216, P<0.001). Cactus is
ranked as the best technique because it also has significantly better performance com-
pared to Classic (Z=-2.263, P=0.024). Radial is ranked as the second best technique:
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TreeMap vs. Radial (Z=-2.967, P=0.003) showed significant difference. Radial vs. Bal-
loon is also finds that Radial is significantly more accurate than Balloon. Classic ranked

Fig. 5. Percent Correct (higher is better) for path
tracing (T2) for each of six layouts. Our Cactus-
Tree is highlighted in darker bars.

third (Z=-2.449, P=0.014), while Balloon
Layout, TreeMap, and Icicle are ranked
as the worst techniques for T2 regarding
percent correct.

Fig. 6 summarizes the results of
the comparative analysis of the six dif-
ferent layouts in terms of the time
taken to complete the path tracing
task. The Friedman test showed signif-
icant difference (χ2 (5,N=192)=26.947;
P<0.0001) among six methods. Pairwise
comparisons showed significant differ-
ences between Cactus vs. Balloon (Z=-
3.935,P<0.0001), Cactus vs. Classic (Z=-5.017,P<0.001), and Cactus vs. Icicle (Z=-
2.849,P=0.004). However, based on Bonferroni adjustments, other pairwise compar-
isons did not reveal any significant results. We can therefore conclude that the Cactus-
Tree layout is significantly faster than all other methods for T2.

Fig. 6. Time taken (lower is better) for path trac-
ing (T2) for each of six layouts. CactusTree is
highlighted in darker bars.

Thus H2 is partially confirmed: lay-
outs that use stacking to represent hierar-
chical structure are better than those that
use containment or node-link represen-
tations. Our hypotheses about the rank-
ing is only partially correct. Most no-
tably, Cactus performs significantly bet-
ter than all other layouts, in terms of both
time and accuracy. However, our rank-
ings of the others layouts was not as ex-
pected. In terms of accuracy, Radial per-
formed second best, followed by Classic
and Icicle, with no significant difference
between them. The other two layouts performed poorly, with no significant difference
between them. Thus, H2.2–2.5 are not supported. Notably, Icicle was close to the bot-
tom ranking, despite sharing many similar features as Cactus. We believe that this is
largely due to the tendency of Icicle to introduce very narrow leaf nodes which are hard
to distinguish from each other, especially when edge bundling is used to show connec-
tivity between them.

We also compared the results of the Cactus, Icicle, and Radial layouts across the four
different datasets, which had different levels of complexity, from C1 (simplest) to C4
(most complex). For Cactus, the Friedman test did not show any significant differences
among all levels of complexities. That is, the Cactus layout performed equally well
across all levels of complexity. However, the Friedman test showed significant differ-
ences among different levels of complexity for Icicle (χ2(3,N=56)=22.105; P<0.001).
Wilcoxon pairwise comparisons showed significant differences between C3 vs. C1 (Z=-
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2.324, P¡0.001), C3 vs. C2 (Z=-2.744, P=0.006), and C4 vs. C3 (Z=-3.530, P=0.001).
That is, the accuracy of Icicle tends to get worse as the data becomes more complex.
Similarly, the Friedman test showed a significant differences among different levels of
complexity for Radial ((χ2(3,N=56)=27.370; P<0.001). Wilcoxon pairwise compar-
isons showed significant differences between C3 vs. C1 (Z=-3.578, P<0.001), C3 vs.
C2 (Z=-3.411, P=0.001), and C4 vs. C3 (Z=-3.273, P=0.001). As with Icicle, the accu-
racy of Radial tends to get worse as the data becomes more complex. The other layouts
showed no significant differences between the different levels of complexity.

Classic Radial TreeMap Balloon Icicle Cactus

T1 3 4 6 5 1 1
T2 4 2 5 6 3 1

Table 2. Average user preferences on different tree layouts for the two tasks: finding subtrees
(T1) and path tracing (T2), 1 = best, 6 = worst. Icicle and Cactus are both the best for T1.

5.3 Qualitative Responses

In addition to recording the participants’ time and accuracy of questions related to each
of the tasks, we also solicited qualitative responses about each of the layouts. At the
end of the study, each user was invited to rank the layouts and to offer comments. User
preferences for the two tasks in our study in Section 4 are shown in Table 2.

Despite the general familiarity with the Classic tree layout by the participants, they
had mixed responses to it. Some participants indicated that it was among the best tech-
niques with which to identify subtrees, but others noted that it was hard to trace paths
between nodes on the tree.

All participants mentioned that they liked the patterns created by the TreeMap lay-
out, but most also indicated that it was frustrating to find structural patterns and that
it was confusing to trace connections between the nodes using the TreeMap. This was
especially when the links inadvertently crossed the center of a node, as it was hard to
tell which level was being indicated. As one user noted, “sometimes it seems as if the
connections are connected through an intermediate step.” One exception was a user who
rated the TreeMap highly despite the visual clutter, saying that “it just seemed easier to
recognize connections, even when the data was messy.”

Participants also mentioned that they were drawn to the Radial layout, but that, as
one user said, “if there were too many layers, it became very complicated to see if
the subtrees were in there”— A sentiment echoed by most users. On the other hand, the
Radial layout was evaluated much more favorably for the path tracing task. The Balloon
layout was perceived the most negatively by participants, as it was acknowledged by all
participants that they were difficult to interpret for the more deeply nested trees.
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CactusTree and Icicle Plots were described most positively by participants. They
found both of these techniques to be more “intuitive” to understand, but some noted
that it was harder to read the Icicle Plots in some cases when the density of the tree
caused nodes to be narrow: “It was hard to read the connections in the normal [Classic]
tree, because the lines seemed stitched together, and the same thing happens with the
Icicle tree.” Participants were prone to find unintentional patterns in the CactusTree
layout, noting that some trees looked, variously, like “snowmen,” “clouds,” “animals,”
or “a face.” However, this didn’t seem to present a distraction, as nearly all participants
found it easy to identify subtree patterns in this layout and indicated that it was the most
straightforward technique with which to trace paths between nodes.

6 Conclusions and Future Work

The results of our user study indicate that layouts that exhibit particular features aid
users when working with complex hierarchies that can be found in real-world scientific
datasets. Specifically, we found that a hierarchical structure recognition task was best
enabled by trees that used stacking and that preserved the shape of the data represen-
tation when contextualized within different datasets. Further, we showed that a layout
that used wider turns for edge bundling performed better than a range of other layouts
for reasoning about connectivity across complex hierarchies. Our classification of trees
using these descriptive features serves as a preliminary guideline for visualization de-
signers to determine if a particular layout is useful for a task, and also to help guide the
development of new techniques for the visual analysis of ontologies and linked data.

For future work, we plan to conduct more extensive studies of HEB on different tree
layouts and to investigate more involved tasks. For instance, we want to explicitly exam-
ine a user’s understanding of high level inter-cluster connectivity trends by asking the
user to identify which cluster/parent node is most strongly connected to a selected clus-
ter/parent node. We also plan to examine user understanding of low level intra-cluster
connectivity trends by testing how well a user can identify the connectivity within a
cluster/parent node. Additionally, we also plan to explore how interactions, such as ro-
tating, panning, and zooming, support these tasks (especially for deeply nested trees of
up to one hundred levels).

CactusTree [3] is implemented in Javascript using the D3.js library [2]. A demon-
stration video, the online CactusTree application, and evaluation materials, such as
screenshots of techniques the test participants saw, questions they were asked, and
the actual user study itself are all available on our project page, located at http://
cactustrees.github.io. Examples of complex, real-world datasets discussed
in this paper (along with additional datasets) can also be found on our project page,
represented both using CactusTree and as compared to a range of other tree layouts.
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